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Abstract

Culture-independent analysis of microbial communities frequently relies on amplification and sequencing of the
prokaryotic 16S ribosomal RNA gene. Typical analysis pipelines group sequences into operational taxonomic units
(OTUs) to infer taxonomic and phylogenetic relationships. Here, we present HmmUFOtu, a novel tool for processing
microbiome amplicon sequencing data, which performs rapid per-read phylogenetic placement, followed by
phylogenetically informed clustering into OTUs and taxonomy assignment. Compared to standard pipelines,
HmmUFOtu more accurately and reliably recapitulates microbial community diversity and composition in
simulated and real datasets without relying on heuristics or sacrificing speed or accuracy.
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Background
Culture-independent amplification, sequencing, and
analysis of phylogenetic marker genes, such as the pro-
karyotic 16S ribosomal RNA (rRNA) gene, enables
community-wide analysis of the diversity and compos-
ition of host-associated and environmental microbiota.
These approaches heavily rely upon computational
methods to cluster amplicon sequences into groups
representing putatively conspecific sequences (oper-
ational taxonomic units [OTUs]) and to infer taxonomic
and phylogenetic relationships [1]. As sequencing costs
decrease and throughput increases, tools for processing
and analyzing these rapidly expanding datasets must also
improve with respect to speed, computational burden,
and accuracy.
A typical analysis workflow first assigns sequences to

OTUs, then selects a representative sequence from each

OTU, and all downstream taxonomic and diversity ana-
lyses are performed with the representative sequences
(Fig. 1a). Taxonomic-based analyses allow investigators
to assign an identity to sequences and then infer bio-
logical and functional attributes based on relationships
to previously characterized and/or cultured taxa.
OTU-based analyses are agnostic to taxonomic defini-
tions; however, current clustering methods apply similar-
ity thresholds (e.g. 97% similarity for species-level) that
erroneously assume a stable rate of evolution across the
length of the gene [2, 3]. The required selection of a
representative sequence from each OTU for taxonomic
assignment and downstream analyses further com-
pounds error and bias in OTU selection methods since
this process precludes global optima due to the loss of
information in the remaining sequences in an OTU.
Together, these methods are widely used for profiling
microbial communities; however, many serious practical
concerns arise when considering their application to
growing collections of 16S rRNA amplicon sequences.
Commonly used OTU picking methods can be classi-

fied as de novo (e.g. cd-hit, BLAST, prefix/suffix/trie,
UCLUST, USEARCH, Swarm, SortMeRNA, Mothur),
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closed-reference (“phylotyping;” e.g. uclust_ref, usear-
ch_ref ) or open-reference (“hybrid;” e.g. [4–9]). They
differ, respectively, in whether sequences are compared
to each other, a fixed reference dataset, or a combination
of both approaches. Because pairwise comparison of
sequences becomes computationally expensive with
increasing sequencing depth, present OTU picking
methods often use a heuristic when comparing reads,
thereby compromising accuracy and efficacy.
Open-reference OTU picking is the default and devel-
oper recommended methods for OTU clustering in
QIIME [10], a popular pipeline for performing microbial
community analysis, though this method is well-known
to result in inflated diversity estimates and to comprom-
ise the quality of the downstream data analysis [11–13].

Further compounding these sources of error and bias,
presently preferred taxonomic assignment methods
utilize distance-based methods, by identification of the
closest reference sequence among pair-wise comparisons
(e.g. BLAST, UCLUST) [6, 9] or in a multiple-alignment
profile (e.g. RDP classifier) [14]. These taxonomic assign-
ment methods have their respective advantages and
disadvantages, but all neglect to incorporate established
phylogenetic organization of known reference microor-
ganisms. This exclusion can likely be attributed to the
increased complexity of integrating reference phylogen-
etic information, due to the large number of reference
sequences at a usable resolution (e.g. ~ 200,000 reference
sequences in the GreenGenes 97% OTU “species level”
reference tree) [15].

b

a

Fig. 1 General workflow of HmmUFOtu and the default OTU-based QIIME pipeline for 16S rRNA gene sequencing studies. a Main steps of the
default QIIME pipeline include: (1) generating OTUs (OTU picking); (2) selecting an individual read for each OTU as the representative sequence
(rep-seq picking); (3) assigning taxonomic information to every OTU by comparing the rep-seq to the reference database (taxonomic assignment);
and optionally (4) aligning rep-seqs to the references; (5) constructing a de novo OTU tree using aligned rep-seqs. b Main steps of HmmUFOtu
include: (1) per-read alignment and taxonomic assignment with profile-HMM and phylogenetic placement algorithms; (2) OTU picking around
existing phylogenetic nodes to generate phylogeny-based OTUs, consensus based rep-seqs, and reference-based OTU tree. Dashed circles:
phylogeny-based OTUs; gray dashed lines and dots: unneeded subtrees of the reference tree that are pruned to generate the OTU tree
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Here, we present a novel strategy that addresses the
limitations described above in the processing of micro-
bial amplicon-based sequencing reads for the analysis of
microbial community composition and diversity. We
developed HmmUFOtu, a software tool that: (1) aligns
sequences; (2) places every single- or paired-end read
into a known reference tree; and (3) performs
phylogeny-based OTU clustering, based on either ob-
served leaves or inferred ancestors (Fig. 1b). The re-
vised order of taxonomic assignment followed by
OTU picking circumvents many of the previously dis-
cussed limitations and enables highly accurate align-
ment and taxonomic assignment, selection of
biologically relevant representative sequences from
each OTU, and robust phylogenetic community struc-
tures, as demonstrated in both simulated and real
data benchmarks.

Results
The HmmUFOtu (Hidden Markov Model [HMM]-based
Ultra-Fast OTU tool) is composed of two core
algorithms: (1) a banded-HMM profile alignment
algorithm (banded-HMM) utilizing a consensus
sequence FM-index (CSFM-index); and (2) the
Seed-Estimate-Place (SEP) local phylogenetic placement
algorithm. Both algorithms are designed specifically for
phylogenetic markers such as the 16S rRNA gene, in
which primers designed to anneal at highly conserved
regions are used to amplify a portion of a target gene
containing hypervariable regions. This feature led to our
design of the CSFM-index powered banded-HMM algo-
rithm, which restrains the regular profile HMM align-
ment algorithm with conserved seeds at the 5′ and 3′
ends of reads (Fig. 2a–c). The SEP algorithm takes
advantage of both a phylogenetic placement algorithm
introduced by similar tools [16, 17] as well as our as-
sumption that observing a novel instance of a read from
a node, representing either an observed taxon or in-
ferred ancestor, should not alter the overall topology of
the known reference phylogenetic tree except for the
local branch from which the read is emitted (Fig. 2d–g).
Details of the core algorithms are fully elaborated in the
“Methods” section.
To test HmmUFOtu performance, we built a bench-

mark HmmUFOtu database from the GreenGenes
97% reference database, “gg_97_otus_GTR,” using a
pre-trained GTR DNA substitution model. This data-
base roughly represents a prokaryotic (bacteria and
archaea) species-level phylogenetic tree and contains
~ 200,000 nodes, of which all leaves (~ 100,000) and
key internal nodes had assigned taxonomies. All un-
named internal nodes were assigned taxonomy by re-
cursively back-tracing to their annotated ancestors.

