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From squiggle to basepair: computational
approaches for improving nanopore
sequencing read accuracy

Franka J. Rang, Wigard P. Kloosterman* and Jeroen de Ridder*
Abstract

Nanopore sequencing is a rapidly maturing technology delivering long reads in real time on a portable instrument
at low cost. Not surprisingly, the community has rapidly taken up this new way of sequencing and has used it
successfully for a variety of research applications. A major limitation of nanopore sequencing is its high error rate,
which despite recent improvements to the nanopore chemistry and computational tools still ranges between 5%
and 15%. Here, we review computational approaches determining the nanopore sequencing error rate.
Furthermore, we outline strategies for translation of raw sequencing data into base calls for detection of base
modifications and for obtaining consensus sequences.
Introduction
The nanopore sequencing concept was first proposed in
the 1980s and has been developed and refined over the
past three decades (reviewed in [1]). Rather than the
commonly used sequencing-by-synthesis approach,
nanopores directly sense DNA or RNA bases by means
of pores that are embedded in a membrane separating
two compartments. An electric potential is applied over
the membrane, resulting in an ion current and flow of
DNA through the pore. Nucleotides in the pore change
the ion flow, causing distinct current signals that can be
used to infer the DNA sequence.
In 2014, Oxford Nanopore Technologies (ONT) re-

leased the MinION as the first commercially available
nanopore sequencing device. MinION nanopore sequen-
cing offers several advantages over short-read sequen-
cing technologies such as the Illumina MiSeq
(Additional file 1: Table S1). First, the MinION produces
reads in real time from single molecules. In combination
with rapid library preparation, this dramatically shortens
the time between sample collection and data analysis.
Moreover, the MinION can also be used for direct RNA
sequencing without prior reverse transcription or ampli-
fication [2]. Second, DNA molecules of any length can
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be sequenced and reports have been made of reads lon-
ger than 800 kb [3] and even exceeding 2 Mb [4]. Long
reads are extremely valuable because they provide infor-
mation on how distal sequences are spatially related.
Consequently, they ease genome assembly and structural
variant detection [3, 5]. Finally, the MinION is a lot
smaller and cheaper than the current short-read plat-
forms, enabling sequencing outside the traditional la-
boratory context [6, 7]. The key features and
applications of MinION sequencing have previously
been reviewed by Jain et al. [8]. Following the introduc-
tion of the MinION, ONT has commercially released
the GridION, which is essentially one instrument with
slots for five MinION flow cells and an integrated com-
pute module for base calling. In addition, the Pro-
methION, a high-throughput nanopore platform, is
currently being tested by early-access users.
A major limitation of MinION sequencing is its lower

read accuracy when compared with short-read technolo-
gies. When the MinION was first introduced, reads
showed an accuracy of less than 60% [9, 10]. This accur-
acy has improved over recent years to reach approxi-
mately 85% [3, 5, 11, 12] (Fig. 1), similar to that of the
long-read sequencing technology of PacBio (Additional
file 1: Table S1), but still falls short of the more than
99% accuracy offered by short-read platforms. The
advantages of long reads outweigh the low-read accuracy
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Fig. 1 Timeline of reported MinION read accuracies and Oxford Nanopore Technologies (ONT) technological developments. Nanopore chemistry
updates and advances in base-caller software are represented as colored bars. The plotted accuracies are ordered on the basis of the chemistry
and base-calling software used, not according to publication date. Based on data from 1 [9]; 2 [10]; 3 [50]; 4 [51]; 5 [33]; 6 [28]; 7 [52]; 8 [53];
9 [54]; 10 [29]; 11 [31]; 12 [48]; 13 [46]; 14 [55]; 15 [11]; 16 [5]; 17 [13]; 18 [3]. HMM Hidden Markov Model, RNN Recurrent Neural Network
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for some applications, such as structural variant detection
[5]. Furthermore, consensus sequences can be obtained
from homogenous DNA samples by (genome) assembly,
resulting in accuracies of more than 99% [13–16].
However, the MinION’s low-read accuracy complicates
the analysis of complex samples for detection of single
nucleotide variations (SNVs) or indels. Successful SNV
genotyping based on nanopore reads has been demon-
strated [17], but MinION-based SNV calling requires
relatively high-coverage sequencing of the variation, for
example through targeted sequencing [3, 6, 7, 18].
Since the first release of the MinION, the error rate

