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Abstract

To model spatial changes of chromatin mark peaks over time we develop and apply ChromTime, a computational
method that predicts peaks to be either expanding, contracting, or holding steady between time points. Predicted
expanding and contracting peaks can mark regulatory regions associated with transcription factor binding and
gene expression changes. Spatial dynamics of peaks provide information about gene expression changes beyond
localized signal density changes. ChromTime detects asymmetric expansions and contractions, which for some
marks associate with the direction of transcription. ChromTime facilitates the analysis of time course chromatin data
in a range of biological systems.
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Background
Genome-wide mapping of histone modifications (HMs)
and related chromatin marks using chromatin immunopre-
cipitation coupled with high-throughput sequencing
(ChIP-seq) and DNA accessibility through assays for DNase
I hypersensitivity (DNase-seq) or transposase-accessible
chromatin (ATAC-seq) assays have emerged as a powerful
approach to annotate genomes and study cell states [1–5].
Through the efforts of large consortia projects such as EN-
CODE [6], Roadmap Epigenomics [7], and BLUEPRINT [8]
as well as individual labs [9–11], multiple different chroma-
tin marks have been mapped across more than a hundred
different cell and tissue types. These maps have yielded nu-
merous insights into gene regulation and genetic and epi-
genetic association with disease [12–16].
While many mapping efforts have largely focused on

single or unrelated cell and tissue types [3, 6], a growing
number of biological processes have been studied with
temporal epigenomic data using assays such as
ChIP-seq, ATAC-seq, or DNase-seq over a time course,
which map chromatin marks at consecutive stages dur-
ing the particular biological process. Such datasets have
been generated for a wide range of biological settings,

including T-cell development [17], adipogenesis [18],
hematopoiesis [19, 20], macrophage differentiation [21],
neural differentiation [12], cardiac development [22, 23],
somatic cell reprogramming [24–27], embryogenesis
[28], and many others [7, 29–37]. The output of these
experiments presents a unique opportunity to study the
spatio-temporal changes of epigenetic peaks and associ-
ated regulatory elements. However, almost all computa-
tional methods designed or applied to epigenomic data
have been developed based on single or multiple unre-
lated samples. For example, continuous regions of en-
richments of single marks are detected by peak or
domain calling methods [38–42]. In cases when multiple
chromatin marks are mapped in the same cell type,
methods such as ChromHMM [43] and Segway [44] can
be used to produce genome-wide chromatin state anno-
tations. In addition, methods have been developed for
pairwise comparisons of ChIP-seq signal data by differ-
ential peak calling [45, 46].
In the context of time course chromatin data, only a

few methods have been proposed that consider temporal
dependencies between samples. One such method,
TreeHMM [47], produces a chromatin state genome an-
notation similar to ChromHMM and Segway, while tak-
ing into account a tree-like structure that captures
lineage relationships between the input cell types in
order to potentially derive a more consistent annotation
across samples. Another method, GATE [30], produces a
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genome annotation based on clustering fixed-length
genomic loci that can be modeled with the same switch
from one chromatin state to another over time.
One important limitation of methods for pairwise

comparison or time course modeling of chromatin data
is that they do not directly consider or model spatial
changes in the genomic territory occupied by chromatin
marks over time. Spatial properties of genomic peaks
continuously marked by HMs have gained increasing at-
tention as a potentially important characteristic of chro-
matin marks. For example, long peaks of H3K27ac have
been associated with active cell type-specific locus con-
trol regions termed super-enhancers or stretch en-
hancers in a number of cell types [48, 49]. Also, the
length of H3K4me3 peaks has been associated with tran-
scriptional elongation and consistency of cell identity
genes [50]. In the context of cancer, long H3K4me3
peaks have been linked to transcriptional elongation and
enhancer activity at tumor suppressor genes and have
been observed to be significantly shortened in tumor
cells [51]. Long H3K4me3 domains have been implicated
to mark loci involved in psychiatric disorders [52].
Expanded domains of H3K27me3 and H3K9me3 marks
have been shown to be characteristic of terminally differ-
entiated cells compared to stem cells [53]. These studies
suggest that length of epigenetic peaks is a dynamic fea-
ture that can correlate with activity of putative func-
tional elements regulating specific genes. Computational
methods that do not explicitly reason about the spatial
changes of chromatin marks have significant limitations
for studying the dynamics of these properties because
they are unable to detect some territorial changes that
might be associated with redistribution of signal or iden-
tify asymmetric directional peak boundary movements.
In this work, we present ChromTime, a novel compu-

tational method for detection of expanding, contracting,
and steady peaks, which can detect patterns of changes
in the genomic territory occupied by chromatin mark
peaks from time course sequencing data (Fig. 1a). We
applied ChromTime to a diverse set of data from differ-
ent developmental, differentiation, and reprogramming
time courses (Table 1). Predicted expansions and con-
tractions in general mark regulatory regions associated
with changes in transcription factor (TF) binding or
gene expression. ChromTime enables studying the direc-
tionality of spatial dynamics of chromatin mark peaks
relative to other genomic features, which existing com-
putational approaches do not directly address. Our re-
sults show that the direction of predicted expansions
and contractions correlates with direction of transcrip-
tion near transcription start sites (TSSs). ChromTime is
a general method that can be used to analyze time course
chromatin data from high-throughput sequencing assays
such as from ChIP-seq, ATAC-seq, and DNase-seq for a

wide range of biological systems to gain insights into the
dynamics of gene regulation.

Results
Model for detecting expanding, contracting, and steady
peaks from temporal chromatin data
We developed a computational method, ChromTime
(https://github.com/ernstlab/ChromTime), designed for
systematic detection of expansions, contractions, and
steady peaks from time course chromatin data of a sin-
gle chromatin mark (“Methods”; Fig. 1b). ChromTime
takes as input a set of genomic coordinates of aligned
sequencing reads from foreground experiments for a
chromatin mark and, optionally, control experiments
over the time course. The foreground experiments are
data from a chromatin sequencing assay such as
ChIP-seq, ATAC-seq, or DNase-seq performed at a
series of time points. The method consists of two
stages—block finding and dynamics prediction. During
the block finding stage, ChromTime determines con-
tinuous genomic regions (blocks) that may contain peaks
of foreground signal enrichment during the time course
(Additional file 1: Figure S1A, B). To achieve this,
ChromTime partitions the genome into fixed length bins
and counts the number of foreground and control reads
that map to each bin at each time point. Nearby bins
that show significant enrichment are joined into con-
tinuous intervals, which subsequently are grouped into
blocks if they overlap across time points. As a result,
large portions of the genome that are likely to contain
background noise at all time points are filtered out, so
that peak boundary dynamics are determined within a
subset of the genome potentially enriched for the chro-
matin mark.
During the dynamics prediction stage, for each block,

