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Abstract

Background: Most amino acids are encoded by multiple synonymous codons. However, synonymous codons are
not used equally, and this biased codon use varies between different organisms. It has previously been shown that
both selection acting to increase codon translational efficiency and selection acting to decrease codon biosynthetic
cost contribute to differences in codon bias. However, it is unknown how these two factors interact or how they

affect molecular sequence evolution.

Results: Through analysis of 1320 bacterial genomes, we show that bacterial genes are subject to multi-objective
selection-driven optimization of codon use. Here, selection acts to simultaneously decrease transcript biosynthetic
cost and increase transcript translational efficiency, with highly expressed genes under the greatest selection. This
optimization is not simply a consequence of the more translationally efficient codons being less expensive to
synthesize. Instead, we show that transfer RNA gene copy number alters the cost-efficiency trade-off of
synonymous codons such that, for many species, selection acting on transcript biosynthetic cost and translational
efficiency act in opposition. Finally, we show that genes highly optimized to reduce cost and increase efficiency
show reduced rates of synonymous and non-synonymous mutation.

Conclusions: This analysis provides a simple mechanistic explanation for variation in evolutionary rate between
genes that depends on selection-driven cost-efficiency optimization of the transcript. These findings reveal how
optimization of resource allocation to messenger RNA synthesis is a critical factor that determines both the

evolution and composition of genes.

Keywords: Gene evolution, Synonymous codon use, Codon bias, Translational efficiency, Bacteria, Natural selection,

Transcript optimization, Molecular evolution

Background

Production of proteins is a primary consumer of cell re-
sources [1]. It requires allocation of cellular resources to
production of RNA sequences as well as allocation of re-
sources to production of nascent amino acid chains.
Whilst a protein’s amino acid sequence is functionally
constrained, redundancy in the genetic code means that
multiple nucleotide sequences can code for the same
protein. Since the biosynthetic cost and translational effi-
ciency of synonymous codons vary, biased use of synonym-
ous codons makes it possible to reduce the expenditure of
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cellular resources on messenger RNA (mRNA) produc-
tion without altering the encoded protein sequence.
Thus, it is possible to reduce resource allocation to pro-
tein synthesis without altering the encoded protein or
affecting protein abundance. This is done by reducing
transcript sequence cost or by increasing the efficiency
with which those transcripts can be translated into pro-
tein. Consistent with this, it has been demonstrated
that natural selection acts both to reduce the biosyn-
thetic cost of RNA sequences [2, 3] and to increase the
efficiency with which those RNA sequences can tem-
plate the encoded polypeptide chain [4—10]. However,
though selection has been shown to act on codon bio-
synthetic cost and translational efficiency independently,
it is unknown how these two factors interact or whether
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optimization of one factor inherently results in opti-
mization of the other. Note that, in addition to factors act-
ing on resource allocation, functional constraints are also
known to bias patterns of codon use. Some examples in-
clude RNA structural constraints to facilitate thermal
adaptation and translational initiation [11-13], RNA se-
quence constraints to preserve splice sites [14] and trans-
lational constraints to ensure accurate protein folding
[15-17]. However, since those factors primarily act on in-
dividual sites or sets of sites within genes and are inde-
pendent of resource allocation, they were not considered
further in this analysis.

Different bacteria employ a mix of three different strat-
egies to decode synonymous codons [18]. These strategies
make use of ‘wobble’ base pairing between the third base
of the codon and the first base of the anticodon to facili-
tate translation of all 61 sense codons using a reduced set
of transfer RNAs (tRNAs). These strategies can be broadly
classified according to the tRNA genes that are absent
[18]. Bacteria that utilize strategy 1 do not have tRNA
genes harbouring an A residue at position 34 in the anti-
codon (A34NN), and therefore codons in transcripts with
U in the third position (NNU3) are read by G3,NN tRNAs
via G:U base pairing. This is the most commonly used
strategy and is employed by most bacteria for most
four-codon boxes (excluding the four-codon box for ar-
ginine) [18, 19]. Strategy 2 is an extension of strategy 1
whereby tRNA genes harbouring a C residue at position
34 in the anticodon (C34,NN) are absent, and therefore co-
dons in transcripts with G in the third position (NNGj3)
are read by U3,NN tRNAs via G:U base pairing. Similarly,
strategy 3 is an extension of strategy 2 and involves
reading all four synonymous codons (for four-codon
boxes only) with a single U34,NN tRNA.