has considerably improved due to changes in sequencing
chemistry. The first MinION flow cells made use of a
nanopore called R6, which provided mediocre accuracy.
ONT has revealed that the current pore versions (R9.4
and R9.5) are derived from the Escherichia coli Curlin
sigma S-dependent growth (CsgG) pore [19, 20], and
achieve greatly reduced error rates (Fig. 1).
ONT has further improved accuracy by offering the

possibility of sequencing both template and complemen-
tary strands to obtain a more accurate consensus read.
When the double-stranded DNA (dsDNA) is recruited
to the nanopore, a motor protein unzips the double
strand and passes a single strand through the pore, giv-
ing rise to a so-called 1D read (Additional file 1: Figure
S1A). Early versions of MinION sequencing offered 2D
sequencing involving the reading of both strands, which
was enabled by ligation of a hairpin to the DNA (Add-
itional file 1: Figure S1B). The accuracy of 2D consensus
reads has generally been more than 5% higher than the
accuracy of the template (1D) read alone (Fig. 1). Re-
cently, 2D sequencing was replaced by a new approach
termed 1D2, which enables the sequencing of template
and complementary strands without physical ligation
(Additional File 1: Figure S1C). According to ONT, 1D2

sequencing can be successful for up to 60% of DNA
molecules, and the resulting consensus sequences reach
a modal (i.e., most commonly observed) accuracy of ∼
97% compared with the ∼ 90% accuracy of the 1D reads
alone [21, 22]. Research by independent investigators
will have to show whether the 1D2 chemistry lives up to
this promise.
In addition to the chemistry updates released by ONT,

computational tools to process the MinION sequencing
data and to improve accuracy have been developed,
tested, and compared by the scientific community. At
the moment, however, an overview of these strategies
and a delineation of their contributions is lacking. In this
review, we discuss computational approaches to improve
the accuracy of nanopore sequencing data by focusing
on (i) advances in the computational methods for base
calling and (ii) the use of postsequencing correction
tools (Fig. 2).



Fig. 2 Overview of MinION nanopore sequencing. The left panel
shows sources of errors during MinION sequencing and base calling.
The right panel shows computational strategies that have been used
to improve accuracy. HMM Hidden Markov Model, RNN Recurrent
Neural Network

Rang et al. Genome Biology  (2018) 19:90 Page 3 of 11
Sources of errors in nanopore sequencing data
There appear to be two distinct steps at which errors
can arise in Oxford Nanopore sequencing data. First, we
can reasonably assume that errors can occur during se-
quencing and thus be inherent to the raw data. In this
case, the inherent limitations of the technology result in
a low signal-to-noise ratio, making it impossible to de-
termine the underlying DNA sequence. Second, errors
could be made in the process of translating the raw elec-
tric current signal into a DNA sequence. Here, the infor-
mation about the DNA sequence is actually present in
the data, but shortcomings in the analysis prevent its
correct interpretation. The influence of these two steps
on the error rate seems to be supported by improve-
ments in accuracy following upgrades in both nanopore
chemistry and base-calling software (Fig. 1).
There are several factors in play during sequencing

that may contribute to a low signal-to-noise ratio: (i) the
structural similarity of the nucleotides; (ii) the simultan-
eous influence of multiple nucleotides on the signal [23];
(iii) the nonuniform speed at which nucleotides pass
through the pore [24–26]; and (iv) the fact that the sig-
nal does not change within homopolymers [26] (Fig. 2).
In earlier MinION nanopores (R7, 7.3), the raw

current signal was mainly influenced by five or six nucle-
otides that occupied the pore at any given time point.
One measurement thus corresponds to 2048 or 4096
possible k-mers. In the latest pores (R9, 9.4), ONT re-
ports that the three central nucleotides mainly deter-
mine the signal, with a smaller influence from more
distal nucleotides within the pore [23]. When more nu-
cleotides reside in the pore, one measurement can cor-
respond to even more k-mers and thus more unique
signal levels are required to differentiate between them.
Consequently, it is more difficult to achieve good
signal-to-noise ratios for pores that are influenced by
long k-mers compared with those that are occupied by
shorter k-mers. Moreover, nucleotides may harbor
chemical modifications, such as methyl groups, that
affect the signal and effectively increase the number of
unique signal levels.
In order to improve signal robustness, the k-mers have