Simulated data
We first generated four simulated datasets from the
“gg_97_otus_GTR” database. Each dataset contained
sequences spanning different hypervariable regions of the
16S rRNA gene: (1) hypervariable region 4 (“V4”); (2)
hypervariable regions 1 through 3 (“V1 V3”); (3)
hypervariable regions 3 through 5 (“V3 V5”); and (4) a
dataset containing segments drawn from random loca-
tions in the gene (“random”). We in silico “annealed” V4,
V1 V3, and V3 V5 sequencing primers to the “gg_97_o-
tus_GTR” database to obtain their consensus loci of the
trained 16S HMM profile, then generated simulated reads
using a procedure that mimics the construction of a real
16S library with the following steps: (1) a tree branch is
randomly drawn from the reference tree; (2) a
branching-point is drawn uniformly from this branch
length; (3) a locus is uniformly drawn for the “random”
dataset, or stays fixed at the known V4, V1 V3, or V3 V5
locus for their respective datasets (Additional file 1: Table
S1); (4) amplicon size is either drawn from a truncated
Gaussian distribution for the “random” dataset or fixed
for V4, V1 V3, or V3 V5; (5) bases of the read are simu-
lated according to the conditional likelihood of observ-
ing the four bases at the given branching point, or the
gap probability at the consensus site (gaps are not
present in the simulated reads). To replicate a practical
16S rRNA gene sequence survey, we generated 20 sim-
ulated samples, each containing 5000 in silico synthe-
sized reads for the four datasets independently, in
which both the consensus loci and the taxonomic as-
signment are known for all simulated reads. All four
simulated datasets were then processed by HmmUFOtu
and similar tools to evaluate their performance.

HmmUFOtu achieves both high alignment accuracy and speed
To evaluate alignment performance, all four simulated
datasets were aligned to the same 16S rRNA profile
using HmmUFOtu, as well as hmmalign and nhmmer,
two widely used HMM aligners from the HMMER3
package [18, 19]. All three tested HMM-based tools
achieved very high accuracy for the fixed locus datasets
(V4, V1 V3, and V3 V5), but HmmUFOtu outperforms
both hmmalign and nhmmer for the random dataset
(Table 1, upper panel), suggesting our banded-HMM
algorithm and HMM architecture (Fig. 2a–c) can accur-
ately map notably divergent reads. Additionally, HmmU-
FOtu is also about two- to threefold faster than
hmmalign and nhmmer (Table 1, lower panel), the latter
of which is already an optimized algorithm for nucleo-
tide alignment [19]. Our banded-HMM algorithm sig-
nificantly improves alignment accuracy and reduces the
searching space compared to existing HMM algorithms
by utilizing the relatively invariant “seeds” inherent to
rRNA genes.
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For further comparison, we also evaluated the align-
ment performance of a traditional pairwise alignment
method using the NCBI blastn program [9]. By aligning

reads to all the sequences in the gg_97_otus_GTR
database and using the best alignments for every read,
we found that the NCBI blastn pairwise alignment

a c

b

d e f g

Fig. 2 HmmUFOtu core algorithms. a Constructing a consensus sequence FM-index (CSFM-index) from a MSA using the Burrows-Wheeler
transform (BWT) coupled with Wavelet-tree compression algorithms. Red: Actual stored data in a CSFM-index. b A “plan 7” (p7) HMM architecture
specifically designed for 16S rRNA gene and other target gene/marker sequencing, with M (match), I (insertion), D (deletion), N (N′: 5′), C (C′: 3′), B
(begin), and E (end) states, respectively. Dashed circles and arrows: “wing-retraction” process used to avoid empty alignment paths; red arrows:
special transitions used to control the “global” or “local” alignment mode. c Banded-HMM Viterbi algorithm to find the most likely (minimum
cost) path given the HMM profile (row), a read sequence (column), and two known “seed” paths by querying the CSFM-index. Only shaded grids
are searched by the banded-Viterbi algorithm. The first and last shaded search areas rarely reach the profile ends. d An example of a 16S rRNA
phylogenetic tree. In this tree, all directional conditional log-likelihoods (arrows in (e), (f), (g)) of all branches were pre-evaluated. The ancestral
sequences of all internal nodes were inferred using maximum likelihood. e For a potential “seed” branch u–v, a small sub-tree containing only
nodes u, v, the original conditional log-likelihoods L(u) and L(v) and original branch length w0 are copied. f To place a new read n to branch u–v,
a new internal node r is introduced, the new conditional log-likelihoods L(n) are evaluated, then initial branch lengths wrv, wur, and wnr are
estimated using observed distance (p-Dist). g For a candidate top estimation, the branch lengths wrv, wur, wnr and L(rv), L(ru), and L(rn) are
iteratively and jointly optimized until convergence
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algorithm can also achieve similarly high levels of accuracy
as HmmUFOtu, but at considerably slower speeds (> 300
times slower, Table 1, lower panel). This result was not
surprising, since a major advantage of the HMM-profile
alignment algorithm is the multiple-sequence alignment
(MSA) profile size-independent processing efficiency.

HmmUFOtu achieves accurate taxonomic assignment for
simulated reads at all taxonomy levels
We next evaluated the performance of HmmUFOtu to
assign taxonomy at all levels ranging from kingdom to
species using the previously described simulated data-
sets. Overall, we found that HmmUFOtu achieves very
high assignment sensitivity (true positive rate [TPR] or
recall), specificity (true negative rate [TNR]), and accur-
acy (ACC) at all levels (Table 2, upper panel). The
assignment sensitivity drops significantly at the species
level, as does the assignment precision, but still retains
high levels of specificity. This result may be an artefact
of potential annotation errors at the species level in the
GreenGenes database; it is important to note that only
~ 1/8 of all nodes with a genus level annotation also
have a species level annotation (data not shown),
suggesting the difficulty in generating accurate species
level annotation. At this stage, HmmUFOtu was not
compared to similar phylogenetic placement tools such
as pplacer or EPA [16, 17], because both tools failed to
process the large reference tree due to technical errors
most likely stemming from size restrictions (data not
shown). Nevertheless, HmmUFOtu can perform taxo-
nomic assignment at a speed of 3–4 reads per second per
processor (Table 2, upper panel), which in conjunction

with its native and effective multi-threading support, per-
mits fast and high throughput analyses.
Although HmmUFOtu achieved high assignment ac-

curacies at all taxonomy levels, we further investigated
the balance between assignment sensitivity and preci-
sion. One concern was that incorrectly assigned taxa
(low precision) may cause significant problems for
downstream analyses, such as erroneous community
compositions or false enrichment of “phantom” species.
To this end, we generated precision and recall curves by
varying the threshold of acceptable assignment Q scores
calculated by HmmUFOtu. The Q-score is the posterior
log-likelihood for a potential assignment to be correct
given all considered assignments, which is mathematic-
ally equivalent to the “likelihood-weight” calculated by
similar tools [16, 17]. As previously shown, high assign-
ment precision was achieved at all taxonomic levels ex-
cept for the species level without any Q-score filtering
(Fig. 3), illustrating the inherent strength of HmmUFO-
tu’s algorithms. At the species level, HmmUFOtu can
achieve a more satisfactory assignment precision (≥ 90%)
by setting the Q-score criteria as low as 3, resulting in a
modest loss of sensitivity (< 10%) (Fig. 3). Notably, the
V3 V5 dataset exhibited better overall assignment per-
formance for this simulated dataset (Fig. 3d), in agree-
ment with previous findings where the V3 V5 region
provide a more optimal combination of sequence diver-
gence, amplicon size, and ease in primer design than the
other regions tested in this study [20].
To compare the taxonomic assignment accuracy of

