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Abstract

High-throughput single-cell gene expression experiments can be used to uncover branching dynamics in cell
populations undergoing differentiation through pseudotime methods. We develop the branching Gaussian process
(BGP), a non-parametric model that is able to identify branching dynamics for individual genes and provide an
estimate of branching times for each gene with an associated credible region. We demonstrate the effectiveness of
our method on simulated data, a single-cell RNA-seq haematopoiesis study and mouse embryonic stem cells
generated using droplet barcoding. The method is robust to high levels of technical variation and dropout, which are
common in single-cell data.
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Background
Single-cell gene expression data can be used to uncover
cellular progression through different states of a temporal
transformation, e.g. during development, differentiation
or disease. As single-cell protocols improve, a flurry of
methods have been proposed to model branching of cel-
lular trajectories to alternative cell fates [1–4]. In these
and similarmethods, pseudotime is estimated and a global
branching structure is inferred. Our focus in this paper is
on a downstream analysis method that can subsequently
be used to model branching gene expression dynamics for
individual genes. We are interested in discovering which
genes follow the global cellular branching dynamics and
whether these genes branch early or late with respect
to the global cellular branching time. Recently, [3] pro-
posed the branch expression analysis modelling (BEAM)
approach, which uses penalised splines to infer the indi-
vidual gene branching time. Here, we propose an alter-
native non-parametric method to model gene expression
branching dynamics. We develop a probabilistic genera-
tive model of branching dynamics that can be used to
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assess the evidence for branching and to provide a pos-
terior estimate of the branching time. The posterior dis-
tribution over branching time can be used to identify the
most likely branching time for each gene as well as an
associated credible region capturing our uncertainty in
the estimate.
Our approach is based on Gaussian processes (GPs),

which are a class of flexible non-parametric probabilistic
models. GPs have a long history in temporal and spatial
statistics and have gained popularity in many areas of
machine learning, including multivariate regression,
classification and dimensionality reduction [5]. GPs have
been used for dimensionality reduction of single-cell
expression data [6, 7] and more recently for pseudotime
estimation where the effect of uncertainty in the inferred
pseudotime can be quantified [8] and capture time can
be included as prior information [9, 10]. GP-based meth-
ods have also been used for modelling global cellular
branching dynamics from single-cell data after assigning
pseudotime to cells [11].
Here, we build on the work of [12], who developed a GP

model to identify when two gene expression time-course
data sets first diverge from one another. They defined a
novel GP covariance function that constrains two func-
tions to intersect at a single point. The divergence time
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is inferred by numerically approximating the posterior
using a simple histogram approach. The model identifies
when a gene first becomes differentially expressed in time-
course gene expression data under control and perturbed
conditions. In their approach, all data points are labelled
with the branch that generated them and the ordering
of time points is assumed known. Although similar to
the problem of modelling branching in single-cell data
after pseudotime is inferred, this two-sample time-series
method cannot be applied directly to our problem because
we have to allow for uncertainty regarding which branch
each cell belongs to.
Also closely related to the present work, the overlap-

ping mixture of GPs (OMGP) [13] is a mixture model for
time-series data where the mixture components are GP
functions and the data at any time can be assigned to any
of the components. For single-cell data, after pseudotime
is assigned to each cell, then the OMGP model can be
used to assign cells to different trajectories. The cell
labels do not have to be known in advance and can be
inferred through fitting the model to data. However, in
OMGP models, the cellular trajectories are independent
rather than branching. The OMGP model has been
applied to single-cell data to infer global cell branching
times [11] but as OMGP assumes the latent functions are
independent without any branching, a heuristic based
on a piecewise linear fit of the log likelihood surface is
proposed to identify the most likely branching times. This
is problematic, since OMGP does not provide a proper
generative model of branching dynamics and therefore,
it is not clear how to compute the posterior distribution
over the branching time.
Our main methodological contribution here is to