to reside within the pore long enough to differentiate
signal from noise. The speed at which DNA translocates
through a pore under the influence of an electric poten-
tial alone is too high to allow reliable detection of each
signal [27]. Therefore, Oxford Nanopore chemistry in-
volves the attachment of a motor protein to the DNA,
which slows down the translocation and improves the
quality of the signal [24, 25]. Nevertheless, despite a re-
duced translocation speed, it is difficult to detect the
transition between two identical k-mers, complicating
the detection of homopolymers that are longer than the
k-mer. One way to tackle the problem is to infer homo-
polymer length from the duration of the measured sig-
nal. Problematically, the translocation speed of motor
proteins is generally nonuniform, disrupting the relation-
ship between homopolymer length and detection time
[24–26], a problem that has also been reported by ONT
[23]. Consequently, many deletion errors in MinION
reads occur in homopolymers [3, 5, 28]. For example,
one study reported a 2.6-fold increase in deletion errors
for sequences that overlap homopolymers [5].
Errors that arise during signal interpretation, on the

other hand, may result from heuristics in the algorithm
necessary to bring down the computational costs. For in-
stance, some of the base-calling algorithms assume that
two consecutive k-mers at most may be undetected [29],
even though larger skips can occur. In addition, the per-
formance of the base callers is influenced by the datasets
that are used to train the parameters of the model [13,
30] (Table 1). Biases in the training data—such as type
of species or the balance between amplified and nascent
DNA (which may contain base modifications such as



Table 1 Explanation of technical terms
Term Description Reference(s)

Beam search A heuristic search algorithm. In Chiron,
the beam search decoder with beam
width W maintains a list of the W most
probable sequences up to position i
and constructs the probabilities of all
possible sequence extensions for i + 1.

[32]

Connectionist Temporal
Classification (CTC)
decoder

A type of neural network output and
scoring for labeling sequence data with
RNNs. It does not require presegmented
training data and postprocessed
outputs.

[56]

Convolutional Neural
Network (CNN)

A type of neural network often used for
image analysis. It can recognize patterns
by applying different filters to an image.

[57]

Forward algorithm An algorithm that computes the
probability P(x) of a sequence x given a
certain HMM.

[58]

Hidden Markov Model
(HMM)

A stochastic model that models a
sequence of unobserved events
underlying a sequence of observations.
HMMs assume that an event only
depends on the previous event.

[58, 59]

Long-short-term memory
(LSTM) unit

A type of RNN that can be used as a
building block in bigger networks. It has
specific input, output, and forgot gates
that allow it to retain or discard
information that was passed on from a
previous state.

[60, 61]

Partial Order Alignment
(POA) graph

A graph representation of a multiple
alignment that allows each base in the
alignment to have multiple
predecessors. Different paths through
the graph represent different
alignments.

[62]

Recurrent Neural Network
(RNN)

A type of neural network that takes
information passed on from previous
states into account.

[63]

Training data A dataset that is used to optimize (i.e.,
train) the parameters of a model.
Training is required for both HMMs and
RNNs. The training dataset thus
determines the performance of the
model.

[58, 63]

Viterbi decoding An algorithm that finds the most likely
sequence of events given a certain
HMM.

[58]
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methylation)—could thus result in errors when applying
the resulting parameters to new data.

Defining read accuracy and error rate
To get a good view of how technological develop-
ments impact the accuracy of MinION sequencing
data, clear definitions of accuracy and error rate are
essential. A wide range of definitions has been used
throughout recent publications. For accuracy, these
definitions include percent identity to a reference se-
quence relative to read length [31], alignment length
[5, 9, 13, 28], and reference length [32]. Equivalent
definitions for error rate are used. Unfortunately, the
formulas and tools used to calculate these metrics
are often not clearly stated. Probably the most com-
monly used definition of read accuracy is the
percentage of bases in a segment of a read that
match with a reference relative to the length of the
readsegment–reference alignment:

accuracy ¼ matches
matchesþmismatches

þ
X

length insertions∈readð Þð Þ

þ
X

length deletions∈readð Þð Þ � 100%:

Concordantly, the error rate would constitute the per-
centage of unmatched bases in the alignment and can be
subdivided in substitution, insertion, and deletion rates:

error rate ¼ mismatchesþP
length insertions∈readð Þð Þ þP

length deletions∈readð Þð Þ
matchesþmismatchesþP

length insertions∈readð Þð Þ þP
length deletions∈readð Þð Þ � 100%

¼ errors
alignmentlength � 100%

It is difficult to measure the impact of technological de-
velopments on data quality on the basis of literature re-
ports as there are differences between publications in the
ways that the accuracy and error rate are reported. Many
researchers report the average read accuracy, whereas
others report the median or provide a distribution. A sec-
ond complicating factor in the comparison of read accur-
acies is that they depend directly on the performance of
the alignment algorithm. Different alignment tools may
result in different reported accuracies [33], although they
have been reported to yield similar results [3, 28].
Finally, often only a subset of the reads is used to calcu-

late the accuracy and error rate. After reads have been base
called, they are divided into high-quality (pass) reads,
low-quality (fail) reads, and a subset of reads that cannot be
base called. It is not always clear whether pass reads or both
pass and fail reads are used to calculate the accuracy of the
data. Moreover, the calculated accuracy does generally not
take into account the reads that could not be aligned. These
filtering steps have a direct impact on the reported accur-
acy, as there is a trade-off between the accuracy and the
yield of the run, i.e., the fraction of reads that are consid-
ered as useful data. In order to enable better comparisons
of accuracy, it would be advisable to report the accuracy
along with the yield of the run, or to report the equivalent
of a precision–recall curve in which the accuracy for a
range of yields is plotted.
In this review, the mean accuracies of 1D pass reads are

reported unless stated otherwise. Figure 1 shows some of
the accuracies that have been reported in the literature
over the past 3 years, as well as important updates in
nanopore chemistry and base-calling algorithms. Owing
to the difficulties listed above, there are inconsistencies
between the methods by which the accuracies have been
obtained. Nevertheless, when combined, these data show
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a clear trend of improved accuracy since the release of the
MinION.

Base calling
For the current MinION chemistry, ONT reports that
single DNA strands are pulled through the pore at an
average speed of 450 bp/s, while the electric current is
sampled at a frequency of 4 kHz [34]. This means that
there are on average nine discrete measurements per
k-mer, although the number varies because of the fluctu-
ating translocation speed of the motor protein. In order
to translate this raw electric current signal to a DNA se-
quence, sophisticated base-calling software is required.
In the early days of MinION, base calling was per-

formed by the cloud-based EPI2ME platform provided
by Metrichor Ltd., but this feature was discontinued in
March 2017. In August 2016, base calling became avail-
able in the software program MinKNOW, which runs
on the local machine connected to the sequencer to
monitor and control MinION sequencing. In addition to
the MinKNOW integrated base caller, ONT now offers
several other base-calling programs, including the
command-line base caller Albacore, and the research
base callers Nanonet and Scrappie which have mainly
been used as a testing ground for new features. In
addition to the ONT base callers, several independent
base callers have been developed by researchers in the
past 2 years, including Nanocall [29], DeepNano [35],
Chiron [32], and BasecRAWller [30]. These ONT base
callers have rapidly evolved: Albacore alone was updated
at least 12 times between January and September 2017.
The rapid succession and improvement of base callers

demonstrates that their performance is an important de-
terminant in the quality of the base pair sequence that is
retrieved from the raw signal. In this section, we discuss
different approaches to base calling and the most not-
able improvements that have been made in recent years.

Hidden Markov models versus recurrent neural networks
To deal with the oversampling, the initial MinION base
callers required segmentation of the raw signals into
discrete events before base identification. This process
reduced the size of the input dataset and combined the
redundant measurements into a supposedly more reli-
able, event-based signal. According to ONT, MinKNOW
(up to v1.9) performed segmentation by calculating t sta-
tistics over two pairs of adjacent sliding windows in the
raw signal [19]. These statistics were then combined to
determine event boundaries. For each event, the mean,
standard deviation, and duration of the raw signal were
reported and used for further base calling. The resulting
sequences of events are often referred to as ‘squiggles’.
To interpret the sequence of events, MinKNOW offers
pore models and scaling parameters. The pore models
provide distributions of the mean signal and standard
deviations that can be expected for each k-mer, while
the scaling parameters help to correct for differences in
signal that may occur between different wells or over the
course of a sequencing run [36].
The first generations of ONT base callers used Hidden