As the translational efficiency of a codon is a function
of the number of tRNAs that can translate that codon,
and as different species encode different subsets of tRNA
genes, the same codon is not necessarily equally transla-
tionally efficient in all species. Moreover, wobble pairing
also influences the direction of translational selection such
that it is different between different codon families [19]. In
contrast, the biosynthetic cost of a codon of RNA is deter-
mined by the number and type of atoms contained within
that codon and the number of high-energy phosphate
bonds required for their assembly. The biosynthetic cost
of a codon of RNA is independent of the biosynthetic cost
of the amino acid it encodes, and thus variance in amino
acid biosynthetic cost would not have a direct effect on
the relative frequency of synonymous codon use. As the
translational efficiency of a given codon varies between
species but the biosynthetic cost of the codon remains the
same, it was hypothesized that this must create a corre-
sponding variation in the codon cost-efficiency trade-off
between species. For example, biosynthetically cheap
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codons might be translationally efficient in one species
but inefficient in another. We further hypothesized that
variation in the codon cost-efficiency trade-off would
limit the extent to which a transcript could be opti-
mized to be both biosynthetically inexpensive and
translationally efficient.

Here, we show that natural selection acts genome-wide
to reduce cellular resource allocation to mRNA synthesis
by solving the multi-objective optimization problem of
minimizing transcript biosynthetic cost whilst simultan-
eously maximizing transcript translational efficiency. We
show that this optimization is achieved irrespective of the
codon cost-efficiency trade-off of a species, and that the
extent to which resource allocation is optimized is a func-
tion of the production demand of that gene. Finally, we
reveal that selection-driven optimization of resource
allocation provides a novel mechanistic explanation for
differences in evolutionary rates between genes and for
the previously unexplained correlation in synonymous
and non-synonymous mutation rates of genes.

Results

Selection acts to reduce biosynthetic cost and increase
translational efficiency of transcript sequences

Although selection has been shown to reduce resource
allocation to mRNA production by reducing the biosyn-
thetic cost of a codon of RNA or increasing translational
efficiency independently [2—10], it is unknown how these
two factors interact or whether optimization of one factor
inherently results in optimization of the other. To address
this, an analysis was conducted on 1320 bacterial species
(Additional file 1) representing 730 different genera to es-
tablish if they were either under selection to increase
codon translational efficiency, reduce codon biosyn-
thetic cost or a combination of the two. For each spe-
cies, genome-wide values for genome-wide GC bias
(GCy), selection on transcript translational efficiency
(Sy) and selection on transcript biosynthetic cost (S.)
were inferred (Fig. 1, Additional file 1). This was done
using the complete set of open reading frames and
tRNAs encoded in that species’ genome using the SK
model [2] implemented using CodonMuSe (see Methods).
Genome-wide GC content varied from 26 to 75% and so
encompassed almost the entire range of known bacterial
genome GC values [20]. This large variation in content
was reflected in the range of values observed for GG,
(Fig. 1a, mean = 0.44). Of the 1320 species in this analysis,
91% had negative S, values (mean S, = — 0.08), indicating a
genome-wide selective pressure to reduce the biosynthetic
cost of transcript sequences through biased synonymous
codon use (Fig. 1b). This observation is consistent with
previous studies that revealed analogous effects when ni-
trogen or energy was limited [2, 3]. Similarly, 78% of spe-
cies had positive values for S; (mean S, = 0.1), indicating a
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Fig. 1 Bacterial genomes show selection to reduce nucleotide biosynthetic cost (S¢) and increase translational efficiency (S,). Genome-wide values
for 1320 bacterial species covering 730 genera for (a) bias towards GC (GCy). Positive values indicate bias towards GC. Negative values indicate
bias towards AT. b Strength of selection acting on codon biosynthetic cost (S.). Negative values indicate selection acting to reduce biosynthetic
cost. ¢ Strength of selection acting on codon translational efficiency (Sy). Positive values indicate selection acting to increase codon translational efficiency

genome-wide selective pressure to increase the transla-
tional efficiency of transcript sequences (Fig. 1c). This is
consistent with multiple examples where a strong pressure
has been shown to favour high translational efficiency
[4-10]. Moreover, 74% of species had both a negative
S. value and a positive S; value, demonstrating that se-
lection is not mutually exclusive when acting on trans-
lational efficiency and codon biosynthetic cost. Indeed,
the majority of species experience selection to reduce
transcript biosynthetic cost whilst simultaneously maxi-
mizing transcript translational efficiency.