ChromTime determines the most likely positions of the
peak boundaries at each time point and whether the
peak expands, contracts, or holds steady at each bound-
ary between consecutive time points. The method uses a
probabilistic mixture model to partition the signal within
each block at each time point into background and peak
components (Fig. 1c, Additional file 1: Figure S1C) by
reasoning jointly about the data from all time points in
the time course. The method assumes that central posi-
tions in blocks are more likely to be enriched for fore-
ground reads and thus the peak component is flanked by
the background components (Additional file 1: Figure S1D).
The number of sequencing reads in bins from each compo-
nent at each time point is modeled with different negative
binomial distributions that can account for the local abun-
dance of control reads. Furthermore, between any two
consecutive time points the boundaries of the peaks are
assumed to follow one of three possible dynamics: steady,
expand, or contract. For steady dynamics, the peak
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boundaries are enforced to have the same genomic pos-
ition. For expanding and contracting dynamics, the
number of genomic bins that the peak boundaries move
between the two time points is modeled with different
negative binomial distributions which depend on the
pair of time points and the corresponding dynamic.
ChromTime models time points that have no bins in
the peak component with zero length peaks. Thus, ap-
pearances of peaks, except at the first time point, are
modeled as expansions from zero length peaks and the
disappearances of peaks are modeled as contractions to
zero length peaks. Each dynamic is also assumed to

have a prior probability which captures information
about its genome-wide frequency at each time point.
All model parameters are learned jointly from the

whole time course. As a result, ChromTime can adapt
to different boundary movements, dynamics frequencies,
and noise levels across experiments and biological
systems. The estimated parameters are used to make a
prediction for each block for the most likely positions of
the peak boundaries and the corresponding boundary
dynamics that had generated the signal within the block.
The final output contains predicted peak boundaries an-
notated and colored by their assigned dynamics, which

ba

c

Fig. 1 Overview of the ChromTime method. a Examples of H3K4me2 peaks with steady, expanding, and contracting boundary dynamics, shown
from left to right, respectively, across five time points during mouse T-cell development [17]. Time points 1, 2, and 3 correspond to in vitro differentiated
T-cell precursors (FLDN1, FLDN2a, and FLDN2b), whereas time points 4 and 5 correspond to in vivo purified thymocytes (ThyDN3 and ThyDP). Normalized
ChIP-seq signal, MACS2 [38] peaks (black rectangles), and ChromTime output are shown for each time point. Peaks upstream of the Zfp148 gene are called
steady by ChromTime despite fluctuations of MACS2 peak boundaries. In contrast, ChromTime calls a peak at the Skap1/GM11529 promoter to expand
after time points 2 and 3. Conversely, ChromTime calls a peak upstream of the GPR141 gene to contract after time points 2, 3, and 4. b Overview of the
ChromTime method. During the block-finding stage, input foreground and, optionally, control reads are used to determine blocks of signal enrichment. In
the dynamics prediction stage, for each block, peak boundary positions are predicted at each time point and peak boundary dynamics are predicted at
each pair of consecutive time points. c Predicting dynamics for one block. Boxes represent genomic bins at each time point. Foreground signal is depicted
as blue bars for each bin whose height represents the number of reads mapped to the bin. ChromTime learns a probabilistic mixture model from the
input data to partition each block at each time point into peak and background components. Bins in the peak component (orange) mark peaks of signal
enrichment whereas those in the background component (white) mark flanking background signal. The movement of the boundaries on the left and the
right side of peaks between consecutive time points is estimated by reasoning jointly about the input data from all time points
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can be used for downstream analysis with existing tools
and visualized in genome browsers (Fig. 2, Additional file 1:
Figure S2; https://github.com/ernstlab/ChromTime).

Reproducibility of ChromTime predictions and association
with changes in gene expression, TF binding, and DNaseI
hypersensitivity sites
To investigate the reproducibility of ChromTime predic-
tions, we applied ChromTime separately to two bio-
logical replicate datasets for the H3K4me2 and H3K(9/
14)ac marks in T-cell development in mouse [17] and
confirmed, on average, strong enrichment for the same
ChromTime annotations co-localizing across replicates
(Additional file 1: Figure S3). We then applied the
method to data from pooled replicates for the H3K4me2
mark from the mouse T-cell development study [17], to
data for the H3K4me3 and H3K27ac marks from a study
on stem cell reprogramming in human [24], to
ATAC-seq data from a mouse stem cell reprogramming
time course [27], and to a human fetal brain develop-
ment time course that we constructed from DNase-seq
datasets from Roadmap Epigenomics [7]. To investigate
the biological relevance of ChromTime predictions, for
blocks overlapping TSSs we examined changes in the
corresponding gene expression. Peaks with predicted
expanding and contracting boundaries that overlap an-
notated TSSs associated with increases and decreases,
respectively, in gene expression (Fig. 3, Additional file 1:
Figure S4). Additionally, for all chromatin marks we
examined enrichments of TF binding sites across all
blocks [6, 17, 27], and in the case of HMs, also enrich-
ments of DNaseI hypersensitivity sites (DHSs) [7]. Pre-
dicted peaks with expanding and contracting boundaries

Table 1 Datasets used for analysis with ChromTime

System Chromatin
marks

Species Number of
time points

Reference

Adipogenesis H3K4me2 Mouse 4 [18]

H3K4me3 Human

H3K27ac

H3K4me1

H3K36me3

H3K27me3

Blood formation H3K4me2 Mouse 5–7 [19]

H3K4me3

H3K27ac

H3K4me1

ATAC-seq

Blood formation ATAC-seq Human 5 [20]

Fetal brain
development

DNase-seq Human 3 [7]

Cardiac development H3K4me3 Mouse 4 [23]

H3K27ac

H3K4me1

H3K27me3

H3K36me3

Pol2

Cardiac development H3K4me3 Human 5 [22]

H3K27me3

H3K36me3

Embryogenesis H3K4me3 Zebrafish 4 [28]

H3K27ac

H3K4me1

Macrophage
differentiation

H3K4me3 Mouse 5 [21]

H3K9ac

H3K27ac

H3K27me3

Neural differentiation H3K4me3 Human 5 [12]

H3K27ac

H3K27me3

H3K4me1

Stem cell
reprogramming

H3K4me2 Human 4–6 [24]

H3K4me3

H3K27ac

H3K4me1

H3K27me3

H3K36me3

Stem cell
reprogramming

H3K4me2 Mouse 4 [27]

H3K4me3

H3K9ac

H3K27ac

Table 1 Datasets used for analysis with ChromTime (Continued)

System Chromatin
marks

Species Number of
time points

Reference

H3K27me3

H3K36me3

H3K4me1

H3K79me2

H3K9me3

ATAC-seq

Stem cell
reprogramming

H3K4me3 Mouse 9 [25]

H3K27ac

H3K4me1

H3K27me3

Pol2

T-cell development H3K4me2 Mouse 5 [17]

H3K(9,14)ac

H3K27me3
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were enriched for sites bound by important transcrip-
tional regulators in each biological system in a cell
type-specific manner. Expanding and contracting HM
peaks were also enriched for cell type-specific DHSs.
Furthermore, peaks with predicted steady boundaries
showed enrichment for TF binding sites that are shared
between the first and the last time point in the corre-
sponding time courses, which mark potentially stable
regulatory elements. Similar enrichments in the case of
HM peaks were also seen for shared DHSs.