HmmUFOtu with other phylogenetic placement tools,
we built a smaller database using the GreenGenes 79%
OTU data (gg_79_otus_GTR) that represents a mid-level
(order/family) phylogenetic tree with only 2329 nodes,
then generated a simulated dataset with 10,000 reads
from random loci (random79). We did not generate
similar V4, V1 V3, or V3 V5 datasets because these 16S
primers were designed based on genus/species level
reference sequences and thus the exact biological
interpolation of such variable regions is not well defined
at this higher level of taxonomy. The random79 dataset
was processed by HmmUFOtu and two similar phylo-
genetic placement programs, pplacer and EPA [16, 17].
With the default maximum likelihood mode, HmmU-
FOtu exhibits 5–10% higher overall accuracy at
mid-level taxonomy (Table 2, lower panel). We found
that although all three tools have similarly high accur-
acies at the species level, both pplacer and EPA returned
assignments with low precision and unexpectedly high
sensitivity. This suggests that both pplacer and EPA
exhibit a preference for placing sequences at lower
branches of the phylogenetic tree proximal to the leaves,
but the exact reason behind this behavior was not clear.
In order to investigate this further, we calculated the

Table 1 Alignment accuracy (upper panel) and speed (lower
panel) of HmmUFOtu and three other aligners benchmarked
with four simulated datasets

Program Random V4 V1 V3 V3 V5

Alignment accuracy (%)

hmmufotu 96.57 100.00 98.11 100.00

hmmalign 73.45 99.66 100.00 100.00

nhmmer 91.50 100.00 98.12 100.00

blastn 100.00 100.00 100.00 100.00

Speed (reads ∙ s− 1 ∙ cpu−1)

hmmufotu 77.1 155.1 86.8 56.2

hmmalign 24.2 38.2 26.8 21.0

nhmmer 44.6 77.5 47.6 41.4

blastn 0.228 0.228 0.222 0.220

A correct alignment is defined as the aligned consensus locus overlapping
with at least 90% of the true locus. Speed is measured as reads per second
per processor. All HMM aligners used their own trained HMM models from the
GreenGenes 97_OTUS reference sequence alignment; NCBI blastn used the
best alignment among all hits. Accuracy results are based on the aggregate of
20 replicate samples; speed results are based on the average of 20 samples
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Weighted UniFrac distance (also known as the Earth
Mover’s Distance [21]) for all placements between the
reference placement positions (from the simulation) and
the inferred positions by HmmUFOtu, pplacer, and EPA,
and found that HmmUFOtu generated placements
exhibit a smaller Weighted UniFrac distance than the
other two tools (0.0878, 0.0958, and 0.0921 for HmmU-
FOtu, pplacer and EPA, respectively). This indicates that
the greater observed placement accuracies (Table 2,
lower panel) were a result of pplacer and EPA placing

sequences at the determined globally optimal position,
which often resulted in lower taxonomic ranks. This
propensity to place reads at lower taxonomic ranks can
potentially result in spurious community compositions
and has been actively addressed by other taxonomic as-
signment tools such as RDP classifier, SINTAX, and
Metaxa2 [14, 22]. HmmUFOtu uses the maximum likeli-
hood placement, or equivalently a uniform placement
prior, for taxonomy assignment by default, but the users
can use an alternative node-height weighted prior for

Table 2 Taxonomic assignment performance (%) and speed of HmmUFOtu and two similar tools, pplacer and EPA, at different
taxonomy levels

Dataset Performance measurement Speed

Kingdom Phylum Class Order Family Genus Species

Random TPR 100.00 99.96 99.52 99.22 98.87 95.03 81.96 3.14

TNR nan 96.98 91.76 96.04 98.09 98.09 99.35

PPV 100.00 99.99 99.63 99.43 99.10 95.94 84.85

ACC 100.00 99.94 99.19 98.82 98.62 97.10 98.62

V4 TPR 100.00 99.96 99.52 99.26 99.17 95.78 82.75 4.61

TNR nan 94.85 91.17 95.93 97.98 98.17 99.44

PPV 100.00 99.98 99.60 99.41 99.06 96.09 86.10

ACC 100.00 99.94 99.15 98.84 98.79 97.40 98.77

V1 V3 TPR 100.00 99.97 99.45 99.18 98.93 95.34 82.89 3.22

TNR nan 98.84 89.52 95.51 97.56 97.93 99.26

PPV 100.00 99.99 99.51 99.36 98.86 95.53 82.83

ACC 100.00 99.96 99.01 98.72 98.49 97.11 98.58

V3 V5 TPR 100.00 99.96 99.61 99.39 99.40 96.98 86.71 3.15

TNR nan 98.17 94.86 97.73 99.17 98.97 99.64

PPV 100.00 99.99 99.77 99.68 99.61 97.78 91.05

ACC 100.00 99.96 99.41 99.18 99.33 98.34 99.12

Program Performance measurement Speed

Kingdom Phylum Class Order Family Genus Species

HmmUFOtu TPR 100.00 98.36 95.60 91.63 86.72 83.31 84.02 12.02

TNR nan 95.05 94.97 96.29 97.50 98.71 99.71

PPV 100.00 99.11 95.65 90.81 84.11 80.48 83.04

ACC 100.00 97.86 95.31 94.96 96.07 97.79 99.44

Pplacer TPR 100.00 99.92 99.68 99.58 99.70 100.00 100.00 3.23

TNR nan 69.13 74.95 80.48 87.40 93.56 98.12

PPV 100.00 94.77 82.16 67.11 54.72 49.75 47.74

ACC 100.00 95.25 88.22 85.94 89.03 93.95 98.15

EPA TPR 100.00 99.52 98.58 98.14 97.89 98.00 97.04 0.27

TNR nan 82.12 84.06 87.74 92.06 95.76 98.89

PPV 100.00 96.89 87.74 76.20 65.31 59.53 60.07

ACC 100.00 96.88 91.85 90.71 92.83 95.89 98.86

TPR sensitivity, TNR specificity, PPV precision, ACC accuracy, Nan no observed data
Speed is measured as reads per second per processor. Upper panel: results from running HmmUFOtu on four simulated datasets based on gg_97_otus_GTR database;
Lower panel: results from running the three tested programs on the random79 dataset based on gg_79_otus_GTR database. Speed is measured as reads per second
per processor. Performance measurement results are based on the aggregate of any replicate samples; speed results are based on the average of any replicate samples
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preferentially assigning reads at lower (near-leaf ) tax-
onomy levels.
In addition to improved assignment accuracy, HmmU-

FOtu also ran at considerably faster speeds (4- to
40-fold faster in processing speed) than pplacer and EPA
on the random79 dataset, respectively (Table 2, lower
panel). Notably, although the speed of pplacer and EPA
cannot be strictly tested on large reference trees due to
their technical limitations, the speed gain of HmmU-
FOtu is expected to be very profound on species reso-
lution trees due to the linear time complexity of the two
core algorithms with regard to total tree nodes [16, 17].