More translationally efficient bacterial codons are
generally more biosynthetically costly

The biosynthetic cost of a codon can be defined as the
number and type of atoms contained within the codon
or the number of high-energy phosphate bonds required
for their assembly. Natural selection acting on biosyn-
thetic cost, both in terms of nitrogen atoms [2] or ener-
getic requirements [3], has been shown to play a role in
promoting biased patterns of synonymous codon use.
However, as the energy and nitrogen costs of a codon
correlate almost perfectly (Fig. 2a), it is not possible to
distinguish which factor is responsible for biased patterns
of codon use in the absence of additional information

Nonetheless, given the near-perfect correlation, analysis of
selection acting on overall codon biosynthetic cost can be
approximated by analysis of either nitrogen or energetic
requirements.

Codon translational efficiency is generally measured
using the tRNA adaptation index (tAlI), which considers
both the abundance of iso-accepting tRNAs and wobble
base pairing [21]. Since tRNA gene copy number varies
between species, there is a corresponding variation in the
relative translational efficiency of their associated codons
[18, 22]. Therefore, the relationship between codon bio-
synthetic cost and codon translational efficiency (referred
to from here on as the codon cost-efficiency trade-off)
must vary between species. For example, a hypothetical
species encoding a full complement of Watson-Crick
pairing tRNA genes (i.e. 61 tRNA genes for 61 codons),
each present as a single copy, would have a weak negative
correlation between codon biosynthetic cost and codon
translational efficiency (Fig. 2b). In contrast, a hypothetical
species that employed tRNA sparing strategy 1 (no ANN
tRNAs) or strategy 2 (no ANN or CNN tRNAs) [18]
would show a positive (Fig. 2c) or no (Fig. 2d) correlation
between cost and efficiency respectively. Therefore, a
broad range of codon cost-efficiency trade-offs is possible,
and the magnitude/gradient of this trade-off is dependent
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Fig 2 Different tRNA sparing strategies alter a species’ codon cost-efficiency trade-off. a Codon nitrogen cost (N cost) correlates almost perfectly
with codon energetic cost (p < 0.05, y = 0.6x + 044, R>=098). b A full complement of tRNAs has a negative correlation between codon biosynthetic
cost and translational efficiency (tAl) (p < 0.05, y =—0.5x+ 121, R’>=0.10). ¢ tRNA sparing strategy 1 (NNU codons translated by GNN anticodons) has a
positive correlation between codon biosynthetic cost and translational efficiency (p < 0.05, y = 09x — 0.06, R? = 0.18). d tRNA sparing strategy 2 (strategy
1+ NNG codons translated by UNN anticodons) has no significant correlation between codon biosynthetic cost and translational efficiency (p > 0.05,
y=0.74, R’ =0). e None of the 1320 bacterial species in this analysis have a significant negative correlation between codon cost and translational
efficiency (p > 0.05). The y-axis is the gradient of the line of best fit between codon biosynthetic cost and translational efficiency
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None of the 1320 species used in this analysis con-
tained a full complement of tRNAs. Moreover, only two
species strictly adhered to a single sparing strategy for
all synonymous codon groups (e.g. Escherichia coli uses
strategy 2 for decoding alanine but strategy 1 for decod-
ing glycine). Given that neither tRNA sparing strategy 1
nor 2 led to a negative correlation between cost and effi-
ciency, it is therefore expected that species would have
either a positive or no correlation between codon cost
and efficiency. Furthermore, given the many different
potential tRNA complements, it is anticipated that a
continuum of gradients in trade-off between cost and ef-
ficiency would be observed. To assess this, the codon
cost-efficiency trade-off was calculated for the 1320 bac-
terial species (Fig. 2e). As expected, species with a sig-
nificant negative correlation between cost and efficiency
were not observed. Instead, all species exhibited either
positive or non-significant correlations between codon
cost and efficiency (Fig. 2e). Thus in general, the syn-
onymous codons that are most translationally efficient are
those that consume the most resources for biosynthesis.