Predicted spatial dynamics by ChromTime associate better
with gene expression changes compared to boundary
position changes of peaks called from individual time
points in isolation
We next investigated whether ChromTime’s approach
for reasoning jointly about the whole time course in-
creases power to detect associations with gene expres-
sion compared to considering boundary differences of
peaks at consecutive time points called in isolation.
Specifically, we analyzed gene expression changes of
genes with TSSs overlapping ChromTime peaks in
relation to posterior probabilities for expansions and

contractions compared to boundary differences of peaks
called with ChromTime from data from individual time
points in isolation. We investigated this in the context of
H3K4me2 peaks in mouse T-cell development [17] and
for H3K4me3 peaks in stem cell reprogramming in hu-
man [24]. In most cases, ranking boundary changes of
peaks in blocks with at least one non-zero length peak
by their predicted ChromTime posterior probabilities for
expansions and contractions associated, on average, with
larger gene expression changes compared to ranking
boundaries directly based on the change in the genomic
positions of the boundaries of ChromTime peaks called
at individual time points in isolation (Fig. 4, Additional
file 1: Figure S5A). These results also held when using
peaks from two different peak callers, MACS2 [38] and
SICER [40], applied on data from individual time points
(Additional file 1: Figure S5B, C).

Spatial dynamics contain information about gene expression
changes between consecutive time points not captured by
corresponding pairwise signal density changes
We next investigated whether there is additional infor-
mation in ChromTime predictions with respect to gene

Fig. 2 Sample output from ChromTime with contracting peaks. Genome browser screenshot with sample output of ChromTime for H3K4me2
from the T-cell development time course in mouse [17] with five time points at the Esam/Vsig2/Nrgn locus. Time points 1, 2, and 3 correspond to
in vitro differentiated T-cell precursors (FLDN1, FLDN2a, and FLDN2b), whereas time points 4 and 5 correspond to in vivo purified thymocytes
(ThyDN3 and ThyDP). The input ChIP-seq signal and MACS2 [38] peaks (black boxes under each signal track) are shown in the upper panel of the
screenshot. The ChromTime-predicted peaks colored by their boundary dynamics for each block at each time point are shown in the bottom
panel. The first peak in each block is colored in dark gray. Each subsequent peak is colored with respect to the predicted dynamic relative to its
previous time point. Peaks with steady boundaries on both sides are shown in light gray, and those with at least one contracting boundary are
shown in blue. Nearby peaks that touch boundaries are visualized as one peak by the genome browser. Not shown in the figure are expanding
peaks, peaks at single time points, and peaks with opposite dynamics (EXPAND on the left and CONTRACT on the right, or vice versa), which
would be colored in red, orange, and black, respectively. See Additional file 1: Figure S2 for examples of predicted expanding peaks
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expression changes beyond what can be captured by
pairwise signal density changes or by differential peak
calls. For this analysis, we focused on H3K4me2 in
mouse T-cell development [17] and H3K4me3 in human
stem cell reprogramming [24]. For pairs of consecutive
time points, we computed the change in signal density
in the region starting at the left-most and ending at the
right-most predicted peak boundary in the block
(Additional file 2: Supplementary methods). We associ-
ated the signal density changes with gene expression
changes at the nearest TSS within 50 kb of each block
and computed the average gene expression change as a
function of the signal density change within blocks
(Fig. 5). We found that locations with the same signal
density change can associate with significantly different
average gene expression changes of proximal genes
depending on the predicted ChromTime dynamics.
Notably, bidirectional expansions, expansions occurring
on both sides of a peak, associated for a range of signal
density changes with greater average increase in gene ex-
pression than unidirectional expansions, those expan-
sions occurring on one side but steady on the other,
when controlling for the signal density change. These
unidirectional expansions in turn associated for a range
of signal density changes with greater expression change

than steady regions, those regions with a steady call on
both sides of a peak, when controlling for the signal
density change. We observed a similar relationship for
contractions and decrease of gene expression. These re-
sults were replicated also after substituting ChIP-seq sig-
nal density changes with differential peak scores from two
differential peak calling methods, SICER [40] and MACS2
[38] (Additional file 1: Figure S6A, B). Therefore, Chrom-
Time predictions can provide additional information
about gene expression changes beyond what is contained
in the corresponding signal density changes as measured
directly or by utilizing differential peak-calling procedures.

Spatial dynamics are correlated between multiple chromatin
marks
Previous studies have shown that the locations of differ-
ent chromatin marks can be correlated [3, 54]. In this
context, we tested whether multiple chromatin marks
can also exhibit jointly the same type of spatio-temporal
dynamics. For this purpose, we compared the genomic
locations of predicted expansions, contractions, and
steady peaks for different chromatin marks within the
same time course. We focused on three previously pub-
lished time courses—stem cell reprogramming in human

ba

Fig. 3 Changes in GATA3 binding and gene expression at predicted H3K4me2 dynamics in T-cell development. a Fold enrichments of cell type-specific
and shared peaks of GATA3, which is a master regulator in T-cell development [17], are shown for three sets of blocks with predicted H3K4me2 peaks: 1)
blocks with peaks present at all time points whose boundaries hold steady on both sides throughout the whole time course (T1-Tn Steady); 2) blocks with
non-contracting peaks whose boundaries expand between at least one pair of consecutive time points and have a peak at the last time point (Tx-Tn
Expand); and 3) blocks with non-expanding peaks whose boundaries contract between at least one pair of consecutive time points and have a peak at the
first time point (T1-Tx Contract). The first column shows the percentage of bases out of all bases covered by peaks of the set. The last row shows the
baseline percentage for each feature out of all bases covered by ChromTime peaks at any time point. Percentages are colored from 0 (white) to 100
(green). Fold enrichments in each column are colored from 1 (white) to the maximum value in the column (red). FLDN1 and ThyDP denote differentiated
T-cell precursors and purified thymocytes, which are the first and the last time point, respectively. b Boundaries of predicted H3K4me2 peaks in blocks with
at least one predicted non-zero length peak overlapping annotated TSSs were sorted in decreasing order by their posterior probability for EXPAND
dynamic (left plots) and CONTRACT dynamic (right plots) at each pair of consecutive time points (Additional file 2: Supplementary methods). Gene
expression differences between consecutive time points were calculated as the average difference across all genes with overlapping TSSs for each block.
For each posterior rank (x-axis) the plot shows the cumulative average gene expression difference across all peak boundaries with equal or higher posterior
probabilities (y-axis). Expanding boundaries associated with increase of gene expression and contracting boundaries associated with decrease of gene
expression. Shaded regions correspond to 95% confidence intervals
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[24], stem cell reprogramming in mouse [27], and adipo-
genesis in mouse [18]—where multiple chromatin marks
were mapped (Fig. 6, Additional file 1: Figure S7). In all three
datasets, we observed that predicted expansions co-localized
preferentially for H3K4me2, H3K4me3, and H3K27ac and to
a lesser extent for H3K4me1 and similarly for predicted con-
tractions and steady peaks. In contrast, different predicted
spatial dynamics for H3K36me3 and H3K27me3 tended to
occupy distinct locations. In addition, in mouse reprogram-
ming [27], ChromTime predicted dynamics of ATAC-seq,
H3K4me2, H3K4me3, H3K27ac, H3K9ac, and, to a lesser
extent, of H3K4me1 and H3K79me2 peaks co-localized

preferentially (Additional file 1: Figure S7). These results sug-
gest that spatial dynamics of chromatin marks are coordi-
nated at least at a subset of genomic locations.