Markov Models (HMMs) (Table 1) to predict the DNA
sequence on the basis of the event data, pore models,
and scaling parameters. The first open-source base
caller, Nanocall, employed the same principle [29]
(Fig. 3a). In the Nanocall HMM, the hidden states repre-
sent all possible k-mers with emission probabilities that
are based on the pore models. The transition probabil-
ities, on the other hand, are determined on the basis of a
training dataset (Table 1). They mirror the possible event
transitions in which a consecutive event can refer to a
k-mer shifted by one position in the DNA sequence
(step), a k-mer shifted by more than one position (skip),
or the same k-mer (stay). To speed up computation,
skips with a size larger than one are not allowed in the
HMM. During base calling, the most probable path
through the hidden states is calculated by Viterbi decod-
ing (Table 1). The path is converted to the final base se-
quence by merging the sequence corresponding to two
consecutive states according to their maximal overlap.
The consequence of this heuristic is that homopolymer
repeats of a length greater than the size of the k-mer
cannot be detected.
Soon after the publication of Nanocall, the first version

of the base caller DeepNano was published [35]. Rather
than using HMMs, DeepNano uses Recurrent Neural
Networks (RNNs) (Table 1), which do not explicitly rely
on k-mer length and are able to take longer range infor-
mation (i.e., >k bp) into account. Since information
about the DNA sequence is contained in events both up-
stream and downstream of the current event, DeepNano
uses a bidirectional RNN that makes predictions for
events in each direction and combines the two predic-
tions for each event in the next layer of the neural net-
work (Fig. 3b).
In terms of performance, the RNN-based DeepNano

achieves a substantial improvement over the
HMM-based callers. On R7.3 data, Metrichor called 1D
reads with an accuracy of 70–71% and Nanocall with an
accuracy of 68%, whereas DeepNano reached accuracies
of up to 77% [29, 35]. For 2D reads, this difference was
less pronounced, with Metrichor reaching an accuracy
of 87% and DeepNano an accuracy of 89%. Nanocall
does not provide an option to call 2D reads.
Before the final version of the DeepNano paper was pub-

lished, ONT released their own RNN-based base caller,
Nanonet. The general principle is similar to that of Deep-
Nano. Nanonet employs bidirectional long-short-term
memory (LSTM) units (Table 1) to utilize information from



Fig. 3 Schematic overview of the algorithms underlying nanopore base callers. a Nanocall uses a Hidden Markov Model (HMM) for base calling.
b DeepNano was the first base caller to use Recurrent Neural Networks (RNN). h1–h3 represent three hidden layers in the RNN. c BasecRAWller uses
two RNNs, one to segment the raw measurements and one to infer k-mer probabilities. d Chiron makes use of a Convolutional Neural Network (CNN)
to detect patterns in the data, followed by an RNN to predict k-mer probabilities, which are evaluated by a Connectionist Temporal Classification (CTC)
decoder. LSTM long-short-term memory
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both upstream and downstream states. In the final publica-
tion of DeepNano, the authors compare the accuracy of the
two RNN-based base callers on an E. coli dataset produced
with R9 chemistry and show that they perform similarly on
1D reads (DeepNano ~ 81%, Nanonet ~ 83%) [35]. Given
the superior performance of RNN base callers when com-
pared with HMM base callers, algorithms similar to those
of Nanonet have been adopted in newer versions of the
MinKNOW base caller and in all versions of the ONT base
callers Albacore and Scrappie.

Base calling using raw signal
Although initial versions of early base callers used the
segmented event data provided by MinKNOW as input
to determine the DNA sequence, current base callers
use raw current signal as input. The Scrappie base caller
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(which is available through a developer license from
ONT) was the first base caller to employ raw current
signal. In addition, the recent introduction of Base-
cRAWller provides a well-documented base-calling
method for raw nanopore data [30].
BasecRAWller employs two separate RNNs (Fig. 3c).

The first RNN uses each measurement point to predict
the probability that a signal corresponds to a new k-mer
and the probability of the k-mer identity simultaneously.
On the basis of the probabilities of k-mer transitions,
the raw signal is segmented and the k-mer probabilities
are averaged over the segments. These probabilities are
then fed into the second RNN, which predicts the final
DNA sequence. Importantly, both RNNs use LSTMs to
pass contextual information forward but not backward,
making the technology fast enough to base call reads as
they pass through the pore. However, the increase in
processing speed comes at the cost of accuracy.
Although BasecRAWller uses the raw current signal