Note that the only way to avoid a cost-efficiency trade-off
is if there is a perfect negative correlation (R* = 1.0) between
codon biosynthetic cost and codon translational efficiency
such that any reduction in cost is mirrored by an in-
crease in translational efficiency. For example, E. coli
does not have a significant positive (or negative) rela-
tionship between codon cost and codon translational
efficiency (R*=0.02). This means that sometimes the
more expensive codons are more translationally effi-
cient and sometimes they are less translationally effi-
cient; there is no overall trend (Fig. 3). For example, the
codon GCA encoding alanine is both the most expen-
sive codon for alanine and the most translationally effi-
cient codon for alanine (Fig. 3). Thus, when selection
acts to simultaneously reduce cost and increase transla-
tional efficiency, these two selective forces are acting in
opposition on codon GCA for alanine (i.e. S, disfavours
GCA whilst S, favours GCA). Thus, there is a cost-effi-
ciency trade-off for the synonymous codons encoding
alanine. This phenomenon, where the two selective
forces act in opposition, is observed for 11 of the 18
amino acids with multiple synonymous codons in E. coli
(Fig. 3, red shaded plots). Thus, there is a cost-efficiency
trade-off for 11 of the 18 amino acids in E. coli. For three
of the codons there is no trade-off because, although the
two available synonymous codons have different transla-
tional efficiencies, they have the same biosynthetic cost
(Fig. 3, grey shaded plots). For the remaining four amino
acids there is a negative correlation between codon bio-
synthetic cost and codon translational efficiency (Fig. 3,
green shaded plots). However, even for these codons with
a negative relationship between cost and efficiency it is
not guaranteed that when mutating from one codon to
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another that both biosynthetic cost and translational effi-
ciency will change in the same direction (Fig. 3, green
shaded plots). For example, even though the codons for
isoleucine exhibit a negative correlation (Fig. 3I), the
cheapest codon for isoleucine is the least translationally
efficient and thus S; and S. act in opposition on this
codon. Thus, for any organism that does not have a per-
fect negative correlation between biosynthetic cost and
translational efficiency there is an inherent cost-efficiency
trade-off. Moreover, as the relationship between biosyn-
thesis cost and translational efficiency is different for each
synonymous codon group, S. and S; thus act antagonistic-
ally or synergistically on each codon such that the direc-
tion of selection is different for each synonymous codon
group. This provides a novel mechanism that helps to ex-
plain the differences in the direction of selection that have
been observed between different codon groups [23].

Genes that experience the strongest selection for
increased transcript translational efficiency are also under
the strongest selection to reduce biosynthetic cost

Given that the majority of species exhibited selection to
reduce cost and increase translational efficiency at the
genome-wide level (irrespective of the magnitude of
their cost-efficiency trade-off), the extent to which this
was also seen at the level of an individual gene within
species was determined. Here, the strength of selection
acting on transcript translational efficiency and the
strength of selection on transcript biosynthetic cost were
inferred for each individual gene in each species. The re-
lationship between S. and S, was then compared for
each species. For example, in E. coli, which does not
have a strong cost-efficiency trade-off, there is a signifi-
cant negative correlation between S, and S, (Fig. 4a).
Here, the genes that experienced the greatest selection
to increase efficiency are those that experienced the
greatest selection to reduce biosynthetic cost. The same
phenomenon was also observed for Lactobacillus amylo-
philus, a species with a strong codon cost-efficiency
trade-off (Fig. 4b). Overall, significant correlations be-
tween S. and S, for individual genes were observed for
91% of species (p <0.05, Fig. 4c). Therefore, irrespective
of the magnitude of the codon cost-efficiency trade-off, se-
lection is performing multi-objective optimization of tran-
script sequences to reduce their biosynthetic cost whilst
increasing their translational efficiency and thereby redu-
cing resource allocation to mRNA production.

As the most highly expressed genes in a cell comprise
the largest proportion of cellular RNA, the strength of se-
lection experienced by a gene is thought to be dependent
on the mRNA abundance of that gene [24—26]. In agree-
ment with this, evaluation of the relative mRNA abun-
dance of genes in E. coli revealed that the most highly
expressed genes exhibited the greatest selection to reduce
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(See figure on previous page.)

Fig. 3 The relationship between codon biosynthetic cost and codon translational efficiency in E. coli. The top panel contains a bar chart that
shows the relative biosynthetic cost (green bars) and relative translational efficiency (grey bars) of each synonymous codon for each amino acid.
The bottom panel contains scatter plots of this cost-efficiency data for each amino acid with multiple synonymous codons. The shading of the
plots indicates the slope of the fitted line between relative biosynthetic cost and relative translational efficiency. Red shading positive correlation,
green shading negative correlation, grey shading no correlation. A alanine, C cysteine, D aspartic acid, £ glutamic acid, F phenylalanine, G glycine,
H histidine, / isoleucine, K lysine, L leucine, N asparagine, P proline, Q glutamine, R arginine, S serine, T threonine, V valine, Y tyrosine

transcript biosynthetic cost (Fig. 5a) whilst also showing
the strongest selection to increase transcript translational
efficiency (Fig. 5b). Thus, selection acts in proportion to
relative mRNA abundance to perform multi-objective
optimization of codon bias in order to reduce resource al-
location to transcript sequences through production of
low-cost, high-efficiency transcripts.