Direction of expansions and contractions is correlated
with direction of transcription
ChromTime can predict unidirectional expansions and
contractions, which enables analysis of directionality of
spatial dynamics of peaks, an aspect of chromatin
regulation that has not been previously systematically
explored. To investigate this, we applied ChromTime
on data from 13 previously published studies from a

a

b

Fig. 4 ChromTime predictions associate better with expression changes than boundary movements of peaks called in isolation. a For H3K4me2
in mouse T-cell development [17] ChromTime was applied once with data from all time points (ChromTime ALL), and once with single time
points in isolation (ChromTime SINGLE; Additional file 2: Supplementary methods). Time points 1, 2, and 3 correspond to T-cell precursors, 4 and
5 to purified thymocytes. Peaks called by both procedures overlapping annotated TSSs were analyzed for their relationship with gene expression
changes. i Left: Comparison of agreement with expression for expansions when applying ChromTime ALL and ChromTime SINGLE for the change
between time points 3 and 4. Peak boundaries were sorted in decreasing order of their EXPAND posterior probabilities from ChromTime ALL and
compared to sorting them in decreasing order of the difference of peak boundary positions in ChromTime SINGLE peaks with positive differences
in boundary positions indicating peaks expanding with time. Each boundary was also ranked by the average gene expression difference of TSSs
overlapping its block in decreasing order with positive expression differences indicating gain with time. The cumulative average boundary rank of
expression change (y-axis) is shown for the boundary change ranking for ChromTime ALL and ChromTime SINGLE (x-axis). Low Y-values indicate
stronger association with expression changes. Black line shows expected average expression change rank. Shaded regions indicate 95% confidence
intervals. Plots for other time points can be found in Additional file 1: Figure S5. Right: Analogous to left plots for contract posterior probabilities
for ChromTime ALL, increasing order of the difference of boundary change positions for ChromTime SINGLE, and increasing order of expression
changes. ii Differences between ChromTime ALL and ChromTime SINGLE values shown in i between time points 3 and 4 as well as for all other
pairs of time points. Positive values correspond to boundary ranks for which ChromTime ALL posteriors better associate with gene expression
changes than boundary movements of ChromTime SINGLE peaks. Black lines show expected difference of zero between random rankings. b As in
a for H3K4me3 in human stem cell reprogramming [24]. Time points correspond to human inducible and immortalized fibroblast-like (hiF-T) cells,
hiF-T at 5, 10, and 20 days after induction, and human induced pluripotent stem cells (hIPSC)
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variety of developmental, differentiation, and repro-
gramming processes (Table 1) for nine different HMs,
including narrow and broad marks, and for Pol2,
ATAC-seq, and DNase-seq. We observed that unidirec-
tional expansions and contractions are predicted in
most cases, on average, to be the majority of all expan-
sions and contractions, respectively, at a given pair of
consecutive time points (Additional file 1: Figure S8).
One hypothesis for the prevalence of asymmetric
boundary movements for the promoter-associated
chromatin marks is that the direction of boundary
movements is associated with the asymmetry of tran-
scription initiation in promoter regions. To test this hy-
pothesis, for each dataset we compared the prevalence
of each class of unidirectional dynamics as a function
of its distance to the nearest annotated TSS and the
orientation of the corresponding gene (Fig. 7). Consist-
ent with our hypothesis, for H3K4me3, H3K4me2,
H3K(9/14)ac, H3K79me2, and Pol2, we found that uni-
directional expansions that expand into the gene body
(i.e., in the same direction as transcription) were
substantially more frequently found in proximity of
TSSs compared to unidirectional expansions in the op-
posite direction. Moreover, this difference was not ob-
served for expansions that are distal from TSSs.
Similarly, in most cases for these marks unidirectional
contractions that contract towards the TSS of the nearest
gene (i.e., in the opposite direction of transcription) were
substantially more frequent compared to unidirectional
contractions in the opposite direction in proximity of

TSSs, whereas their frequencies at distal sites showed
much smaller differences. HMs H3K27ac, H3K4me1, and
H3K27me3 and ATAC-seq and DNase-seq exhibited the
same trend, but to a lesser degree.

Discussion
In this work, we presented ChromTime, a novel compu-
tational method for systematic detection of expanding,
contracting, and steady peaks of chromatin marks from
time course high-throughput sequencing data. Chrom-
Time employs a probabilistic graphical model that dir-
ectly models changes in the genomic territory occupied
by single chromatin marks over time. This approach
allowed us to directly encode our modeling assumptions
about dependencies between variables in an interpret-
able and extendable framework.
We applied ChromTime on ChIP-seq data for broad

and narrow HMs and for Pol2, and on ATAC-seq and
DNase-seq data from a variety of developmental, dif-
ferentiation, and reprogramming courses. Our results
show that the method can identify sets of expanding
and contracting peaks that are biologically relevant to the
corresponding systems. In particular, expansions and con-
tractions associate with up- and down-regulation of gene
expression and differential TF binding, supporting the
biological relevance of ChromTime predictions.
ChromTime gains power by both reasoning jointly

about all time points in a time course and by explicitly
modeling the peak boundary movements. Supporting

ba

Fig. 5 Spatial dynamics can contain additional information about gene expression changes beyond signal density changes. Gene expression
change is plotted as function of ChIP-seq signal density change after loess smoothing for each predicted ChromTime dynamic for a H3K4me2
dynamics in T-cell development in mouse [17] and b H3K4me3 dynamics in stem cell reprogramming in human [24] (Additional file 2: Supplementary
methods). Peaks of each type of dynamics were pooled from all time points in each dataset for this analysis. Peaks with asymmetric dynamics E/S and
S/E were pooled together in the “E-S” group. Similarly C/S and S/C peaks were pooled in the “C-S” group. The total number of peaks in each group is
shown in parenthesis. In both systems, for a range of signal density changes, peaks with the same signal density change associated with different
gene expression changes depending on the predicted spatial dynamic. Shaded regions represent 95% confidence intervals
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this, in our analyses we observed that territorial changes
identified by ChromTime had better agreement with
gene expression changes compared to considering dir-
ectly the boundary change of peaks called on data from
individual time points in isolation. Additionally, we also
observed for a range of cases that expanding and con-
tracting peaks associated, on average, with greater
change in gene expression compared to peaks with
steady boundaries even after controlling for signal dens-
ity changes. Some of the power that ChromTime gains
from considering spatial information might be explained
by its ability to differentiate territorial expansions or
contractions, which can reflect changes in the number
of TF binding sites in close vicinity, from changes in sig-
nal density within steady peak boundaries. Changes in
signal density without territorial expansions or contrac-
tions might reflect a change in the proportion of cells
with the chromatin mark without large changes in activ-
ity in any one cell. Additional power can come from the

temporal and spatial information that allows the model
to effectively smooth over noise in the data, thus enab-
ling more biologically relevant inferences.
ChromTime enables novel analysis of directionality of

spatial epigenetic dynamics. In this context, we found
that asymmetric unidirectional expansions and contrac-
tions for several marks correlate strongly with direction
of transcription in promoter proximal regions, which
suggests that spatial dynamics at such locations may be
related to actions of the transcriptional machinery. One
possible explanation for the observed correlation be-
tween the direction of spatial dynamics of at least some
HMs and transcription can be provided in part by previ-
ous studies that have shown that the Pol2 elongation
machinery can recruit H3K4-methyltransferases, such as
members of the SET [55] and MLL [56] families, at the
promoters of genes. Our findings are consistent with
such models where the Pol2 complex itself may be facili-
tating the attachment and removal of these marks [57].