HmmUFOtu’s algorithms outperform traditional OTU-based
methods for taxonomic assignment
As previously discussed, a typical analysis workflow for
16S rRNA sequence data first groups sequences into
OTUs, then assigns all sequences within the same OTU
the same taxonomic identity (Fig. 1). Although different in

principle, both HmmUFOtu and traditional OTU-based
methods eventually assign all reads to the reference taxa,
giving us the opportunity to compare taxonomic assign-
ment accuracy. We ran all four simulated datasets through
the entire QIIME pipeline (v1.9.1) with default methods
using UCLUST for OTU picking and taxonomy assign-
ment and found that our profile-HMM and phylogenetic
placement-based tool achieves much higher assignment
accuracy at all phylogenetic levels (Fig. 4a, b). In contrast,
the QIIME-default method only achieves similarly high
accuracy at the higher taxonomic levels (phylum to order),
suggesting the potential for a significant proportion of
sequences being assigned to incorrect genus or species by
traditional OTU-based methods.
In order to determine which step(s) of the OTU-based

methods, namely OTU-picking and taxonomic assign-
ment, might cause such assignment errors, we evaluated
the assignment accuracy of QIIME-default methods at the
OTU level, for which one representative sequence from

a b

c d

Fig. 3 Precision-recall (PR) curves for HmmUFOtu taxonomic assignment results on four simulated datasets: (a) random; (b) V4; (c) V1 V3; (d)
V3 V5. True positive (TP) and true negative (TN) are defined as both the known and assigned taxonomy having or not having a certain level of
taxonomy annotation, respectively. PR curves are calculated by varying the assignment Q-score threshold from 0 to 10 with a step of 1, then 20,
30, 40, 50, 60, and 250 (the maximum value)
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each OTU was analyzed. At the OTU level, the assign-
ment accuracy only slightly increases over assignment at
the per-read level (Fig. 4c), suggesting the traditional
distance-based taxonomic assignment methods as the
primary contributors of assignment error compared to a
phylogenetic placement-based method. We also observed
a modest increase in assignment accuracy at the OTU
level for the V4 dataset (Fig. 4c vs. b), which contains the
least sequence diversity. This highlights the impact of the
OTU-picking step on overall assignment accuracy, espe-
cially for less divergent datasets where reads are often
grouped into larger OTUs.

Application on real data
Real microbiome datasets are more complicated than sim-
ulated datasets, as they can be paired-ended, are subject to
polymerase chain reaction (PCR) and sequencing errors,
contain large amplicons with non-overlapping mates, or
contain other experimental errors. Additionally, the true

taxonomic identities of real datasets are usually unknown,
making it impossible to adequately analyze the accuracy of
read-level taxonomic assignment. In this study, we further
benchmarked HmmUFOtu and similar tools using real
datasets consisting of: (1) 16S rRNA amplicon datasets
generated from a synthetic “mock” bacterial community
DNA sample (“mock dataset;” Additional file 1: Table S2);
and (2) publicly available 16S rRNA amplicon datasets
generated by the Human Microbiome Project (“HMP
dataset;” Additional file 1: Table S3).

HmmUFOtu closely recapitulates mock community
composition and diversity
DNA isolated from a synthetic mock bacterial commu-
nity was amplified and sequenced using either the V4 or
V1 V3 protocol as part of every Illumina MiSeq run per-
formed by our group. The mock community contains
genomic DNA of 20 different bacterial species belonging
to 17 different genera with equivalent concentrations of
16S rRNA genes from each species (100,000 copies per

a

c

b

Fig. 4 Comparison of taxonomic assignment accuracy between HmmUFOtu and uclust, the QIIME-default OTU picking strategy, using the
“gg_97_otus_GTR” database. The height of the bars reflects the assignment accuracy of four simulated datasets at different taxonomic levels
using HmmUFOtu (a) or QIIME-default method (b, c). a, b Accuracy measured at per-read level. c Accuracy measured at per-OTU level
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organism per μL). We used the pre-processed V4 and
V1 V3 mock community datasets with forward/reverse
reads assembled by Pear v0.9.0 [23] for analysis with
both HmmUFOtu and the QIIME-default method. The
relative community compositions at the genus level were
calculated for each analysis with the generated OTU
tables. Due to a built-in feature for processing unmerged
paired-end reads (see “Methods”), we also processed the
raw unassembled paired-end V4 and V1 V3 reads with
HmmUFOtu.
When comparing the OTU tables generated by each

analysis to the theoretical composition of genus-level
mock community taxa, we found that HmmUFOtu closely
recapitulated the compositions of the reference commu-
nity, especially for the V4 mock dataset (Fig. 5a, b). This

similarity remains stable across the replicate samples that
were sequenced on different Illumina runs, as revealed by
the relatively invariant beta-diversity dissimilarity between
HmmUFOtu inferred and reference compositions (Fig. 5c),
indicating that our algorithm is robust to experimental
conditions.
We also found that while both HmmUFOtu and

QIIME-default methods revealed similar mock community
compositions, HmmUFOtu assigns fewer reads to taxon-
omies outside of the 17 reference genera, especially for the
V4 dataset (Fig. 5a). We further scrutinized these results by
comparing alpha diversity as measured by the number of
observed species, independent of the known taxonomic
assignment of the reference taxa (Fig. 5d). The
QIIME-default method consistently inflated the number of

a b

c d

Fig. 5 Comparison of inferred bacterial community structures between HmmUFOtu and QIIME-default methods using V4 and V1 V3 mock
community datasets. Both mock datasets contain ten replicates sequenced across ten different Illumina MiSeq runs. a, b Inferred and theoretical
() mock community compositions for V4 and V1 V3 datasets, respectively, calculated using HmmUFOtu or QIIME-default generated OTU tables.
Bars: replicate samples; assembled: pre-processed paired-end merged reads; paired: un-processed paired-end reads. c Community structure
dissimilarity between the inferred and reference community structure as calculated by the Bray-Curtis beta-diversity metric. The median is
represented by the line in the box, hinges represent the first and third quartiles, whiskers represent 1.5 times the interquartile range, and dots
represent outlying data points. d Alpha-diversity of the mock community measured by the inferred number of observed species. Box plots are as
above. Left panels: V4 datasets; right panels: V1 V3 datasets

Zheng et al. Genome Biology  (2018) 19:82 Page 9 of 20



observed species compared to HmmUFOtu (Fig. 5d, Krus-
kal–Wallis test; p < 3.7e-5 and p < 3.8e-5 for the V4 and
V1 V3 dataset, respectively). HmmUFOtu also exhibited
stability between different sequencing and processing strat-
egies (assembled vs paired, V4 vs V1 V3, Fig. 5d). Addition-
ally, we found that using unassembled paired-end reads
with HmmUFOtu produced slightly more accurate and
stable community structures (Fig. 5c, d) compared to as-
sembled reads. Given that up to 5% of all reads could be
lost during the paired-end merging step (data not shown),
we strongly recommend the input of quality trimmed unas-
sembled, demultiplexed paired-end reads.

HmmUFOtu’s phylogeny-based OTUs and consensus-based
representative sequences better capture the real bacterial
genomic sequences
HmmUFOtu generates phylogeny-based OTUs using the
basic assumption that each tree node would become its
own OTU, as they are either true observed (leaf) or in-
ferred ancestor (internal) sequences. Therefore, any phylo-
genetic tree node with reads placed closest to it becomes a
phylogeny-based OTU (Fig. 1a). Instead of picking one se-
quence as the representative sequence of an OTU, we take
advantage of both pre-aligned reads (by the banded-HMM
algorithm) and pre-evaluated Log-Likelihoods (by the SEP
algorithm) of the OTU, and then use a Bayesian statistical
model to infer the consensus sequence of the observed
OTU node (see “Methods”). By aligning the generated rep-
resentative sequences (rep-seqs) to the known genomic se-
quences of the mock community bacteria (Additional file 1:
Table S2) using NCBI blastn program [9], we found that
the HmmUFOtu’s consensus based rep-seqs show a higher
sequence similarity (percent identity) to the reference ge-
nomes compared to the QIIME-default method that uses
the first read (“first”) in each OTU (Fig. 6a, Kruskal–Wallis
test; p→ 0 for both V4 and V1 V3 datasets), suggesting the
consensus of all observed sequences generally better repre-
sents the true bacterial target gene sequences by aggregat-
ing information across multiple reads and/or samples.
To further confirm that the known reference genome