Sequence optimization for cost and efficiency constrains
molecular evolutionary rate

Given that codon choice has been shown to provide a
selective advantage per codon per generation [27], it was
hypothesized that the extent to which a transcript is
jointly optimized for codon cost and efficiency would
constrain the rate at which the underlying gene se-
quence can evolve. Specifically, the more highly opti-
mized a transcript is for both biosynthetic cost and
translational efficiency, the higher the proportion of spon-
taneous mutations that would reduce the cost-efficiency
optimality of the transcript sequence. Therefore, spontan-
eous mutations in highly optimized genes are more likely
to be deleterious than spontaneous mutations in less opti-
mized genes. As deleterious mutations are lost more rap-
idly from the population than neutral mutations, the more
highly optimized a gene sequence is, the lower its appar-
ent evolutionary rate should be.

To test this hypothesis, the complete set of gene se-
quences from E. coli was subject to stochastic in silico
mutagenesis, and the proportion of single nucleotide mu-
tations that resulted in reduced transcript cost-efficiency

optimality was evaluated. As expected, the proportion of
deleterious mutations increased linearly with transcript se-
quence optimality. This effect was seen for both synonym-
ous (Fig. 6a) and non-synonymous mutations (Fig. 6b).
The effect in non-synonymous mutations is seen because
a single base mutation from an optimal codon encoding
one amino acid is unlikely to arrive at an equally optimal
(or better) codon encoding any other amino acid. Thus as
expected, the more optimal a codon is, the less likely a
spontaneous mutation will result in a codon with higher
optimality irrespective of whether that codon encodes the
same amino acid.

The extent to which transcript sequences in E. coli
were jointly cost-efficiency optimized was compared to
the synonymous (K;) and non-synonymous (K,) muta-
tion rate of that gene, estimated from comparison with
Salmonella enterica. Consistent with the hypothesis, the
rates of synonymous (K, Fig. 6¢) and non-synonymous
(K,, Fig. 6d) changes were directly proportional to the
extent to which the gene sequence had been optimized
by natural selection for low biosynthetic cost and high
translational efficiency (Fig. 6a and b). Joint optimization
of biosynthetic cost and translational efficiency can
explain 26% and 28% of variation in synonymous and
non-synonymous gene evolutionary rate (Fig. 6¢ and d).
Whilst efficiency optimization explained more of the vari-
ance in gene evolutionary rate, the linear regression model
that considered both cost and efficiency optimization
was significantly better than models that considered ei-
ther factor alone, whether or not derived optimization
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Fig. 5 Selection acts in proportion to mRNA abundance to decrease codon biosynthetic cost and increase codon translational efficiency in
Escherichia coli. a There is a negative correlation between selection acting on codon biosynthetic cost (S.) and mRNA abundance. The linear line
of best fit (shown here on a log scale) has an R value of 0.18. b There is a positive correlation between selection acting to increase codon translational
efficiency (S and gene expression. The linear line of best fit (shown here on a log scale) has an R” value of 0.13. Each point has been set to an opacity

of 20% so density can be judged

values or raw tAl and biosynthetic costs were consid-
ered (Additional file 2: Figure S1, analysis of variance
(ANOVA), p <0.001). Therefore, this analysis provides
a mechanistic explanation for previous studies that
found a strong correlation between non-synonymous
evolutionary rate and mRNA abundance [24]. More-
over, it explains more variation in gene evolutionary rate
for the same species than previous studies that focused on
the deleterious effects of protein mis-folding [17, 24].

To determine if this relationship was also observed for
other bacteria, an additional 176 species pairs were ana-
lysed (Fig. 6e, Additional file 3). Of these species pairs,
81% were consistent with the observation for E. coli
and S. enterica, such that variance in selection-driven

gene sequence optimization explained on average 6.9%
of variance in K between genes (Fig. 6e, Additional file 3).
Also consistent with the analysis for E. coli and S. enterica,
the linear regression model that considered joint cost-effi-
ciency optimization explained more variance in gene evo-
lutionary rate than either cost optimization (4.4%) or
translation optimization (5.9%) alone. Thus, the extent
to which transcript sequences are jointly optimized for
biosynthetic cost and translational efficiency can ex-
plain a significant component of variation in gene evo-
lutionary rate. Moreover, selection-driven cost-efficiency
optimality is also sufficient to explain the correlation be-
tween the rates of synonymous and non-synonymous
mutations.
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Fig. 6 Selection-driven optimization of resource allocation is a critical factor that determines molecular evolutionary rate. Highly cost-efficiency
optimized genes have a higher proportion of deleterious (a) synonymous (y= 1.15x — 8, R? = 0.81) and (b) non-synonymous (y=1.71x — 38, R? = 0.78)
mutations. Orthologous genes in Escherichia coli and Salmonella enterica show a negative correlation between sequence cost-efficiency optimization
and the rate of (c) synonymous mutations (K) (y=—11x+61, R’>=0.26) and (d) non-synonymous mutations (K;) (y = — 9x +48, R?=028). e Histogram
of proportion of gene evolutionary rate explained by selection-driven cost-efficiency optimization of transcript sequences
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Discussion