ba

Fig. 6 Spatial dynamics of multiple different chromatin marks co-localize within a time course. Hierarchical clustering with optimal leaf ordering
[80] of the geometric average fold enrichments taken across all time points of the overlap of every pair of predicted spatial dynamics for mapped
HMs in a mouse adipogenesis [18] and b human stem cell reprogramming [24]. At each pair of time points, “Expand” and “Contract” dynamics
are defined as all peaks that are predicted as either unidirectional or bidirectional expansions and contractions, respectively, whereas “Steady”
dynamics are defined as all peaks that have predicted steady boundaries at both sides. Peaks with “Expand” dynamic on one side and “Contract”
dynamic on the other were excluded from this analysis. In both datasets, expansions, contractions, and steady peaks of H3K4me2, H3K4me3, and
H3K27ac and, to a lesser extent, of H3K4me1 tend to cluster together within each of the three classes, whereas spatial dynamics of H3K27me3
and H3K36me3 peaks tend to occupy different locations. All enrichments were capped at 50 before clustering
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b

a

Fig. 7 Direction of asymmetric dynamics correlates with direction of transcription. a i Left panel shows a schematic representation of unidirectional
expansions that expand in the same direction as transcription and in the opposite direction of transcription. The adjacent plots show, for each mark,
the average log2 ratio across all time points in each time course between the fraction of unidirectional expansions that expand in the same directions
as transcription of the nearest gene and the fraction of unidirectional expansions that expand in the opposite direction of transcription of the nearest
gene, separately for blocks that are within 1 kb of annotated TSSs and for more distal blocks. Positive values correspond to enrichment of unidirectional
expansions in the same direction as transcription. For marks mapped in at least six time courses, a black line is plotted representing the average across all
data sets and significant differences are denoted with asterisks based on a two-tailed Mann-Whitney test at a P value threshold of 0.05. ii Left panel shows
analogous schematic for unidirectional contractions. Likewise, adjacent plots show, for each mark, the average log2 ratio between the fraction of
unidirectional contractions that contract in the opposite direction of transcription of the nearest TSS and unidirectional contractions that contract in the
same direction as transcription of the nearest TSS. b Left panel shows an example of unidirectional expansions between pairs of time points that expand in
the same direction as transcription at the Hs6st1 gene of the H3K4me2 mark in the T-cell development dataset [17]. Right panel shows an example of
unidirectional contractions in the opposite direction of transcription at the DNMT3B gene. Time points 1, 2, and 3 correspond to in vitro differentiated
T-cell precursors, whereas time points 4 and 5 correspond to in vivo purified thymocytes. The predicted ChromTime peaks colored by their boundary
dynamics are shown under the signal track for each time point
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The ChromTime software is also relatively efficient in
terms of runtime, particularly when using its option to
parallelize all computations during the parameter learn-
ing and prediction phases over multiple CPU cores. In
our tests, processing ChIP-seq data for the H3K4me2
mark and control data from five time points in mouse
T-cell development [17] took 3 h on a laptop computer
using four CPU cores.
We applied ChromTime to a range of data types but

found no single setting of the method options to be pref-
erable in all cases (“Methods”). We thus created three
modes with different default options: punctate mode
used for ATAC-seq and DNase-seq, narrow mode used
for ChIP-seq of narrow HMs, and broad mode used for
ChIP-seq of broad HMs and Pol2. In principle, Chrom-
Time can also be applied on ChIP-seq data of
sequence-specific TFs in punctate mode. However, for
these data, where binding can often be associated with a
single point source such as individual instances of DNA
sequence regulatory motifs, methods that predict the
single point source across time points and the binding
intensity associated with the source at each time point
may be a more natural way to model the data.
Another limitation of the ChromTime method is that

while the runtime of ChromTime still scales linearly
with the number of time points, T, the number of ob-
served combinations of dynamics can scale exponentially
with T. This exponential growth can complicate down-
stream analyses that directly consider each combination
of dynamics, as there will be 3T-1 possible sequences of
dynamics at each side of a peak. Extensions of the
ChromTime model could model the large number of
combinations as being instances of a smaller number of
more distinct dynamic patterns.

Conclusions
The increasing availability of time course chromatin
data provides an opportunity to understand chromatin
dynamics in many biological systems. To facilitate
reaching this goal we developed ChromTime, which
systematically detects expanding, contracting, and
steady peaks, allowing extraction of additional infor-
mation from these data. ChromTime gains power by
both reasoning about data from all time points in the
time course and by explicitly modeling movements of
peak boundaries. We showed that ChromTime predic-
tions associate with relevant genomic features such as
changes in gene expression and TF binding. We dem-
onstrated that territorial changes of peaks can contain
additional information beyond signal density changes
with respect to gene expression of proximal genes.
ChromTime allows for novel analysis of directionality
of spatial dynamics of chromatin marks. In this

context, we showed for multiple chromatin marks
that the direction of predicted asymmetric expansions
and contractions of peaks strongly associates with dir-
ection of transcription in proximity of TSSs. Chrom-
Time is generally applicable to modeling time courses
of chromatin marks and thus should be a useful tool
to gaining insights into dynamics of epigenetic gene
regulation in a range of biological systems.