generalise the OMGP model to account explicitly for
dependence between the functions in the mixture model.
Specifically, we consider that the functions branch, as
in [12]. This allowed us to develop a probabilistic model
over branching cellular trajectories where the assignment
of cells to branches is not known in advance. Our new
branching GP (BGP) model allows us to calculate the
posterior distribution over branching time for each gene
while allowing for uncertainty in the branch labels for
each cell. This uncertainty is especially important for
early-branching genes, since cells are not labelled with a
branch prior to the global cellular branching time, which
we assume is known.
A naive implementation of GP models scales cubically

with the size of the data. As increasing numbers of cells
can be profiled in new single-cell protocols, we ensure
the scalability of our approach by employing two com-
plementary approaches. Firstly, we use sparse inference
[14, 15], which allows model fitting to scale with the
number of inducing points. The latter is a user-defined
value that trades off model accuracy and training time.

Specifically for N cells, naive covariance inversion scales
as O

(
N3) while under sparse inference with k inducing

points, it scales as O
(
k2N

)
where typically k � N . Sec-

ondly, we provide an open-source implementation that
leverages the GPflow library [16], which both simplifies
the implementation due to automatic symbolic differenti-
ation and allows for the necessary matrix operations to be
computed in parallel across many CPU nodes or GPUs.
The paper is organised as follows. We first give an

overview of the BGP model, including how inference is
performed in a scalable manner. We discuss how uncer-
tainty is quantified and represented in a full posterior
distribution on the branching time for each gene. We con-
trast the performance of the BGP method to two recently
published methods, the mixture of factor analysers (MFA)
[17] and the BEAM approach [3], in a synthetic study
across a variety of simulated scenarios. We apply the
BGP model to data from a haematopoiesis study [18] and
to single-cell mouse embryonic stem cell data generated
using droplet barcoding [19]. We conclude with a sum-
mary of our findings and a discussion of possible future
research directions.

Results and discussion
Overview of BGP
Before applying the BGP method, we require the pseu-
dotime for each cell and the global branching pattern of
the cells. In our experiments, we used results from the
Monocle reversed graph embedding approach, termed
DDRTree [3], and the diffusion pseudotime (DPT) [1]
and the wishbone [2] approaches. However, BGP can be
based on any method that estimates pseudotime and a
gene-wide cell branching association. For a recent review,
see [20].
OMGP [13] is a mixture model of independent GPs that

is able to associate an observation with the generating
GP. The authors term this the association problem and
derive a variational inference algorithm for independent
GPs. Our work extends the OMGP model in two direc-
tions: firstly, we remove the assumption of latent func-
tion independence and allow dependent GPs as required
by a branching model. Secondly, we provide a sparse
inducing point approximation that allows for scalable
inference.
Let F be a BGP evaluated for N data points (cells) with

M latent functions. Z ∈ {0, 1}N×M indicates which branch
each cell comes from. The number of latent functions for
a single branching point is M = 3, as we have separate
latent functions for the trunk and each branch. The like-
lihood is p (Y |F ,Z) = N

(
Y |ZF , σ 2I

)
and as in [13], we

place a categorical prior on the indicator matrix p(Z) =∏N
n=1

∏M
m=1 [�][Z]nmn,m . We place a GP prior on the latent

functions p (F|tb) = GP (0,K |tb), which constrains the
latent functions to branch at pseudotime tb. Note that the
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latter does not factorise as in [13], as the latent functions
are dependent. Further details of the model derivation
and inference scheme used are provided in ‘Methods’
and a detailed derivation, including the inducing point
approximation, is provided in the supplementary material
(Additional file 1: Section 2).
Global branching labels, such as those provided by

DDRTree, can provide an informative prior p(Z) for all
genes. The prior before the global branching point is
uninformative, as no global assignment is available. This
is relevant for early-branching genes, which may start
branching earlier than the global cellular branching. After
the global branching point, the prior favours an increased
assignment probability to the globally assigned branch.
If the prior places significant mass on the alternative
assignment, the resulting assignment may differ from the
global allocation given enough evidence from the likeli-
hood term. This allows the model to correct mislabelled
cells as well as account for sources of noise in the data,
such as dropout for lowly expressed genes. However, in
our single-cell case studies, we use a strong prior assign-
ment probability of 0.99 to avoid cell reassignment after
the global branching time. This simplifies the interpre-
tation of the results, as cells do not switch their global
branch assignment. Nevertheless, other constructions are
possible with this model, e.g. the distance of the cells
from the global branching time may be used to adjust the
associated prior uncertainty.
The model hyperparameters are fitted by maximising

a bound on the log-likelihood. The log-likelihood is not
analytically tractable, as it involves integrating out the
indicator matrix Z and therefore, we use a variational
approximation. A lower bound is available using Jensen’s
inequality:

log p (Y |F) ≥ Eq(Z)