Differences in molecular evolutionary rates between spe-
cies are thought to be mainly due to differences in or-
ganism generation time [28]. However, differences in
evolutionary rates between genes in the same species
lack a complete mechanistic explanation. Prior to the
study presented here, it was known that functional con-
straints of the encoded protein sequence contribute to
the constraint of the rate of non-synonymous changes
[29]. It had also been observed that mRNA abundance
and patterns of codon bias correlated with the evolution-
ary rate of genes [30, 31] and that rates of synonymous
and non-synonymous changes were correlated [32]. The
study presented here unifies these prior observations
and provides a mechanistic explanation for both vari-
ation and correlation in molecular evolutionary rates of
genes. Specifically, this study shows that stochastic mu-
tations in gene sequences are more likely to result in
deleterious alleles in proportion to the extent to which
that gene sequence has been jointly optimized by natural
selection for reduced transcript biosynthetic cost and en-
hanced translational efficiency.

The mechanism provided here also explains the rela-
tionship between mRNA abundance and gene evolution-
ary rate. Specifically, functional constraints on protein
abundance stipulate the quantity of mRNA required to
produce that protein. The more mRNA that is required,
the greater the percentage of total cellular resources that
must be invested within the transcript. The mechanism
simply entails that the more transcript that is present,
the stronger the selective pressure will be to reduce the
cellular resources committed to that transcript. Import-
antly, minimizing these resources can be achieved both
by using codons that require fewer resources for their
biosynthesis or by utilizing translationally efficient co-
dons that increase the protein-to-transcript ratio and
therefore reduce the amount of transcript required to
produce the same amount of protein (Fig. 7). Overall,
this study reveals how the economics of gene production
is a critical factor in determining both the evolution and
composition of genes.

Conclusions

Codon use is biased across the tree of life, with patterns
of bias varying both between species and between genes
within the same species. Here we demonstrate that vari-
ation in tRNA content between species creates a corre-
sponding variation in the codon cost-efficiency trade-off
whereby codons that cost the least to biosynthesize are
not equally translationally efficient in all species. We
show that, irrespective of the strength of the codon
cost-efficiency trade-off, natural selection performs
multi-objective gene sequence optimization so that tran-
script sequences are optimized to be both low cost and
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Fig. 7 A cartoon depicting how selection optimizes both
biosynthetic cost and translational efficiency for individual genes.
Each circle represents a hypothetical gene sequence. The intensity of
the color of the circle is proportional to its MRNA abundance. Low
abundance genes experience weak selection and are not optimized
for biosynthetic cost or translational efficiency. Highly expressed
genes experience strong selection and lie on or near to the Pareto
efficient frontier (indicated by a red line). The shaded arrows show
the direction that selection will move a gene through this
landscape. It is not possible for a gene to occur in the space beyond
the Pareto frontier because of the cost-efficiency trade-off

highly translationally efficient, and that the nature of this
trade-off constrains the extent of the solution. We dem-
onstrate that this multi-objective optimization is
dependent on mRNA abundance, such that the tran-
scripts that comprise the largest proportion of cellular
mRNA are those that experience the strongest selection
to be both low cost and highly efficient. Finally, we show
that the extent to which a gene sequence is jointly opti-
mized for reduced transcript cost and enhanced transla-
tional efficiency is sufficient to explain a significant
proportion of the variation in the rate of gene sequence
evolution. Furthermore, it is also sufficient to explain
the phenomenon that the rate of synonymous and
non-synonymous mutation for a gene is correlated [32].