rather than the events detected by MinKNOW, it still
performs an internal segmentation step after the first
RNN. The recently introduced base caller Chiron, on
the other hand, is capable of translating the raw signal
into a DNA sequence without an intermediate segmen-
tation step [32] (Fig. 3d). In Chiron, the raw data are
first fed through a Convolutional Neural Network
(CNN) (Table 1), which detects local structures in the
signal. The output of the CNN is used as input for an
RNN that makes use of bidirectional LSTMs. The RNN
outputs base call probabilities that are evaluated by a
Connectionist Temporal Classification (CTC) decoder
(Table 1) and are converted to a sequence of bases by a
beam search algorithm (Table 1). Despite being trained
on limited amounts of data, Chiron had similar accur-
acies compared with Albacore v2.0.1 and outperformed
the segmentation-based Albacore v1.1 This was also the
case for human sequencing data, even though Chiron
was trained on nonhuman data only.
Around the same time that the first version of Chiron

was published, ONT transitioned to raw base calling in
a new update of Albacore (v2.0.1). Internal testing per-
formed by ONT showed that raw base calling improves
the modal read accuracy by 1% over that achieved by
event-based base calling [37]. The increase in accuracy is
due to the fact that mistakes made during segmentation
are hard to correct later on, as information is lost when
the raw data are reduced to mean, deviation, and dur-
ation values alone.

Training of base callers for base composition and
modifications
An important aspect of the current base callers is that
they require training to optimize the parameters of the
HMM or RNN. Consequently, the nature of the training
dataset is crucial in determining base caller performance
on sequencing data from different biological samples.
Depending on the source of the DNA and the sample
preparation, sequencing datasets may have different
characteristics, such as different base composition or
base modifications, that should be sufficiently accounted
for during training.
Genome structure may vary between species with re-

gard to GC content [38], codon usage [39], and nature
of DNA modifications. While testing BasecRAWller, it
became apparent that using an E. coli training set re-
sulted in much higher accuracies on new E. coli sequen-
cing data than on human data [30]. Interestingly, when
human training data were used, the accuracies for E. coli
and human data were more comparable. In another
comparison of base callers, Scrappie v1.1.1 achieved a
read accuracy that was more than 2% higher than that
achieved by Scrappie v1.1.0 for a bacterial Klebsiella
pneumoniae dataset [13]. This improvement in accuracy
can most probably be attributed to the fact that v1.1.1
was trained on a mixed set of genomes, whereas v1.1.0
was trained on human data only. Together, these obser-
vations indicate that the nature and originating species
of the training data plays an important role in base caller
performance. As for now, it remains unclear whether the
broad applicability of training data depends on their
k-mer diversity or on similarity between species. The lat-
ter case may be problematic because it would mean that
suboptimal performance can be expected for species for
which no training data are available.
As the MinION effectively probes nucleotide structure,

chemical modifications such as methyl groups influence
the signal. If such DNA modifications are not repre-
sented in the training data, they may result in erroneous
base calls. This is one of the reasons why a substantial
difference in base quality is observed between sequence
runs that use nascent DNA rather than PCR-amplified
DNA. The problem may be solved either by training the
parameters to recognize modified bases and to call them
as their canonical nucleotide (e.g., 5-mC as C), or by
treating them as distinct bases. At the moment, the op-
tion to take DNA modifications into account in the base
calling has not yet been incorporated into the ONT base
callers [37]. Using the open-source base caller Nanonet,
however, efforts are being made by the ONT community
to include modified bases in the RNN [40]. The feasibil-
ity of calling base modifications from MinION data has
already been demonstrated by the fact that DNA modifi-
cations have successfully been derived for nascent DNA
sequencing data after base calling [41–44].

Modeling strand progression
The detection of homopolymers with nanopores is more
challenging because consecutive k-mers are identical. As
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the segmentation step often resulted in more events
than actual bases, initial base callers assumed that iden-
tical signals were the result of stalling in the pore rather
than signals originating from a homopolymer. In order
to improve homopolymer calling, a so-called transducer
has recently been included in the ONT base caller
Scrappie. According to ONT, the transducer enables the
separate prediction of k-mer identity and movement
[45]. Early results indicate that Scrappie is indeed more
successful at calling homopolymers than ONT base cal-
lers without the transducer: Scrappie could call homo-
polymers of up to 20 bases correctly, whereas Nanonet
and the Metrichor base caller consistently predicted a
length of ∼ 5 bases for all homopolymers with a length
greater than 5 bases [3]. The transducer has subse-
quently been adopted in both the MinKNOW base caller
(as of v1.6.11) and in Albacore (as of v1.0.1).