[
log p (Y |F ,Z)

]−KL
[
q(Z)||p(Z)

]
,

(1)

where we use a mean-field approximation q (Z, F) =
q(Z)q(F) with the latent functions F independent of the
association indicators Z and q(Z) = ∏

nm φnm. The φnm
approximates the posterior probability of cell n belonging
to branch m. The latter is either the trunk state or one of
the two branches for the single branching considered in
the applications here. Then, F can be integrated out to get
the marginal likelihood p(Y ).
The branching time posterior probability is calculated

using the approximate marginal likelihood evaluated at
a set of candidate branching points SB of size Nb. The
posterior for a candidate branching time c is

p(tb = c|Y ) = p(Y |tb = c)
∑

i∈SB p(Y |tb = i)
. (2)

Themarginal likelihood of themodel can also be used to
calculate the Bayes factor of branching versus not branch-
ing (assuming equal priors). This is used to rank genes by
how likely it is that their expression exhibits branching. By
numerically integrating out the uncertainty of the branch-
ing location, the logged Bayes factor rg includes the effect
of posterior uncertainty in the branching location:

rg = log
P(0 < tb < 1|Y )

P(tb → ∞)|Y )

= log

⎡

⎣ 1
Nb

∑

i∈SB
p (Y |tb = i)

⎤

⎦ − log
[
p (Y |tb → ∞))

]
,

(3)

where tb = ∞ specifies that the model does not branch
and we have assumed equal prior probabilities for branch-
ing and not branching.
An example of the BGP model fit is shown in Fig. 1b.

The uncertainty in the cell branch association is shown
in conjunction with the posterior on the branching times.
For visualisation, the cell assignment to the top branch
is shown. We see that most cells away from the branch-
ing point are assigned with high confidence to one of
the branches. However, cells that are equidistant from
both branches have high assignment uncertainty (0.5).
This is also the case for cells close to the branching loca-
tion where the two branches are in close proximity. In
the bottom panel of Fig. 1b, the posterior on the branch-
ing location shows there is significant uncertainty on the
precise branching location. This is reflected in Fig. 1a
in the branching time uncertainty (magenta). The cell
assignment uncertainty is incorporated into the branch-
ing time posterior. If the branches separate quickly, the
posterior branching time uncertainty is likely to be small.
This reflects one of the main benefits of employing a
probabilistic model to identify branching dynamics as the
assignment uncertainty is considered when calculating the
branching time posterior. The cell assignment is inferred
in the BGP model, in contrast to the model in [12] where
the assignment is assumed known.
Additional biological insights can be gleaned from the

BGP method by inferring a branch order network using
the posterior for each branching gene. The probability of
a gene A branching before time t can be calculated using
S samples from the branching posterior,

P (Br(A) < t)) = 1
S

S∑

s=1
I (sA < t) , (4)

where Br(A) is the branching time of gene A and sA are
the posterior branching time samples. The probability of a
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(a) DDRTree prior assignment (b) Cell assignment

Fig. 1 Haematopoiesis gene expression, showing the BGP fit for the MPO gene. a The Wishbone branching assignment is shown for each cell along
with the global branching time (black dashed line), the most likely branching time (blue solid line) and posterior branching time uncertainty
(magenta background). The sample of cells used to fit the BGP model is shown with larger markers. b The posterior cell assignment is shown in the
top subpanel. In the bottom subpanel, the posterior branching time is shown. Pseudotime is shown on the horizontal axis of all plots. a, b Gene
expression is depicted on the vertical axis. c The posterior branching probability BGP branching Gaussian process

geneA branching before geneB can be calculated similarly
from each branching posterior,