Methods

Data sources

We obtained 1320 bacterial genomes from the Na-
tional Center for Biotechnology Information (NCBI)
(www.ncbinlm.nih.gov). In order to avoid over-sampling of
more frequently sequenced genera, the number of species
from each genus was restricted to 5, with a maximum of 1
strain (or subspecies or serovar) per species. Therefore, the
1320 species sampled in this study were distributed among
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730 different genera. Only genes that were longer than 30
nucleotides, had no in-frame stop codons and began and
ended with start and stop codons respectively were ana-
lysed. Each species in this analysis contained a minimum
of 500 genes that fit these criteria. Full details of species
names, genome accession numbers, strain details and se-
lection coefficients are provided in Additional file 1.

Evaluation of translational efficiency (tAl)
To obtain the number of tRNA genes in each genome,
tRNAscan was run on each of the 1320 bacterial ge-
nomes [33]. This current version (1.4) of tRNAscan is
unable to distinguish between tRNA-Met and tRNA-Ile
with the anticodon CAT. Thus tRNA-Ile(CAT), whilst
present, is not detected in any of the genomes. To com-
pensate for this, a single copy of tRNA-Ile with the anti-
codon CAT was added to the tRNA counts for each
species if more than one tRNA-Met(CAT) was found.
The tRNA adaptation index (tAI) [22], which considers
both the tRNA gene copy number and wobble base
pairing when calculating the translational efficiency of a
codon, was evaluated using the optimized s; values for
bacteria obtained by Tuller et al. [34] and the equation
developed by dos Reis et al. [21]. s, was set to 0.7 as
proposed by Navon et al. [35], and s, was set to 0.95 as
Us;, has been shown to have weak codon-anticodon
coupling with cytosine [36]. Each species in this analysis
was able to translate all codons, was not missing key
tRNAs and did not require unusual tRNA modifications.
The analysis presented here utilizes the same tAl con-
stants described above for all species. Thus, the analysis
does not account for anticodon base modifications that
are species-specific. If present, such a modification will
cause the tAl constant for a given codon to be incorrect
in that species and may have an impact on the estimate
of S, for that species. However, the impact of this differ-
ence in tAl constant on the estimation of S; will be pro-
portional to the number of anticodons that are modified
(out of the total pool of anticodons) and the magnitude
of difference in tAI constant. This is a limitation of this
large-scale multi-species analysis that is likely to have in-
troduced some stochastic error into the results.

Calculation of relative codon biosynthetic cost and
translational efficiency

Codon biosynthetic cost and translational efficiency were
calculated relative to other synonymous codons such
that the synonymous codon with the greatest value had
a relative cost or efficiency of 1. For example, the nitro-
gen cost of GCC is 11 atoms. The most expensive syn-
onymous codon is GCG/GCA (13 atoms). Therefore,
the relative biosynthetic cost of GCC is 11/13 =0.85.
The same evaluation was done to calculate codon trans-
lational efficiency.
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We note that 4 of the 1320 species in this analysis do
not encode a full complement of enzymes necessary to
biosynthesize A, C, G, T and U nucleotides from phos-
phoribosyl pyrophosphate. These species comprise Urea-
plasma parvum, Ureaplasma urealyticum, Mycoplasma
parvum and Mycoplasma pneumoniae, and they depend
on import of nucleotide precursors from their host [37].
These species also lack nucleoside diphosphate kinase (for
converting deoxyribonucleoside diphosphates, (d)NDPs,
to deoxyribonucleoside triphosphates, (d)NTPs), [38], and
thus they catalyze these reactions using other enzymes
[39]. Removal of these four species from this analysis does
not affect the results presented in this work.

CodonMusSe: a fast and efficient algorithm for evaluating
drivers of codon usage bias

The SK model [2] was used to infer the joint contribu-
tion of genome-wide GC bias, selection acting on codon
biosynthetic cost and selection acting on codon transla-
tional efficiency to biased synonymous codon use. We
note here that the GC;, parameter in this study is a com-
posite parameter that integrates into a single variable the
multiple factors contributing to genome-wide GC con-
tent bias. Such factors include gene conversion [40], dif-
ferences in repair efficiency [41], mutational biases
during DNA replication [42-44] and selection acting on
genome-wide GC content [45].

To facilitate the large-scale comparative application of
this model, a rapid, stand-alone version was imple-
mented in Python. The algorithm, instructions for use
and example files are available for download at https://
github.com/easeward/CodonMuSe. Further details about
the algorithm can be found in Additional file 2.

For each species, the complete set of protein coding
genes and the tRNA copy number inferred using tRNAs-
can were provided as input and CodonMuSe was run in
default mode such that the optimal model selection was
conducted automatically. For 1247 of the 1320 species
(94.4%) the optimal model was determined to be the
three-parameter model containing GC,, S. and S, (Add-
itional file 1). To facilitate plotting parameter values for
all species, the remaining 5.6% of species were run with
a three-parameter model. In all cases the inferred value
for the missing parameters was ~0 (Additional file 1).
For example, for those species where S, was not in the
optimal model, the mean S; value was 0.001, the mean
value for species where S; was included in the optimal
model was 0.111.