sequences correctly reflect the real 16S rRNA gene se-
quences and do not suffer from incorrect annotations or
other errors, we compiled a second real dataset from the
Human Microbiome Project (HMP) which contains ten
samples from five distinct body sites interrogated at two
independent visits using the Roche/454 Next-Gen Se-
quencing (NGS) platform (Additional file 1: Table S3).
These samples were selected because they all have
matched whole genomic shotgun (WGS) sequencing
data available that were sequenced using the same plat-
form (Additional file 1: Table S3). Similar to the mock
community dataset results, we found that HmmUFOtu
generates rep-seqs that more closely resemble the assem-
bled microbiota scaffolds from the WGS data compared

to the QIIME-default “first” OTU-picking method
(Fig. 6b). In addition, two other rep-seq picking methods
from QIIME, “longest” and “random,” similarly produce
rep-seqs with lower sequence identity to the WGS-based
scaffolds. Also, we failed to detect a significant difference
in accuracy when HmmUFOtu either utilized or ignored
prior phylogenetic information to infer the
consensus-based rep-seqs. Overall, we found that using
the consensus sequences across multiple reads produces
more accurate rep-seqs compared to single-read based
methods (Fig. 6b, Kruskal–Wallis test; p < 7.6e-10). More-
over, HmmUFOtu can construct the phylogenetic tree of
OTUs (OTU-tree) in negligible time compared to the de
novo tree construction method used by the QIIME pipe-
line (data not shown), which is achieved by simply prun-
ing the reference tree to exclude subtrees without any
placed reads (Fig. 1b).

Detection of chimeric sequences
Amplicon sequencing of highly conserved marker genes
such as the 16S rRNA gene can produce “chimeric” DNA
sequences, which are often caused by an unintentional
ligation of two distinct but closely related DNA templates
during the PCR amplification step [24]. The summarization
of the placement log-likelihood of our SEP algorithm over
all aligned regions may be biased by chimeric reads, result-
ing in incorrect phylogenetic placement at some common
ancestor of the two initial templates, subsequently introdu-
cing artificial and erroneous OTUs. In order to detect po-
tential chimeric reads, we developed a “segment placement
comparison” algorithm that borrows the idea of “segment
alignment,” a method commonly used in other published
chimera detection tools such as ChimeraSlayer and
UCHIME [24, 25] (see “Methods”). Briefly, HmmUFOtu
compares the joint log-odds (LOD) of alternative vs best
placement of both a 5′ and 3′ segments. For benchmarking
performance, we generated a simulated dataset of chimeric
sequences from the GreenGenes 97% OTU reference se-
quences (“gg_97_otus_chimera”) using a procedure similar
to the method described by UCHIME [25] involving the
following steps: (1) a pair of reference sequences are ran-
domly selected from the GreenGenes 97% OTU database,
as long as the p-distance between their aligned sequences
falls into any of the four ranges (i.e. [0.01,0.03), [0.03,0.05),
[0.05,0.10), [0.10,0.15)); (2) a breaking point is uniformly
drawn at their aligned (consensus) positions; (3) if the
breaking point is within [0.25,0.75), the two reference se-
quences are in silico spliced and ligated into a chimeric se-
quence, otherwise the first sequence is kept unchanged;
lastly, gaps from the alignment of chimeric and unchanged
sequences are removed, whereby the resulting sequences
are used as the simulated dataset. When testing perform-
ance, we found HmmUFOtu’s “segment placement com-
parison” algorithm could reliably identify chimera
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sequences with ~ 90% accuracy even with a minimum
LOD threshold of zero (0) (Additional file 1: Table S4). As
expected, the overall accuracy of chimera detection drops
as the similarity between sequences increases (smaller

p-distance); the accuracy dropped to 85% in the most ex-
treme case (p-distance in [0.01,0.03), Additional file 1: Table
S4). The sensitivity is consistently > 90% at this cut-off,
comparable to previous reported sensitivities (> 70%) on

a

b

Fig. 6 Comparing the quality of rep-seqs between HmmUFOtu’s consensus-based and QIIME’s single-sequence based rep-seq picking methods.
For HmmUFOtu: the consensus sequences with (default) or without the priors were tested; for QIIME: the “first,” “longest,” and “random” methods
were tested. a Mock datasets, in which the quality is reflected by the %identity between the rep-seqs and the known bacterial reference
genomes. b HMP datasets, in which the quality is reflected by the %identity between the rep-seqs and the de novo assembled scaffolds from the
WGS data sequenced in the same samples. LAH left auriculotemporal part of head, RAH right auriculotemporal part of head
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different simulated datasets [24, 25], which supports the ef-
ficacy of our segment placement-based algorithm. We then
compared the chimera detection sensitivity and specificity
curves (ROC curves) of our algorithm by varying the
minimum LOD cut-offs to ensure minimal classification
of non-specific (false-positive) chimeric sequences, which
can cause a significant loss of information. As shown in
Fig. 7a, the specificity can be improved to > 90% (FPR or
false positive rate < 0.1) by setting a minimum LOD cut-off
as low as 50 with only a modest sensitivity loss (< 10%).
This trend was also observed in the [0.01,0.03] sub-dataset
that are most difficult to detect given the similarity in the
two initial sequences (Fig. 7a, red curve). Thus, we set the
default LOD cut-off for chimera detection at 50 for specific
results with high retention.
In order to estimate the proportion of chimeric results in

the real datasets we previously analyzed, we re-processed
all the mock and HMP datasets by enabling the
chimera-detecting algorithm using the recommended LOD
cut-off (50). Surprisingly, the mock V1 V3 dataset exhibits
a consistently high estimated proportion of chimeric reads
in the range of 20–30%, which is much higher than either
the mock V4 dataset (2–3%) or the HMP dataset (5–10%)
(Fig. 7b). Although there is no clear explanation for the
discrepancy in proportions of chimeras, we speculate that
higher rates stem from deeper sequencing depths (data not
shown), larger consensus amplicons sizes, and the less
efficient annealing properties of the forward primers used
in the mock V1 V3 dataset (Additional file 1: Table S1).
We have suggested that chimeric reads likely lead to

artifact OTUs during analysis. To verify this, we regener-
ated the phylogeny-based OTUs with the chimera-filtered
results and found the overall alpha-diversity of the com-
munities, as measured by the “observed species” metric,
decreased proportionally with the number of chimeric
reads (Fig. 7c), suggesting that most chimeras produced
singleton OTUs in the original unfiltered analysis.

Multi-threading performance and vectorization
One technical limitation of traditional OTU-picking
methods is the difficulty in parallelizing jobs due to the
pairwise-comparisons inherent to most methods. Fur-
thermore, parallelization of the taxonomic assignment
step is often implemented externally by utilizing UNIX
sub-processes that dramatically increase the hardware
burden. In contrast, the HmmUFOtu core algorithms are
designed to be independent for each read (see “Methods”)
and can thus be easily parallelized (multi-threaded) across
multiple reads. The native multi-threading support also
reduces the requirement of hardware resources, which is
critical for very large inputs.
We benchmarked the multi-threading performance of

HmmUFOtu using one simulated sample containing
5000 reads from each of the four simulated datasets with

1, 2, 4, 8, or 16 threads. We found that the processing
speed of HmmUFOtu increased almost linearly to the
number of threads up to the delegation of eight threads
(Fig. 8a). When employing 16 threads, the linear rela-
tionship was most likely lost due to the restriction of
total available physical cores (12 in total) on the bench-
marking machine. This is illustrated by the near-linear
increase of the average CPU usage (Fig. 8b). Notably,
HmmUFOtu only requires a near-constant RAM regard-
less of the CPU usage or the type of data (Fig. 8c), thus
in theory, permitting the program to handle much larger
16S datasets generated in the future without requiring
an equivalent demand in RAM.
Vectorization is a programming technique based on

processor supplementary instruction sets available on
many processors (such as Intel and AMD), which can
significantly improve the processing speed of mathemat-
ical operations especially for vector and matrix opera-
tions. HmmUFOtu utilizes the built-in vectorization
ability of Eigen3, which supports SSE2 and higher stan-
dards. For example, HmmUFOtu can quickly perform
the matrix exponential calculations required by the GTR
DNA substitution model, comparable in time to the pro-
cessing of less complex DNA models that are based on
simple tractable numerical calculations (TN93 and
HKY85, Additional file 1: Table S5).