P (Br(A) < Br(B)) = 1
S

S∑

s=1
I (sA < sB) . (5)

We can infer a branch order network by computing this
probability for all pairs of branching genes at the desired
confidence level. In the single-cell applications we discuss
later, we use this approach to construct a directed network
graph of gene branching times.
We can also calculate a posterior rank for each gene

with an associated confidence interval. Using samples of
the posterior branching time, we can estimate quantiles of
the rank distribution for each gene. This is a simple way
to infer which genes branch early and which late through
a probabilistic ranking. Unlike the previous approach, this
does not allow pairs of genes to be compared but can pro-
vide an overall summary of the branch ordering without
the need for a network analysis.

Synthetic study
We evaluate three methods, MFA [17], the BEAM
approach [3] and the BGP model, on synthetically gener-
ated data. For the synthetic study, we use Gaussian noise
and therefore, we use the BEAM algorithm with a Gaus-
sian likelihood function. MFA also assumes a Gaussian
likelihood function. Data are generated from branching
GPs with signal variance σ 2 = 2, length scale λ = 1.2
and a range of noise levels (Table 2). Samples where the

functions cross after the branching point were rejected
since these may be difficult for other methods, e.g. BEAM
identifies the last crossing location for its fitted splines
and may, therefore, identify the wrong point in a time
series that crosses after branching. We address this issue
in the real-data study considered in the next section but do
not consider it in the synthetic benchmark. We generate
N = 150 data points (cells) with D = 40 genes and pseu-
dotime in a unit interval [0, 1]. The genes are separated
into three groups depending on their branching behaviour
and time (Table 1).
All methods were run with default parameter settings,

so it may be possible to improve on their performance
by tuning these parameters. For example, as in [17], we
found the performance of the algorithm depended on the
initialisation used. We contrast the performance of the
BGP model both without and with an informative prior
(80% prior probability) on cell assignment derived from
the global Monocle assignment.
We first compare the pseudotime estimation accu-

racy of Monocle and MFA. Both methods achieve good

Table 1 Synthetic gene groups

Group Branching time G

Early 0.2 10

Late 0.8 20

No branching NA 10

Branching times and number of genes G for each group. All scenarios use N = 150
cells and a total of D = 40 genes
NA not applicable
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performance as measured by the rank correlation of the
estimated pseudotime to the ground truth (Table 2).
The Bayes factor of the branching GP can be used

to rank the evidence of branching for each gene. Simi-
lar measures exist for MFA and the BEAM method. We
first compare the three methods on their ability to dis-
criminate branching from non-branching genes (Table 3).
The metric we use is the area under the curve, which
provides a reasonable measure when the numbers of pos-
itives and negatives in the ground truth are balanced.
Both BEAM and BGP have higher accuracy than MFA,
whose performance varies significantly. The inclusion of
an informative prior improves the performance of the
BGPmodel, resulting in consistently high performance for
all noise levels. The performance of BEAM decreases with
increased noise level, which is also the case for the BGP
model to a lesser extent.
We also examine the error in identifying the branch-

ing time. As MFA does not provide such an estimate, we
consider only the BEAM and BGP methods. The error in
estimating branching time for the BEAM and BGP meth-
ods is given in Table 4. The error for the BGP method is
consistently lower than that for the BEAM method. The
informative prior allows for more consistent performance
of the BGPmethod. This method has substantial increases
in accuracy in some scenarios, especially for the highest
noise level (0.2), where the error is reduced from 0.15
to 0.08. The lack of robustness of the BEAM approach
to high noise is demonstrated in Fig. 2. In the low-noise
scenario (Fig. 2a, b), both BEAM and BGP are able to
recover the gene expression branching dynamics. In the
high-noise scenario (Fig. 2c, d), the global branching time
is early due to the early-branching genes in the data. The
later-branching gene depicted has a branching time of
b = 0.8 and the global assignment correctly separates the
two branches. However, due to the high noise in the data,
the spline is unable to identify the correct branching time
and significantly underestimates it (Fig. 2c). In contrast,
the BGP model correctly identifies the late-branching
nature of the gene, despite the early global branching time
and the high-noise level of the data (Fig. 2d).