Comparing selection acting on codon bias and transcript
abundance levels

Transcriptome data for E. coli str. K-12 MG1655 were
downloaded from the NCBI (series GSE15534). The raw
data were subjected to quantile normalization and
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background correction as implemented in the Nimble-
Scan software package, version 2.4.27 [46, 47]. The three
biological replicates for the logarithmic growth phase
were available; however, the third replicate was incon-
sistent with the first two and so was excluded from this
analysis. As each gene had multiple probes, the average
probe value for each gene was taken. The three-parameter
CodonMuSe model using the value for GC, estimated
from a genome-wide analysis was run for each of the 4099
genes in E. coli individually, and thus values for S, and S;
were obtained for each gene. The values for these selec-
tion coefficients were plotted against the relative mRNA
abundance data described above [46].

Calculating the extent to which gene sequences were
jointly optimized for biosynthetic cost and translational
efficiency

To define the extent to which a sequence has been jointly
optimized for both biosynthetic cost and translational effi-
ciency, the relative Pareto optimality of each gene was cal-
culated. To do this, the boundaries of sequence space
were defined as in Additional file 2: Figure S2. Here, the
cost-efficiency Pareto frontier is the full set of coding se-
quences that are Pareto efficient, where it is impossible to
change the codons of the sequence to make the transcript
cheaper without making it less efficient (or vice versa)
(red frontier, Additional file 2: Figure S2). The opposite
frontier is the full set sequences where it is impossible to
change the codons of the sequence to make the transcript
more expensive without making it more efficient (or vice
versa) (blue frontier, Additional file 2: Figure S2). Thus,
the extent to which transcript sequences were jointly opti-
mized for both biosynthetic cost and translational effi-
ciency was evaluated as the relative distance of a given
gene to the cost-efficiency Pareto frontier for the sequence
constrained by the amino acid sequence, i.e. (ﬁ) x 100
(Additional file 2: Figure S2). Therefore, a value of 100%
optimization represents a gene that lies on the Pareto
frontier. Genes that are less than 100% optimized occupy
the space between the cost-efficiency Pareto frontier
(red frontier) and the opposite frontier (blue frontier,
minimizing transcript efficiency or maximizing cost) for
that amino acid sequence (Additional file 2: Figure S2).

Calculation of molecular evolutionary rates

Molecular evolutionary rates (K, and K values) were cal-
culated for orthologous genes in E. coli and S. enterica. In
total, 2468 single-copy orthologous genes were identified
for E. coli and S. enterica using OrthoFinder version
1.1.4 [48]. These sequences were aligned at the amino
acid level using MergeAlign [49], and this alignment
was then rethreaded with the coding sequences to cre-
ate codon-level nucleotide alignments. Only aligned

Page 10 of 11

sequences longer than 30 nucleotides with less than
10% gaps were used. Gapped regions were removed and
KaKs_Calculator 2.0 [50] was run using the GMYN
model to evaluate K, and K values for each pair of
aligned nucleotide sequences. As the molecular evolu-
tionary rates represent the average of the mutation
rates of the gene pair since they last shared a common
ancestor, these rates were compared to the average op-
timality of the same gene pair in both species.

The same analysis was conducted on 1066 additional
pairs of species obtained by exhaustive pairwise com-
parison of all species that were within the same genus.
These 1066 pairwise comparisons were filtered to re-
move those with K, saturation (i.e. mean K;>1) and
fewer than 1000 genes. This filtered set contained 176
species pairs (Additional file 3).

Linear regression analyses

All linear regression analyses were conducted using
the Im package in R. In all cases, p values quoted are
the p values for the linear regression model.

Additional files

Additional file 1: NCBI accession numbers for the 1320 species used in
this analysis. Also provided are the R’ values for the model fit between
the real codon use frequencies and model fitted codon use frequencies
and the fitted values for each model parameter. (XLSX 162 kb)

Additional file 2: Figure S1, Figure S2 and the CodonMuSe algorithm.
(PDF 964 kb)

Additional file 3: The £ and p values for the fit between K, and cost-
efficiency optimization for the 176 species pairs with mean K, < 1 and
more than 1000 genes. Mean K, mean cost-efficiency optimization, R’
and p value of fit are provided. (XLSX 25 kb)
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