Methods
Overview of the ChromTime method
ChromTime takes as input a set of files in BED format
with genomic coordinates of aligned sequencing reads
from experiments for a single chromatin mark from a
high-throughput sequencing experiment such as
ChIP-seq, ATAC-seq, or DNase-seq over a time course
and, optionally, from a set of control experiments.
ChromTime consists of two stages (Fig. 1b, c):

1. Detecting genomic intervals (blocks) potentially
containing regions of signal enrichment (peaks)

2. Learning a probabilistic mixture model for
boundary dynamics of peaks within blocks
throughout the time course and computing the
most likely spatial dynamic and peak boundaries
for each block throughout the whole time course

Detecting genomic blocks containing regions of signal
enrichment
The aim of this stage is to determine approximately the
genomic coordinates of regions with potential peaks of
signal enrichment at any time point in the time course
(Additional file 1: Figure S1A, B). The signal within these
blocks will be used as input to build the mixture model in
the next stage of ChromTime. ChromTime supports ana-
lysis of punctate, narrow, and broad marks in three differ-
ent modes, which are defined by different default options.
The method partitions the genome into non-overlapping
bins of predefined length, BIN_SIZE (by default, 200 bp in
narrow and punctate modes, 500 bp in broad mode) and
counts for each bin and time point the number of sequen-
cing reads whose alignment starting positions after shift-
ing by a predefined number of bases (SHIFT, 100 bp in
the direction of alignment by default) are within its
boundaries. Next, each bin at each time point is tested for
enrichment based on a Poisson background distribution at
a predefined false discovery rate (FDR; 0.05 by default).
The expected number of reads for a bin at position p and
time point t, λt,p, in the Poisson test is computed conser-
vatively as the maximum of:

1) If control reads are provided: for each window
of size w = 1000 bp, 5000 bp, and 20,000 bp the
average number of control reads in the window
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centered at the current bin, normalized by the ratio
of total reads in the foreground and control
experiments, that is:

λt;p;w ¼ # Total Foreground Reads½ �
# Total Control Reads½ �

BIN SIZE
w

Ctrlt;p;w

where Ctrlt,p,w is the total number of control reads in
each window of size w around the bin at position p at
time point t.
2) The average number of foreground reads per

genomic bin.
3) One read.

Testing multiple different window sizes for the back-
ground is a strategy we adopted from the MACS2 peak
caller [38].
Within each time point, consecutive bins that are

significantly enriched are merged into continuous in-
tervals. The intervals are further extended in both
directions to include continuous stretches of bins
where each bin is significant based on a Poisson
background distribution at a weaker P value threshold
(0.15 by default). Extended intervals within a prede-
fined number of non-significant bins, MAX_GAP (3
bins by default), are further joined together. This
joining strategy has been previously implemented by
other peak callers for single datasets such as SICER
[40]. Next, overlapping intervals across time points
are grouped into blocks. To capture more of the po-
tential background signal and to increase the likeli-
hood that central bins within blocks contain higher
foreground signal, the start and end positions of each
block are extended additionally by a predefined num-
ber of bins, BLOCK_EXTEND (5 bins by default), up-
stream of the left-most coordinate and downstream of
the right-most coordinate of the intervals in the
block, respectively, or up to the middle point between
the current block and its adjacent blocks if they are
within BLOCK_EXTEND bins apart. Restricting
BLOCK_EXTEND to a relatively limited number of
bins helps to keep the running time of the method
within reasonable bounds.
In narrow and punctate modes, blocks that contain

multiple intervals at the same time point separated by
gaps of non-significant bins longer than MAX_GAP are
split into sub-blocks at each gap between those intervals.
In particular, all gaps within a block are intersected
across the time points that have gaps. For each gap
intersection, the block is split at the position with the
lowest average foreground signal across all time points.
In broad mode, no such splitting is performed in order
to avoid excessive peak fragmentation.

Probabilistic mixture model for boundary dynamics of
peaks within blocks across the time course
The foreground and the expected signal within the blocks
are used as input to build a probabilistic mixture model for
the boundary dynamics of the peaks within blocks
(Additional file 1: Figure S1C). One core assumption of the
model is that each block contains at each time point exactly
one peak, which can potentially have a length of zero bins.
This implies that, at each time point, the bins within a block
can be partitioned into three continuous intervals:
left-flanking background, foreground peak, and right-flanking
background. For the bin in block i, at time point t and pos-
ition p, let Oi,t,p denote the random variable that models the
number of observed foreground reads, and let oi,t,p
denote the corresponding observed read counts. Let
Vi,t,p denote the random variable for the label of the
corresponding bin, which can either have the value
PEAK or BACKGROUND. Let Xi,t,p denote a random
variable for the vector of covariates for the corre-
sponding bin, and xi,t,p their corresponding values.
The distribution of Oi,t,p conditioned on Vi,t,p and
Xi,t,p is modeled with different negative binomial dis-
tributions depending on the value of Vi,t,p and xi,t,p:

PðOi;t;p ¼ oi;t;pjV i;t;p ¼ PEAK;Xi;t;p ¼ xi;t;pÞ
¼ NBðoi;t;p; μPEAK;i;t;p; δtÞ
¼ Γðoi;t;p þ δtÞ

oi;t;p!ΓðδtÞ � ð δt
μPEAK;i;t;p þ δt

Þ
δt

� ð μPEAK;i;t;p
μPEAK;i;t;p þ δt

Þ
oi;t;p

and

PðOi;t;p ¼ oi;t;pjV i;t;p ¼ BACKGROUND;Xi;t;p¼xi;t;pÞ
¼ NBðoi;t;p; μBACKGROUND;i;t;p; δtÞ
¼ Γðoi;t;p þ δtÞ

oi;t;p!ΓðδtÞ � ð δt
μBACKGROUND;i;t;p þ δt

Þ
δt

� ð μBACKGROUND;i;t;p

μBACKGROUND;i;t;p þ δt
Þ
oi;t;p

where δt is the dispersion parameter. Similarly to negative
binomial regression models [58], ChromTime models the
mean of each component through the log link as a linear
combination of a two-dimensional vector of covariates, xi,
t,p = (1, log λi,t,p), which includes a constant term and the
logarithm of the expected number of reads in the bin as
computed in the previous section:

μPEAK;i;t;p ¼ exp αt þ γt logλi;t;p
� �
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μBACKGROUND;i;t;p ¼ exp βt þ γt logλi;t;p
� �

where αt, βt and γt are time point-specific scalar parame-
ters. Negative binomial distributions have been success-
fully employed in a similar manner to capture the
over-dispersion of sequencing reads in peak callers for
single samples such as ZINBA [59]. Of note, however,
ChromTime requires that the dispersion parameter δt
and the coefficient γt are shared between the two com-
ponents at each time point. The first requirement en-
sures that the distribution with the smaller mean value
has higher probabilities compared to the distribution
with the larger mean value for the lowest values of the
support domain of the negative binomial distribution,
and that the opposite holds for the largest values of the
support domain (Additional file 2: Supplementary
methods). Sharing the dispersion parameter here is
analogous to sharing the variance parameter in Gaussian
mixture models. The second requirement to share the γt
parameter ensures that the control signal has equal im-
portance in each component.
Formally, let Bi,L,t and Bi,R,t denote the random variables

corresponding to the first and the last bin, respectively, in
the peak partition at time t for block i relative to the be-
ginning of the block, and let Ni be the length of the block.
We then have 1 ≤ Bi,L,t ≤Ni + 1 and 0 ≤ Bi,R,t ≤Ni, with
values of Bi,L,t =Ni + 1 and Bi,R,t = 0 corresponding to the
special cases of starting a peak after all positions and end-
ing a peak before all positions in a block, respectively. For
Bi,L,t and Bi,R,t to denote valid interval boundaries, Chrom-
Time also requires that Bi,L,t ≤ Bi,R,t + 1 at each time point.
These constraints can be formally encoded by introducing
one auxiliary binary variable for each time point in the
model, Zi,t, such that:

P Zi;t ¼ 1jBi;L;t ¼ l;Bi;R;t ¼ r
� � ¼ 1 if 1≤ l≤r þ 1≤Ni þ 1

0 otherwise

�

and thus also

P Zi;t ¼ 0jBi;L;t ¼ l;Bi;R;t ¼ r
� � ¼ 0 if 1≤ l≤r þ 1≤Ni þ 1

1 otherwise

�

ChromTime treats all Zi,t variables as observed with
values equal to 1 for all blocks and time points.
The conditional probability of the bin labels, Vi,t,p, given

the peak boundaries, Bi,L,t and Bi,R,t, are defined to be:

P V i;t;p ¼ PEAKjBi;L;t ¼ l;Bi;R;t ¼ r
� � ¼ 1 if l≤p≤r

0 otherwise

�

and thus also

P V i;t;p ¼ BACKGROUNDjBi;L;t ¼ l;Bi;R;t ¼ r
� � ¼ 0 if l≤p≤r

1 otherwise

�

The probability of the observed read counts at time
t, oi,t, and Zi,t = 1, conditioned on the values of the peak
boundaries, Bi,L,t and Bi,R,t, and the covariates at time
point t, xi,t, under the model is then:

PðOi;t ¼ oi;t;Zi;t ¼ 1jBi;L;t ¼ l;Bi;R;t ¼ r;X i;t ¼ xi;tÞ

¼ PðZi;t ¼ 1jBi;L;t ¼ l;Bi;R;t ¼ rÞ

�
Yl−1
p¼1

NBðoi;t;p; μBACKGROUND;i;t;p ¼ exp ½βt þ γt log λi;t;p�; δtÞ

�
Yr
p¼l

NBðoi;t;p; μPEAK;i;t;p ¼ exp ½αt þ γt log λi;t;p�; δtÞ

�
YNi

p¼rþ1

NBðoi;t;p; μBACKGROUND;i;t;p ¼ exp ½βt þ γt log λi;t;p�; δtÞ

An important special case of the above formulation
when Bi,L,t = Bi,R,t + 1 corresponds to modeling the whole
signal at time point t as background, which enables
ChromTime to accommodate time points that are all
background by modeling them with zero length peaks.
For this reason, ChromTime blocks internally have the
same number of peak boundaries at all time points even
if some time points are predicted as zero length peaks
(i.e., all background). Boundaries of zero length peaks
are treated by the model in the same way as boundaries
of non-zero length peaks.
ChromTime assumes uniform prior probabilities for the

left and the right end boundaries at the first time point:

P Bi;L;1 ¼ l
� � ¼ Unif 1;Ni þ 1ð Þ

and

P Bi;R;1 ¼ r
� � ¼ Unif 0;Nið Þ

where Unif(a, b) denotes the uniform distribution of in-
teger numbers in the closed interval [a, b].
Let Di,s,t denote the dynamic between time points t

and t + 1 on boundary side s, where s is one of L (left
side) or R (right side). Between any two time points the
ChromTime model allows for one of three possible dy-
namics at both the left and the right end boundaries of a
peak: STEADY, EXPAND, or CONTRACT. To capture
the change of boundary positions between consecutive
time points t and t + 1 we define the quantities Ji,L,t =
Bi,L,t − Bi,L,t + 1 and Ji,R,t = Bi,R,t + 1 − Bi,R,t corresponding to
the left and right boundaries, respectively. Positive values
of Ji,L,t and Ji,R,t indicate the number of bases a peak
expanded, whereas negative values indicate the number of
bases a peak contracted, and a value of 0 indicates that the
peak held steady on the left and the right side, respect-
ively. ChromTime models Ji,L,t and Ji,R,t with different
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probability distributions for each of the three dynamics.
For STEADY dynamic, ChromTime uses the Kronecker
delta function:

P Ji;s;t jDi;s;t ¼ STEADY
� � ¼ 1; if J i;s;t ¼ 0

0; otherwise

�

For expanding and contracting dynamics, ChromTime
employs negative binomial distributions to model the
number of genomic bins a peak boundary moves relative
to the minimal movement of one bin required for peak
expansions and contractions:

P Ji;s;t ¼ jjDi;s;t ¼ EXPAND
� �

¼ NB j−1; μEXPAND;t; δEXPAND;t

� �

and

P Ji;s;t ¼ jjDi;s;t ¼ CONTRACT
� �

¼ NB − j−1; μCONTRACT;t; δCONTRACT;t

� �

Furthermore, each distribution is parametrized with a
mean and dispersion parameter depending on the
dynamic and the time point, t: μEXPAND,t, δEXPAND,t for
expansions, and μCONTRACT,t, δCONTRACT,t for contrac-
tions. Of note, in negative binomial distributions the
probabilities for negative integers are defined to be 0.
Therefore, the above parametrization enforces that
boundary movements of negative or zero length (i.e.,
contracting or steady, respectively) are impossible for ex-
pansions and that boundary movements of positive or
zero length (i.e., expanding or steady) are impossible for
contractions.
The ChromTime model additionally assumes that

there is a prior probability to observe each dynamic be-
tween time points t and t + 1, P(Di,s,t = d) = πt,d, which is
the same at each side (left and right). Users have the op-
tion to set a minimum prior probability (MIN_PRIOR)
for the dynamics for all time points. This parameter can
be used to avoid learning priors too close to zero, which
in some cases can occur for more punctate marks where
the short length of the peaks can cause the prior to be-
come a dominant influence on the class assignment of
the spatial dynamics. By default, MIN_PRIOR = 0 in nar-
row and broad modes and MIN_PRIOR = 0.05 in punc-
tate mode.
For a time course with T time points we can express

for block i the probability of a particular sequence of dy-
namics and boundary positions on the left side (dL and
bL, respectively) and on the right side (dR and bR, re-
spectively), and observing foreground counts oi and Zi =
1 conditioned on the values of the covariates, xi as:

P
�
Di;L ¼ dL;Bi;L ¼ bL;Di;R ¼ dR;Bi;R ¼ bR;Oi ¼ oi;Zi ¼ 1jX i ¼ xiÞ

¼ P Bi;L;1 ¼ l1
� �� P Bi;R;1 ¼ r1

� �
�P

�
Oi;1 ¼ oi;1;Zi;1 ¼ 1jBi;L;1 ¼ l1;Bi;R;1 ¼ r1;X i;1 ¼ xi;1Þ

�
YT
t¼2

�
P
�
Oi;t ¼ oi;t;Zi;t ¼ 1jBi;L;t ¼ lt ;Bi;R;t ¼ rt ;X i;t ¼ xi;tÞ

�P J i;L;t−1 ¼ lt−1−lt jDi;L;t−1 ¼ dL;t−1
� �

�P Di;L;t−1 ¼ dL;t−1
� �� P J i;R;t−1 ¼ rt−rt−1jDi;R;t−1 ¼ dR;t−1

� �

�P Di;R;t−1 ¼ dR;t−1
� �Þ

where Zi = 1 is used to denote Zi,t = 1 for all t, ds,t for
t = 1,…,T-1 is the dynamic label for the tth pair of con-
secutive time points on the left or the right side (s = L
or R), respectively. Also bL and bR are the vectors of T
boundary positions containing lt and rt for t = 1,…,T,
respectively.
The total probability of the signal in a block can be

expressed as a sum over all possible sequences of dy-
namics and peak boundary positions that can generate
the block across all time points. Thus, the probability of
block i having observations oi and Zi = 1 given the covar-
iates xi is:

P Oi ¼ oi;Zi ¼ 1jX i ¼ xið Þ

¼
X

dL;bL;dR;bR

P
�
Di;L ¼ dL;Bi;L ¼ bL;Di;R ¼ dR;

Bi;R ¼ bR;Oi ¼ oi;Zi ¼ 1jX i ¼ xiÞ
where dL and dR each iterate over all possible 3T-1 com-
binations of peak boundary dynamics, and bL and bR
each iterate over all possible ways to place left and right
end boundaries across all time points that are consistent
with the requirements that 1 ≤ Bi,L,t ≤ Bi,R,t + 1 ≤Ni + 1 at
each time point.
Let o be the total set of observed read counts in all

blocks in the data, x be the set of the corresponding
two-dimensional vectors containing the constant term
and the logarithm of the expected number of reads at
each position and time point for each block, Z = 1 de-
notes all Zi = 1, and M be the total number of blocks.
Then, the likelihood of all blocks conditioned on their
covariates is:

P O¼o;Z¼1jX¼xð Þ ¼
YM
i¼1

P Oi ¼ oi;Zi ¼ 1jX i ¼ xið Þ

We note that the above formulation allows Chrom-
Time to model the appearance of a peak, if it occurs
after the first time point in the time course, as an expan-
sion from a zero length peak at the previous time point.
Similarly, the disappearance of a peak is modeled as a
contraction to a zero length peak at the next time point.

Fiziev and Ernst Genome Biology  (2018) 19:109 Page 14 of 18



Model optimization
The total set of parameters of the model consists of:

1. Prior probabilities of each dynamic d at each time
point t: πt,d.

2. Parameters of the negative binomial distributions
that model the PEAK and the BACKGROUND
components at each time point: αt, βt, γt and δt.

3. Parameters of the negative binomial distributions
that model the boundary movements in EXPAND
and CONTRACT dynamics at each time point:
μEXPAND,t, δEXPAND,t and μCONTRACT,t, δCONTRACT,t,
respectively.

The optimal parameter values are attempted to be esti-
mated by Expectation Maximization (EM). In particular,
ChromTime attempts to optimize the conditional
log-likelihood of the observed counts and Zi = 1 given the
covariates (Additional file 2: Supplementary Methods):

XM
i¼1

logP Oi ¼ oi;Zi ¼ 1jX i ¼ xið Þ

Computing the most likely spatial dynamic and peak
boundaries for each block across the whole time course
After the optimal values for all model parameters are es-
timated from the data, for each block the most likely po-
sitions of the peak boundaries at each time point are
calculated. This procedure consists of two steps. First,
ChromTime determines for each block all time points
with significantly low probability of containing a false
positive non-zero length peak. Second, conditioned on
those time points, ChromTime computes the most likely
assignment of the peak boundary variables at each side
and each time point (Additional file 2: Supplementary
methods).

ChromTime options used in this study
In this work, we applied ChromTime in narrow mode on all
data for H3K4me2, H3K4me3, H3K27ac, and H3K(9,14)ac
marks. We applied ChromTime in punctate mode on all
ATAC-seq and DNase-seq data. No control reads were used
for ATAC-seq and DNase-seq. In addition, foreground reads
for ATAC-seq were shifted by 5 bp in the direction of align-
ment (SHIFT= 5), and for DNase-seq no shifting was ap-
plied (SHIFT= 0). We applied ChromTime in broad mode
on all data for H3K79me2, Pol2, H3K4me1, H3K27me3,
H3K9me3, and H3K36me3 marks. All other options were
set to their default values.

Timing evaluation
The timing evaluation was conducted on a MacBook
Pro laptop with 2.7GHz Intel Core i7 and 16 GB RAM
using four CPU cores.

Analyses with external data
The procedures for analyses with external data are de-
scribed in Additional file 2: Supplementary methods.

Additional files

Additional file 1: Additional figures supporting the main analyses.
(PDF 8541 kb)

Additional file 2: Further description of methods and analyses in this
study. (PDF 711 kb)
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3. ATAC-seq data from a blood formation time course in human. Data
from all available healthy donors was pooled for each cell type from
the hematopoietic tree (GEO GSE74912 [20]).
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development time course in mouse (GNomEx database accession
number 44R [23, 64]).

6. ChIP-seq data for histone marks and Pol2 from a cardiac
development time course in human (GEO GSE35583 [22]).

7. ChIP-seq data for histone marks from an embryogenesis time course
in zebrafish (GEO GSE32483 [28]).

8. ChIP-seq data for histone marks from a macrophage differentiation
time course in mouse (GEO GSE69101 [21]).

9. ChIP-seq data for histone marks from a neural differentiation time
course in human (GEO GSE62193 [12]).
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10. ChIP-seq data for histone marks from a stem cell reprogramming
time course in human (replicate 1 for all marks and time points and
pooled input DNA from all available time points as control, GEO
GSE71033 [24]).

11. ChIP-seq data for histone marks and transcription factors, ATAC-
seq data, and gene expression data from a stem cell reprogramming
time course in mouse (GEO GSE90895 [27]).

12. ChIP-seq data for histone marks and Pol2 from a stem cell
reprogramming time course in mouse (GEO GSE67520 [25]).

13. ChIP-seq data for histone marks and GATA3 transcription factor
from a T-cell development time course in mouse (GEO
GSE31235 [17]).

14. ChIP-seq peaks for OCT4 transcription factor in H1 human
embryonic stem cells from the ENCODE project [6, 65].

15. ChIP-seq peaks for NANOG transcription factor in H1 human
embryonic stem cells from the ENCODE project [6, 66].

16. ChIP-seq peaks for P300 in H1 human embryonic stem cells from
the ENCODE project [6, 67].

17. ChIP-seq peaks for P300 in IMR90 cells were downloaded from
ChIP-Atlas [68] at FDR 0.05 [69, 70].

18. ChIP-seq peaks for CEBP in H1 human embryonic stem cells from
the ENCODE project [71].

19. ChIP-seq peaks for CEBP in IMR90 cells from the ENCODE
project [72].

20. ChIP-seq peaks for Pol2 in H1 human embryonic stem cells from
the ENCODE project [73].

21. ChIP-seq peaks for Pol2 in IMR90 cells from the ENCODE
project [74].

22. ChIP-seq peaks for Rad21 in H1 human embryonic stem cells from
the ENCODE project [75].

23. ChIP-seq peaks for Rad21 in IMR90 cells from the ENCODE
project [76].

24. DNase-seq peaks for IMR90 cells from the Roadmap Epigenomics
project (epigenome id E017 [77])

25. DNase-seq peaks for H1 human embryonic stem cells from the
Roadmap Epigenomics project (epigenome id E003 [78])

26. Gene expression data from the Roadmap Epigenomics project
(epigenome ids E003, E007, E082) [79].
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