Table 2 Synthetic study: pseudotime rank correlation to the true
time for both MFA and Monocle under both scenarios

Noise MFA Monocle

0.001 −0.96 1.0

0.01 0.98 1.0

0.03 −0.93 1.0

0.08 −0.97 1.0

0.1 −0.97 1.0

0.2 0.91 1.0

MFAmixture of factor analysers

Table 3 Synthetic study: Area under the curve for detecting
branching genes

Noise MFA BEAM BGP

No prior prior

0.001 0.30 1.00 1.00 1.00

0.01 0.65 1.00 1.00 1.00

0.03 0.77 0.96 0.98 0.99

0.08 0.82 0.93 0.86 0.92

0.1 0.77 0.82 0.81 0.96

0.2 0.77 0.74 0.86 0.84

BEAM branch expression analysis modelling, BGP branching Gaussian process,MFA
mixture of factor analysers

More generally, the spline approach taken in BEAM suf-
fers from a consistent bias in branching time estimation,
which pulls all estimates towards the global branching
time. To demonstrate this effect clearly, we examine an
additional synthetic example with three genes branch-
ing very early (0.1), 27 genes branching late (0.7) and 10
genes not branching. We select a low noise level (0.001).
Since there are many late-branching genes and few early-
branching genes, the global branching time is late (Fig. 3),
which clearly demonstrates the bias effect. As can be seen
in Fig. 3a, the estimates for the BEAM method are biased
towards the global branching time. The underestimation
of branching times in BEAM for genes that branch later
than the global branching time is most likely due to the
spline regularisation employed by BEAM, which tends to
over-smooth the spline fit. The overestimation of branch-
ing times for early-branching genes is due to the arbitrary
assignment of cells prior to the global branching time, as
no labels are provided by the global algorithm and no esti-
mation is performed by the spline-fitting algorithm. See
Fig. 3c for an illustrative example. The former could pos-
sibly be rectified by tuning the regularisation approach
employed, but the latter is a fundamental restriction of
the BEAM approach, which does not directly estimate

Table 4 Synthetic study: root-mean-squared error for branching
time estimation

Noise BEAM BGP

No prior prior

0.001 0.12 0.03 0.03

0.01 0.11 0.04 0.05

0.03 0.13 0.06 0.07

0.08 0.20 0.14 0.09

0.1 0.23 0.12 0.09

0.2 0.23 0.15 0.08

Only performed on branching genes
BEAM branch expression analysis modelling, BGP branching Gaussian process



Boukouvalas et al. Genome Biology  (2018) 19:65 Page 6 of 15

(a) BEAM Low noise (b) BGP Low noise

(c) BEAM High noise (d) BGP High noise

Fig. 2 Synthetic data: example BEAM and BGP model predictions for late-branching genes. These branch at b = 0.8. Pseudotime is shown on the
horizontal axis and the gene expression is depicted on the vertical axis. The global branching time (vertical black bar) and the posterior branching
time uncertainty (magenta background) are shown. The vertical red bar is the BEAM branching time estimate and the vertical blue bar the BGP
estimate. Cells have been coloured by the global Monocle assignment. a BEAM low noise. b BGP low noise. c BEAM high noise. d BGP high noise.
BEAM branch expression analysis modelling, BGP branching Gaussian process

branching assignments but uses only the globally derived
label estimates. The BGP approach (Fig. 3b) does not
suffer from this deficiency, as the branch assignment is
performed gene by gene at the cost of increased computa-
tion time. However, the task is easily parallelisable, as each
gene is treated independently.
Lastly, we examine the effect of poor state estimation on

the BEAM and BGP methods (Fig. 4). The generated data
sets are identical except for the level of Gaussian observa-
tion noise, whose variance is increased from σ 2 = 0.001
(Fig. 4a) to σ 2 = 0.03 (Fig. 4d). In Figs. 4a–c, the Mon-
ocle state estimation accurately identifies the underlying
branching dynamics and both BGP and BEAM correctly
estimate the branching dynamics. In Figs. 4d–f, we show
an example of the effect of poor state estimation.