Implementation of multiple DNA and mutation rate models
The previously described analyses, including those per-
formed on both simulated and real datasets, were processed
using the gg_97_otus_GTR database, which uses the default
generalized time-reversible (GTR) DNA substitution model
to evaluate the likelihood of the reference phylogenetic
trees [26, 27]. Although the GTR model is used by the
GreenGenes database [15], we further tested HmmUFOtu
on other popular models, since these simpler DNA models,
such as TN93 [28] or HKY85 [29], are generally more ro-
bust due to the smaller number of free parameters and
mathematically tractable features. We compared the GTR,
TN93, and HKY85 DNA models using the V4 simulated
dataset with the same methods described above and found
that all models exhibit very similar assignment performance
regarding the sensitivity, specificity, precision, and accuracy
at all taxonomy levels (Additional file 1: Table S5). Notably,
the simpler models TN93 and HKY85 often lead to slightly
better assignment results even if the reference tree was built
using the GTR model (Additional file 1: Table S5), suggest-
ing that by using fewer free parameters, these models can
still capture sufficient information from the phylogen-
etic structure of bacteria.
In addition to the different DNA models, we also stud-

ied the heterogeneity of mutation rates among different
16S rRNA gene sites by capturing the rate variation
among sites using Discrete Gamma Distribution (dΓ)
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based models [30] (see “Methods”). Interestingly, by
allowing variation among sites using the dΓ model, the
assignment sensitivity and precision both experience
significant loss compared to the fixed rate models
(Additional file 1: Table S5), potentially due to the con-
struction of reference trees in GreenGenes, which as-
sumed fixed rate models [15]. Considering that the
processing speed is much slower (~ 1.5× slower at

default settings; Additional file 1: Table S5), we strongly
recommend against using a Gamma model of among
site rate variation for reference trees built with fixed rate
models. Further, the estimated shape parameters of the dΓ
models are usually around 0.5, indicating that most 16S
rRNA gene sites are almost completely “invariant” (con-
stant regions), while “mutation hotspots” exist in limited
sites (hypervariable regions) [31], recapitulating previous

a

b c

Fig. 7 Benchmarking results from chimeric read detection using the “segment placement comparison” algorithm from HmmUFOtu. a Receiver
operating characteristic (ROC) curves for detecting simulated chimeric reads from random in silico cross-over events using GreenGenes 97% OTU
reference sequences; 10,000 chimeric or non-chimeric simulated reads were used in the respective range for each p-distance subset. ROC curves
are calculated by varying the min LOD cut-off from 0 to 10 with a step of 1, then 20 to 100 with a step of 10. b Estimated proportion of chimeric
reads in all of the benchmarked real datasets (mock and HMP) by enabling HmmUFOtu’s chimera detection and setting the LOD cut-off at 50. c
Differences in “observed species” alpha diversity of the mock community V1 V3 dataset. Paired: original results using raw paired reads;
Nonchimera: chimera-filtered results using the same paired reads
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estimations of the shape parameters in a study using mul-
tiple methods [32] (Additional file 1: Table S5).

Discussion
Traditional workflows based on distance-based approaches
first group sequences into OTUs, then assign taxonomy to
(often arbitrarily) selected representative sequences. These
methods are widely adapted due to the straightforward
nature of their concepts and relatively well-established algo-
rithms; however, they suffer from major drawbacks such as
non-optimized assignments, sensitivity to input data order,
limited statistical underpinnings, and disregard of the
phylogenetic nature of bacterial sequences [1, 8, 12, 33].
Many of these shortcomings stem from circumventing
computationally expensive algorithms and complex imple-
mentations of related methods in favor of faster heuristics.
We highlight the shortcomings of these methods by

comparing HmmUFOtu to the default methods imple-
mented by the widely used QIIME platform [10]. In both

real and simulated datasets, HmmUFOtu outperforms
QIIME default methods in accurately recapitulating mi-
crobial community composition and diversity. Notably,
HmmUFOtu produces results with biologically realistic
metrics regarding diversity and selects rep-seqs that
more accurately represent the consensus sequence of the
OTU. We also heavily employ prior knowledge in our
tool, such as searching for “seed” alignments in the
banded-HMM algorithm, as well as the stepwise SEP al-
gorithm that uses the inherent phylogenetic nature of
16S rRNA genes.
HmmUFOtu organizes amplicon reads into OTUs by

grouping together reads that have been placed around
reference phylogenetic nodes. This procedure is independ-
ent of sample size and input order, two features that can
affect traditional OTU-based methods, resulting in
error-prone and slow analyses [1]. Additionally, because
each sequence is individually processed by HmmUFOtu,
subsets of samples can be pre-processed before the

a

c

b

Fig. 8 Multi-threading performance of HmmUFOtu benchmarked on four simulated datasets on 1–16 threads. a Relative processing speed (reads
per second) normalized to 1-thread results. b Average CPU usage (%). c Maximum RAM (memory) usage in GB. All results are based on the average of
20 replicate samples
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collection of all samples; users would only need to
summarize over all pre-processed assignment files to initi-
ate downstream analyses, a step that generally takes only
minutes. However, one limitation of HmmUFOtu to con-
sider is the operation within constraints of a reference tree.
References will be biased toward those organisms that are
readily culturable, may not fully represent the biodiversity
of a community, and may lead to generic taxonomic as-
signment at very high levels (phylum or class) [11].
The algorithms implemented in HmmUFOtu are both

powerful and flexible enough to be extended into micro-
biome research beyond the prokaryotic domain. Similar
conserved marker genes exist in other systems, such as the
eukaryotic 18S rRNA gene and fungal ITS region, from
which amplicon sequencing data are rapidly accumulating.
However, the current standard databases for eukaryotic
marker genes are not as well annotated as the 16S rRNA
gene databases; for example, the “SILVA” database for the
eukaryotic 18S rRNA gene only provides a “guide-tree” for
their sequences, which lacks branch length information and
is not bi-sectional [34, 35]. Further, the “UNITE” database
for the fungal ITS region does not provide any phylogenetic
tree due to the high variance of ITS sequences [36]. Until
fully evaluated and expert-curated phylogenetic trees from
these databases are released, traditional OTU-based tools
such as QIIME [10] and Mothur [5] will still be the pre-
ferred choices for analyzing eukaryotic amplicon sequen-
cing data. A potential application for future available
eukaryotic marker gene databases (i.e. ribosomal small
subunit database) would be the ability to distinguish be-
tween prokaryotic and eukaryotic sequences in a sample
as to remove the “contaminating” mitochondria and
chloroplast 16S (m16S and c16S) sequences often found
in environmental and fecal samples. However, presently,
users are encouraged to use other non-phylogenetic based
tools such as Metaxa2 [22] for pre-filtering eukaryotic
m16S and c16S sequences.
While researchers increasingly employ metagenomic

and other multi-omic approaches for inferring characteris-
tics of microbial communities and their interactions with
the host and environment, amplicon sequencing of the
16S rRNA gene remains a staple in the toolkit of microbial
community ecology. HmmUFOtu considerably improves
upon current methods that form the core of popular ana-
lysis workflows by incorporating phylogenetic information
into the crucial OTU-picking step and thereby improves
the quality of downstream analyses and interpretations.