Postsequencing correction
Developments in nanopore chemistry and base-calling al-
gorithms have resulted in a considerable increase in read
accuracy over the past few years. Depending on the nature
of the sample and the desired application, further im-
provements in accuracy can be made by performing post-
sequencing correction. Several correction algorithms are
available that make use of three (not mutually exclusive)
approaches: (i) consensus finding, (ii) polishing based on
raw data, and (iii) hybrid error correction. The last uses
short-read data to correct MinION reads or an assembly
that is based on MinION reads [9]. As hybrid tools do not
use information inherent to nanopore data to improve ac-
curacy, they are not included in this review.

Consensus calling
The generation of multiple alignments of nanopore
reads and the extraction of consensus sequences has the
potential to eliminate all random errors, leaving only
systematic errors that are introduced during sequencing
or base calling. As long reads are very useful in genome
assembly, several tools that call consensus sequences
from MinION data have been developed specifically for
this purpose. These postsequencing tools generally per-
form consensus calling either on reads or on genome as-
semblies by constructing Partial Order Alignment (POA)
graphs (Table 1).
Genome assembly tools that implement POA graphs for

nanopore consensus calling and read correction include
Nanocorrect [15], Racon [46], and Canu [14]. Nanocorrect
was shown to improve read accuracy from 80.5 to 97.7%
based on 29× coverage [15]. Despite this success, Nano-
correct has been deprecated because it is rather slow, and
better-performing assembly pipelines have become avail-
able [47]. Racon can either be used for read correction or
paired with genome assemblers that do not perform prior
read correction [46]. 2D R7.3 reads with a coverage of 54×
and a median accuracy of 89.8% were corrected to an ac-
curacy level of 99.25%. When Racon was used to improve
genome assemblies computed with Miniasm [16], the as-
sembly accuracy varied between 97.7% (30× coverage) and
99.32% (54× coverage) [46]. Finally, Canu is a genome as-
sembly tool that incorporates POA graphs for read correc-
tion [14]. On the same datasets as those used for genome
assembly with Miniasm+Racon, Canu obtains accuracies
ranging between 96.87% (30× coverage) and 98.61% (54×
coverage) [46].
The consensus tools developed for genome assembly

rely on the assumption that all reads in a dataset are de-
rived from one homogeneous genetic source. In the case
of mixed samples or polyploidy, consensus calling
should only be performed on reads known to stem from
the same source. Multiple reads derived from the same
genetic material can be obtained by experimental
methods such as INC-seq, in which tandem copies of a
target sequence are generated with circular amplification
prior to sequencing [48, 49].

Consensus polishing from raw signal
Although each base-called read represents the most
likely prediction of the underlying nucleotide sequence
based on the observed event sequence or raw signal, the
raw data retains more information than is represented in
the final sequence. For this reason, squiggle or raw data
describing overlapping reads can be combined to assess
and correct a proposed assembly sequence. Loman et al.
[15] used this principle in Nanopolish, a tool aimed at
improving (i.e., polishing) draft genome assemblies that
were based on nanopore event data.
Nanopolish starts by mapping the uncorrected reads to

the draft assembly, which represents the initial consensus
that is based on all base-called reads. Subsequently, the as-
sembly is divided into overlapping segments that can be
processed in parallel. Within each segment, the aligned
reads are reverted back into their squiggle counterparts that
were observed during sequencing, defined by the mean
current per k-mer. A series of slightly altered sequences is
then proposed and their probabilities given the set of event
sequences are compared. These probabilities are obtained
by applying the Forward algorithm (Table 1) on an HMM
that is structured similarly to the Nanocall HMM. The se-
quence with the highest probability replaces the segment of
the initial assembly and a new set of modifications is pro-
posed. The process stops after a set number of iterations or
when the consensus no longer changes. Finally, all overlap-
ping segments are combined into the final assembly.
Nanopolish has evolved since its initial release and is com-

patible with the newest sequencing kits and base-calling
tools. In addition, Nanopolish has recently obtained a new
functionality that allows it to detect and call methylated
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bases [42]. An online comparison of base callers shows that
the methylation-aware option reduces errors in assemblies
that are based on nascent DNA sequencing data, since
chemical modifications affect the raw signal [13].
Nanopolish is now commonly used to finalize genome

assemblies that are based on nanopore data. In general, the
application of Nanopolish results in improvements of
around 0.1–0.5% [13, 15], but in some cases it may result in
an increase of > 2% [13, 14]. Interestingly, draft assemblies
that are constructed using base callers that have vastly dif-
ferent performances can be polished to a similar level of ac-
curacy by Nanopolish [13], implying that base-caller
performance may not be the limiting factor in genome as-
sembly applications.