The state estimation correctly identifies a single branch-
ing point but the majority of cells are assigned to one of
the branches (red). As one of the global branches (red)
spans both gene expression branches, it is unsurprising
that the spline approach fails to identify the branch loca-
tion correctly and in fact overestimates the true branch-
ing time of tb = 0.2 (Fig. 2a). The corresponding BGP
inference (Fig. 4f) overcomes the errors in global state
estimation and the confidence interval includes the true
branching time.
The robustness of the BGP model can be understood

in terms of the probabilistic nature of the model. Prior
global state information is considered as well as a like-
lihood term that fits a branching process. Therefore,
the BGP prior model incorporates the best of both
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(a) Posterior (b) BGP (c) BEAM

Fig. 3 Synthetic data: fitting BGP and BEAM. The horizontal axis depicts the pseudotime. a The true branching times (black dots), BEAM times (red
crosses), BGP mean (blue dots) and 98% credible regions for all 40 synthetic genes. b,c BGP and BEAM estimates for the same early-branching gene.
Gene expression is depicted on the vertical axis. The vertical grey bar is the global branching time. The vertical red dashed bar is the BEAM
branching time estimate and the vertical magenta bar the BGP estimate. Cells have been coloured by the global assignment. BEAM branch
expression analysis modelling, BGP branching Gaussian process

worlds: inclusion of global assignment information and
assessment of cell assignment based on individual gene
expression. In the supplementary material (Additional
file 1: Section 3), we also show the robustness of the model
to non-Gaussian data, using synthetic data generated
using a single-cell RNA-seq data simulator [21] to gener-
ate zero-inflated count data across a range of library sizes
and dropout rates. We also find the model robust to data
downsampling (Additional file 1: Section 4), which we use
to speed up inference in the studies of experimental data
that follow.

Haematopoiesis and single-cell RNA-seq
We apply the BGP model on single-cell RNA-seq of
haematopoietic stem cells (HSCs), which differentiate into
myeloid and erythroid precursors [18]. Following the
same quality control as [2], the data consists of 2312
genes and 4423 cells. We use M = 30 inducing points
in our sparse approximation and to speed up the com-
putations further, we randomly subsample the data down
to 467 cells. In [2], an analysis of this data set was per-
formed and we use their estimation of pseudotime and
cell trajectory assignment labels using theWishbone algo-
rithm.We found similar pseudotime and global branching
assignments with Monocle 2 (vs 2.1), and those results
are given in the supplementary material (Additional file 1:
Section 7).
To reduce the computation required, we apply a

t-statistic on the end states of the two branches to fil-
ter the genes that are most likely branching. We apply
the BGP algorithm on the resulting set of 1072 genes.
The BGP inference was performed in parallel for each

gene and required approximately 2 minutes of CPU time
per gene1.
A probabilistic model is an appropriate choice for early

haematopoiesis, which has been described as a cellu-
lar continuum of low-primed HSCs [22]. The continuum
contains transitory states rather than discrete progenitor
cell types. Some cell state transitions and lineage com-
binations are more likely to occur than others. A proba-
bilistic model such as BGP better reflects the probabilistic
nature of lineage selection highlighted in [22]. In the BGP
model in particular, each cell is associated with an allo-
cation probability for each branch. The branching point
can be interpreted as the earliest pseudotime from which
probabilistic biases in lineage selection can be detected.
We find 839 genes out of a possible 1072 that show

evidence of branching based on the Bayes factor. The pos-
terior branching times for all branching genes are shown
in Fig. 5a. Only 76 genes have a log likelihood over 50,
with the majority of the genes close to the 0 threshold. In
Fig. 5, we also show the branching times for 10 marker
genes that have been found to show significant evidence
of branching. Marker genes for megakaryocyte erythroid
progenitors (MEPs) and granulocyte macrophage progen-
itors (GMPs) are shown. For all GMP markers, the same
branch is upregulated (magenta), whereas for the MEP
markers, the alternative branch is upregulated (brown).
The confidence interval of branching times is also shown
for each marker gene, which can be used in drawing infer-
ences. For example, the CTSG GMP marker is predicted
to branch earlier than the global branching time with high
confidence, whereas the branching time of the CEBPA
marker is highly uncertain.
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(a) Monocle global state:
Accurate state estimation