Conclusions
Here we describe a novel method for resolving a funda-
mental problem in 16S rRNA gene amplicon and other
target-gene based microbiome research – clustering se-
quences into biologically relevant OTUs and correctly
assigning taxonomy to all reads within the OTU. We

achieve this using two core algorithms: a CSFM-index pow-
ered banded-HMM algorithm and a SEP local phylogenetic
placement algorithm. Our banded-HMM algorithm
achieves high accuracy when aligning to a 16S rRNA gene
sequence MSA, similar to other HMM-based aligners, but
does so at 2–3 times the speed. The SEP algorithm achieves
high accuracy, sensitivity, specificity, and precision in taxo-
nomic assignment performance, even at species-level reso-
lution for both simulated and real datasets, at speeds up to
30 times faster than current phylogenetic placement tools
[16, 17]. Taken together, HmmUFOtu can perform
HMM-profile alignment, phylogenetic placement-based
taxonomic assignment, phylogeny-based OTU picking, and
consensus-based representative sequence inference in a
species-resolution reference tree with ~ 200,000 nodes for 1
million 16S rRNA gene amplicon sequences within 6 h on
a modest Linux workstation or cluster with 16 processors,
32 GB RAM, and ~ 20 GB disk requirement.

Methods
CSFM-index powered banded-HMM alignment algorithm
The banded-HMM alignment algorithm is designed to
align NGS reads to a MSA profile with the assistance of
short anchored segments, or “seeds,” along a known
alignment path. To achieve this, the algorithm first
attempts to find up to two seeds at the 5′ and 3′ end of
a read using a CSFM-index data structure (Fig. 1a). The
CSFM-index is a modified version of an FM-index
(Full-text index in Minute space, a compressed full-text
index based on the Burrows-Wheeler Transform) [37]
that stores additional information for quickly locating the
consensus sequence (CS) position in an MSA profile. Our
CSFM-index implementation also utilizes a Wavelet-tree
for indexing BWT strings [38], thus resulting in a small
memory footprint and fast search speeds.
In order to accurately align NGS reads to the MSA profile,

HmmUFOtu employs a widely used HMM architecture with
seven special states (“plan7”) to capture the site-specific tran-
sition and emission features (Fig. 1b), which mimics the
same core model used by the HMMER3 package [18]. How-
ever, our “plan7” architecture includes modifications de-
signed for 16S rRNA gene sequence alignment, specifically,
limiting alignment of reads to one 16S profile, rather than
aligning against multiple profiles, via the “J” state. The model
has also been modified for unbiased local-alignment regard-
ing the HMM profile by allowing direct entrance into inter-
mediate match (“M”) states with comparable probabilities.
Additionally, our architecture introduces the I0 and IK states
representing the frequently observed 5′ and 3′ overhangs in
16S rRNA sequence reads stemming from non-conserved 5′
and 3′ tail regions in some bacteria species.
Once the 5′ and 3′ seed alignment paths are identified

by CSFM-index searches, HmmUFOtu uses a banded ver-
sion of the Viterbi algorithm to find the global optimal
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alignment between the NGS read and HMM profile in or
near these seed regions (Fig. 1c, gray regions), which max-
imizes the log-likelihood (equivalently, minimizes the
cost) of observing the read sequence given the trained
HMM-profile (Fig. 1c) using Dynamic Programming (DP).
The banded HMM algorithm Procedure-Banded-HMM is
further explicated below.

where Diag-Dist and Procedure-Viterbi-DP are described
in the Appendix.
It is of note that for a very small proportion of NGS

reads, no seed-alignment can be found by CSFM-index
searches; we handle these reads with the standard,
non-banded, HMM algorithm, as described previously
[18]. For paired-end reads, the forward and reverse
mates were independently aligned using our method,
then the alignments are merged as if a single assembled
read were used, regardless of whether the forward or
reverse mates have overlapping tails. To assess the align-
ment accuracy, a correct alignment is defined as overlap-
ping ≥ 90% of its true locus, a commonly used threshold
in many similar situations as described previously [39, 40].

SEP local phylogenetic placement algorithm
Once a NGS read is aligned to the MSA profile using the
banded HMM algorithm, HmmUFOtu uses a local phylo-
genetic placement-based method to assign the correct taxo-
nomic identification to a read based on the alignment.
Unlike previous phylogenetic placement-based tools such as
pplacer and EPA [16, 17], HmmUFOtu makes the assump-
tion that the global topology and branches of the bacterial
phylogenetic tree should not be affected by observing an

instance of a read, with the exception of adding a novel local
branch as necessary for maintaining the correct bi-sectional
tree topology (Fig. 2). In essence, the SEP procedure identi-
fies the candidate optimal phylogenetic placement in three
steps: first, it finds a candidate list of seed nodes with se-
quences (observed or inferred) that meet a similarity thresh-
old to the read, as measured by observed p-distance (Fig. 2b,
“seed” step). The algorithm then estimates the
branching-point, the length of the new branch, and the
sub-tree likelihood using the Procedure-Estimate-Place de-
scribed below (Fig. 2c, “estimate” step). This can be proven
to produce near-optimal tree likelihoods and can be per-
formed efficiently since it neither modifies the original refer-
ence tree, nor creates an actual copy of the sub-tree
(Procedure-Estimate-Place). Finally, estimated placements
are sorted by their likelihoods; for every top candidate, a de-
tailed placement algorithm copies the sub-tree, inserts the
observed read node according to the aforementioned esti-
mations (Fig. 2e, f), and iteratively optimizes the estimations
by maximizing the placement likelihood, or the posterior
probability if a prior is used. The final log-likelihood of this
subtree is equivalent to the log-likelihood of the entire tree,
according to the Pulley Principle [41], as long as a
time-reversible DNA substitution model is used (e.g. GTR,
TN93, or HKY85 model). This step is further outlined in
the Procedure-Joint-Opt-Place described below (Fig. 2g,
“place” step).

where ● represents the vector’s dot product, pDist is the
p-distance between the observed or inferred sequence of
a node and a read, and Leaf-LogLik for evaluating a leaf
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node as described previously [41]. The Convolute is the
core, numerical-underflow-free function that calculates
the convolution between a node’s log-likelihood matrix
whose columns are the conditional log-likelihood vec-
tors, and a branch’s transition probability matrix, and
the Procedure-Estimate-Branch is a p-distance-based
branch length estimation method, both of which are de-
scribed in the Appendix.

where Procedure-Evaluate is the Felsenstein’s pruning
algorithm for tree evaluation as mentioned above [41] and
Procedure-Optimize-Branch for branch-optimization is
an EM based algorithm as described previously [41].

Segment placement comparison algorithm for chimeric
read detection
HmmUFOtu implements a “segment placement compari-
son” algorithm based on principles similar to previously
described segment alignment-based methods such as Chi-
meraSlayer and UCHIME [24, 25]. This algorithm: (1)
breaks an aligned sequence (from a read or pair) into an
even number of equal sized segments; (2) runs the SEP pro-
cedure on every segment using the common set of “seeds”
for the entire sequence; (3) picks the best placement for
both the 5′ and 3′ segment (5′-best and 3′-best); (4) calcu-
lates the alternative placements by re-running the “Estimate”
and “Place” procedures for the 5′-segment sequence at the

3′-best branch (5′-alt) and vice versa for the 3′-segment
(3′-alt); (5) calculates the joined LOD scores as

LOD ¼ loglik5
0−best−loglik5

0−alt
� �

þ loglik3
0−best−loglik3

0−alt
� �

and; (6) identifies potential chimeras where the assigned
phylogenetic tree nodes of the 5′-best and 3′-best place-
ments fail to match and the LOD score exceeds a de-
fined cut-off.