Discussion and outlook
Nanopore sequencing offers the possibility of producing
long reads from single DNA molecules in real time and
has the potential to open up the field of sequencing to
many new applications. Since its initial release, the tech-
nology marketed by ONT in the form of the MinION has
suffered from a high error rate. Thanks to several updates
in chemistry and software tools, the raw read accuracy has
already increased from < 60% to > 85%. At the moment,
data produced by the MinION are sufficiently accurate to
create consensus (genome) assemblies of > 99% accuracy.
In spite of these feats, however, the current nanopore read
accuracy still limits robust calling of SNVs and indels, es-
pecially in complex samples such as tumors.
Here, we have discussed several of the computational

strategies that have been used to improve read accuracy
since the release of the MinION in 2014. With regard to
base calling, the most notable developments include the
switch from HMMs to RNNs and the use of raw current
signal instead of segmented signal as input. Moreover, the
first steps towards modeling strand progression through
the pore in order to achieve better estimates of homopoly-
mer length have shown promising results. Other notable
innovations include the use of raw current signal to im-
prove consensus sequences, as implemented by Nanopol-
ish. Recently, ONT released an early version of their own
postassembly polishing tool, Medaka (https://nanopore-
tech.github.io/medaka/index.html), indicating that this is
an active field of research that will probably lead to further
improvements in postsequencing correction.
Despite the many different analytical tools that have been

developed over the past few years, it remains difficult to es-
tablish all determinants of read accuracy and error rate
clearly. In part, this ambiguity can be attributed to the fact
that variable definitions of accuracy and error rate are being
used, definitions are not always clearly stated, and results
are reported inconsistently (for example, some studies
report the median, mean, or a distribution of the error or
accuracy). Moreover, accuracy is usually calculated only for
a subset of the data, that is only for alignable, high-quality
reads. In order to obtain a full picture of developments in
read accuracy, the percentage of alignable reads and the
accuracy over all aligned reads needs to be reported.
Problematically, this is only possible when a high-quality
reference genome is available, which may not be the case
for many important applications of the MinION. Neverthe-
less, consistent reports of accuracy will be important to
show which contributions are most successful in improving
the error rate of nanopore sequencing. The blog post by
Wick et al. [13] is a prime example of how the community
can make valuable contributions by systematically compar-
ing computational strategies.
To date, improvements in read accuracy have been

achieved through four general strategies: (i) improvement
of the pore itself (e.g., the evolution from R6 to R9); (ii)
the use of library preparation methods that allow for a
piece of DNA to be read multiple times (e.g., 2D and 1D2

sequencing); (iii) innovations in base-calling algorithms
(e.g., from HMM to RNN); and (iv) the development of
postsequencing correction tools (e.g., Nanopolish). Error
rates are likely to decrease further with improved pore
chemistries, innovative library preparation methods, and
better software. For example, rolling circle amplification
can be used to create tandem copies of DNA templates
[48], and this approach is especially suitable for complex
samples where sequence information pertaining to a spe-
cific allele, cell, or species is thus linked. Meanwhile, base
callers have been developing at a rapid pace over recent
years, with continuous improvement evident. An import-
ant future avenue for further improvement may be the use
of species- and library preparation-specific training data in
the base-calling algorithm.
With these prospects in mind, the question arises: is

there an inherent ceiling to nanopore read accuracy? It
is certainly true that accuracy has improved markedly
over the past few years, but sequences with low com-
plexity such as homopolymers are still notoriously diffi-
cult to call accurately. Reassuringly, the recent version of
the ONT base caller Scrappie demonstrates that homo-
polymer calling is at least not inherently impossible for
the MinION. Nevertheless, it is unlikely that systematic
errors can be abolished completely. This also seems to
be acknowledged by ONT, who are actively working on
improved pore designs. A particularly promising direc-
tion of research is to use pores with multiple recognition
sites that are separated by a distance of ~ 15 bp, which
would allow variable signal to be detected within homo-
polymers of up to 30 bp [37].
By clearing the last few percent of errors, these devel-

opments may in the near future allow nanopore sequen-
cing to begin to compete seriously with short-read
platforms in the robust detection of SNVs and indels in
complex samples, and in many more applications.

https://nanoporetech.github.io/medaka/index.html
https://nanoporetech.github.io/medaka/index.html
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