(b) Gene branching estima-
tion using BEAM

(c) Gene branching estima-
tion using BGP

(d) Monocle global state:
Inaccurate state estimation

(e) Gene branching estima-
tion using BEAM

(f) Gene branching estima-
tion using BGP

Fig. 4 Synthetic data: effect of Monocle global state estimation on BEAM and BGP model predictions for early-branching genes. b = 0.2. Two
different examples are shown, corresponding to accurate and inaccurate state estimation by Monocle. b, c, e, f Gene expression (vertical axis) vs
pseudotime (horizontal axis). The vertical black bar is the global branching time. The vertical red bar is the BEAM branching time estimate and the
vertical blue bar the BGP estimate. Cells have been coloured by the global Monocle assignment. a, d The Monocle-DDRTree latent space. BEAM
branch expression analysis modelling, BGP branching Gaussian process

When examining the model fit for the APOE marker
gene (Fig. 6), we observe a transitory gene expression for
one of the branches. In particular, the expression initially
increases after the branch point, peaks and decreases to
the level of the other branch. The spline approach used
in BEAM erroneously identifies the last intersection point
as the branching point, as we show in the supplementary
material (Additional file 1: Section 7), whereas the BGP
approach computes a posterior over the branch locations,
which quantifies the likelihood of both intersection points
as branching locations.
We show the branching time network and gene expres-

sion profiles for the highest evidence branching genes in
Figs. 7 and 8. These eight genes show very strong evidence
of branching (rg > 200).
In the network (Fig. 7), each gene is annotated with its

most likely branching time and the pairwise branching

time order relationships are denoted by directed edges.
The posterior confidence cut-off used for the latter is 95%.
For instance, both PRTN3 and MPO are found to branch
before CAR1 but only the former is branching before
ELANE; this can be understood by the higher uncertainty
in the branching posterior of MPO (Fig. 8c). In the net-
work we have groups genes in three distinct modules. The
PRTN3 and CTSG genes (red module) branched before
all other genes except CALR, i.e. ELANE, CAR1, CAR2
and GSTM1. The other group of early-branching genes,
MPO and CALR (yellow module) branch before CAR1,
CAR2, GSTM1 but not ELANE. Finally, the later branch-
ing group consisting of ELANE and GSTM1, branch
before CAR1.
When consideringmore genes, looking at the entire net-

work may be cumbersome and if the interest is solely on
identifying the earliest branching genes, we can estimate
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(a) Posterior branching times (b) GMP (c) MEP

Fig. 5 Haematopoiesis data. The horizontal axis is pseudotime in all plots. a Posterior branching times for 839 genes identified as branching (log
Bayes factor >0) ordered by branching location. The global branching time is shown as a vertical grey bar (b = 0.11). The vertical axis is the gene
index. b, c Branching times for marker genes that have been found to show significant evidence of branching for megakaryocyte erythroid
progenitors (MEPs) and granulocyte macrophage progenitors (GMPs). The colour scheme reflects which branch is upregulated after the most likely
branching time. The arrows associate each gene with its most likely branching time (dot) and posterior branching confidence interval (blue region).
The percentile rank in terms of the log Bayes factor is shown in parentheses; e.g. 100 means ranked in the first percentile of all 1072 genes examined.
GMP granulocyte macrophage progenitor, MEP megakaryocyte erythroid progenitor

the posterior rank for each gene as described in the BGP
overview section. When using a lower threshold on the
branching evidence (log Bayes factor > 50), we find 76
genes are the earliest and latest branching genes, which
are listed in the supplementary material (Additional file 1:
Section 5).
This analysis demonstrates the richness of the BGP

model and the range of downstream analyses afforded by
the probabilistic nature of the model.