Building HmmUFOtu databases
All HmmUFOtu databases used in our benchmarks were
built by the “hmmufotu-build” program using the Green-
Genes reference alignment, tree, and taxonomy annota-
tion files. The build process generally consists of building
the multiple-alignment index and CSFM-index, training
the banded HMM profile, building and evaluating the
phylogenetic tree, and optionally estimating the shape par-
ameter of the dΓ model for among-site rate variation and
subsequent re-evaluation of the tree (Additional file 1:
Table S6). The database building process supports
multi-threading, with time complexity proportional to the
total number of nodes and consensus sites in the reference
phylogenetic tree; this process requires ~ 10 mins for
building the “gg_97_otus_GTR” database with six proces-
sors on the Linux workstation described below.

Mock bacteria community processing
The mock community bacteria samples were purchased
from the America Type Culture Collection (ATCC®)
(Catalog # HM-782D). Both the V4 and V1 V3 samples
were sequenced as control samples across multiple Illu-
mina MiSeq runs with 150-bp or 300-bp paired-end
platforms, respectively. All mock community runs were
sequenced by the PENN FGS/NGSC center.

Estimating model parameters in HmmUFOtu database
construction
In order to train an HMM-profile for a given MSA, we
adopted the common practice of using Dirichlet-multinomial
models as prior distributions of observed transition and
emission data [42] as it balances prior biological knowledge
with the observed training data. We trained 16S rRNA
gene-specific Dirichlet-multinomial models using the
GreenGenes gg_97_otus reference dataset for use in
our analyses and benchmarking. Specifically, we used
Dirichlet-density models (DDs) for transitions and insertion
emissions (Fig. 1b, “I” states) and Dirichlet-mixture models
(DMs) for the match emissions (Fig. 1b, “M” states). During
training, the weights of the observed MSA are normalized
using a position-specific method as described previously [42].
Pre-trained Dirichlet-multinomial models are distributed

Zheng et al. Genome Biology  (2018) 19:82 Page 17 of 20



with HmmUFOtu (Additional file 1: Table S7), but users can
also train customized models on their own data.
To train the DNA substitution models, we estimated all

potential “ancestral-offspring” mutations using the Gojo-
bori 3-sequence method [43] and then estimated the
DNA model parameters for the GTR, TN93, and HKY85
models [26, 28, 29]. HmmUFOtu also supports the Gold-
man two-sequence method [44] for DNA model training
as well as many other popular DNA substitution models.
The complete list can be found in Additional file 1: Table
S8. Pre-trained DNA substitution models are distributed
along with HmmUFOtu source code, but users may also
train customized DNA models on their own data.
To estimate the shape parameter α of each dΓ model used

for among-site rate variation in the HmmUFOtu databases
we constructed, the 16S rRNA phylogenetic tree was evalu-
ated with one pass using a fixed rate model, then the number
of observed mutations occurring at each site is calculated
using the known tree topology. The shape parameters were
then estimated using the moment matching method, which
assumes the parameters follow a negative-binomial distribu-
tion, as previously described [32]. The amount of time re-
quired for training customized models is negligible
compared to building the database. Details of model training
can be found in Additional file 1: Table S6.

Generating phylogeny-based OTUs, consensus-based
representative sequences, and OTU-trees
During the OTU summarization step of HmmUFOtu
(“hmmufotu-sum”), any phylogenetic tree node containing
more than a preset threshold of placed reads across all sam-
ples is defined as an OTU containing the NGS reads placed
closest to it. To infer the consensus sequences, the poster-
ior probability of observing the four nucleotides at each site
is calculated from the observed base counts from aligned
reads and a Dirichlet density prior with parameters propor-
tional to the pre-evaluated node likelihood and a concen-
tration parameter of 2. A concentration parameter of N is
equivalent to using N unobserved, background “pseudo”
reads for each OTU, but this prior can be disabled if set to
0. The consensus base at every site is then inferred by either
choosing the base that maximizes the posterior probability
or inserting a gap if more gaps were observed. Finally, a
phylogenetic tree containing the OTUs is generated by
pruning the original reference tree, leaving only nodes de-
fined as an OTU and nodes required to maintain the
bi-sectional property of the tree. Specific details of this
process can be found in Additional file 1: Table S6.

Benchmarking settings and data analysis
All benchmarking tests were performed on a Linux worksta-
tion with 8 Intel Xeon® processors @ 3.70 GHz and 64 GB
RAM, except for the multi-threading performance tests,
which were performed on a Linux cluster node with 24 Intel

Xeon® processors (12 physical cores) @ 3.07 GHz and
96 GB RAM. Speed and resource statistics are based on the
“user” time from system log files. All tested third-party pro-
grams were run with the default options, unless specified
otherwise. The default methods in the QIIME workflow
were: “UCLUST” for OTU-picking, “first” for rep-seq pick-
ing, “UCLUST” for assigning taxonomy, “PyNAST” for
aligning OTUs, and “FastTree” for constructing the phylo-
genetic tree of OTUs [6, 45, 46]. All alignment and taxo-
nomic assignment accuracy results were calculated using
in-house Perl scripts. For taxonomic assignment accuracy
benchmarks, the alignment outputs from HmmUFOtu were
used as inputs for both pplacer and EPA to ensure fair com-
parisons. The alpha-diversity and beta-diversity analyses of
mock communities were calculated with QIIME scripts [10]
using the observed species and Bray-Curtis metrics, respect-
ively. Details can be found in Additional file 1: Table S6.

Data requirements and program output
All core programs of HmmUFOtu accept sequences in
FASTA or FASTQ format, MSA profiles in FASTA aligned
format, and phylogenetic trees in Newick format. The model
training programs output in customized plain-text formats
(“hmmufotu-train-dm” for Dirichlet prior models, “hmmufo-
tu-train-sm” for DNA substitution models) or in standard
HMMER3 text format [18] (“hmmufotu-train-hmm” for
HMM profiles). The database building program “hmmufo-
tu-build” outputs databases as custom binary files. The main
program “hmmufotu” outputs taxonomy assignments in
tab-delimited plain-text format (TSV format). The OTU
summarization program “hmmufotu-sum” outputs results in
TSV format, which is compatible with third-party tools such
as QIIME; it also optionally outputs the rep-seqs in FASTA
format and the OTU-tree in Newick format. Optionally,
“hmmufotu-jplace” may convert outputted TSV assignment
files into “jplace” format for compatibility with third-party
tools [47] as long as the dependency C++ library JsonCpp is
installed or specified during the configuration step.

Implementation, dependency, and portability
HmmUFOtu is written in C++ 98 and is only dependent on
the header-only libraries of C++ boost and Eigen3 for Newick
tree parsing, statistics, and linear-algebra operations. Both li-
braries are available on most operating systems (OS) and do
not require installation. Multi-threading of HmmUFOtu is im-
plemented when native OpenMP is available. All HmmUFOtu
tools are built by GNUAutotools allowing for easy installation
on most OS including Linux, Mac OS X, and Windows.
Pre-compiled HmmUFOtu executables are also available at
https://github.com/Grice-Lab/HmmUFOtu/releases.

System requirements
HmmUFOtu pre-evaluates and stores all the directional
conditional log-likelihoods of a reference phylogenetic tree,
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thus requiring a relatively large amount of memory (RAM)
and disk space. For example, the “gg_97_otus_GTR” refer-
ence database takes about 20 GB RAM and disk space for
both database building and read processing.

Appendix

where MIN_EXP is a scaling constant to avoid
numeric-underflow errors.

Additional file

Additional file 1: Including supplementary Tables S1–S8 described in this
study. (DOCX 74 kb)
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