Fig. 6 Haematopoiesis data: example of transitory gene expression for
the APOE gene. Pseudotime is shown on the horizontal axis. The cell
assignment uncertainty (top, vertical axis) and posterior branching
time posterior (bottom, vertical axis) is shown for the BGP method.
BGP branching Gaussian process

Droplet-based single-cell RNA-seq
We further demonstrate the effectiveness of the BGP
model by applying it to single-cell RNA-seq data gen-
erated using droplet barcoding [19]. Klein et al. [19]
monitored the transcriptomic profiles and heterogene-
ity in the differentiation of mouse embryonic stem cells
after leukaemia inhibitory factor withdrawal. A total of
2717 cells were profiled. Altogether, 24 175 transcripts
were observed with cells captured at t = 0, 2, 4 and

Fig. 7 Haematopoiesis gene expression. Network of most significantly
branching genes (log Bayes factor >200). The most likely branching
time is given for each gene. The directed edges denote the gene
branching order with a 95% confidence cut-off. The edge colours are
used to group genes that have identical later branching genes. The
horizontal placement of each gene is based on its most likely
branching time
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(a) PRTN3 b = 0.05 (b) CTSG b = 0.05 (c) MPO b = 0.05 (d) CALR b = 0.08

(e) ELANE b = 0.14 (f) CAR2 b = 0.21 (g) GSTM1 b = 0.14 (h) CAR1 b = 0.30

Fig. 8 Haematopoiesis gene expression. Gene expression for most significantly branching genes (log Bayes factor >200). The bottom panel for each
gene denotes the posterior branching time over the discrete set considered. a PRTN3 b = 0.05. b CTSG b = 0.05. cMPO b = 0.05. d CALR b = 0.08.
e ELANE b = 0.14. f CAR2 b = 0.21. g GSTM1 b = 0.14. h CAR1 b = 0.30

7 days. As for the haematopoiesis data, BGP inference
was performed in parallel for each gene, which required
approximately 2 minutes of CPU time per gene. The effect
of cell cycle was removed using the scLVM approach [7]
as in [1], who used this data set for their analysis of DPT.
We use the pseudotime estimated using the DPT

method of [1]. The prior on the branching labels was
also derived from the DPT method with a prior confi-
dence of 99%. We examine the first dominant branching
event reported by [1]. Here 915 cells were assigned to the
trunk, and 1662 and 114 cells to each branch. To allow
for fast computation for all genes, we subsampled the
gene expression data down from 2717 to 335 cells with
81 assigned to the trunk, and 159 and 95 to each branch.
This ensures the branches have roughly the same number
of points. For faster computation, we analyse the top 998
genes according to the method of [23], which is available
in the ScanPy software library [24].
A summary of the BGP findings is shown in Fig. 9. A

total of 337 genes show evidence of branching and 661
do not. There is a continuum of early to late posterior
branching times (Fig. 9a).
We also show the branching times for a selection of the

genes found to be differentially expressed in [1] (Fig. 9).
The percentile rank in terms of the log Bayes factor is
also shown for each gene. All three epiblast markers con-
sidered (Krt8, Krt18 and Krt19) show strong evidence of

branching early in pseudotime and are upregulated in the
main branch (brown). They are also very highly ranked.
Krt8 and Krt18 are both in the top percentile and Krt19
is in the 96th percentile. The gene expression profiles
(Fig. 10) show clear early-branching times for the epi-
blast markers as well as for genes where the alternative
branch is upregulated (e.g. Ccdc36). The branching time
uncertainty is low for most marker genes, including the
epiblast markers. We also show an example of transitory
gene expression (Perp), where the BGP method selects
the earliest intersection point as the most likely branching
time and this point has a higher posterior branching time
uncertainty.
We use the branching time posterior for each gene to

estimate a branch order network of genes. For ease of
presentation, we examine only the seven branching genes
with the strongest evidence of branching (log Bayes fac-
tor > 500). All posterior rankings with confidence greater
than 95% are included in the network. We show the gene
branch order network in Fig. 11 and the corresponding
gene expression profiles in Fig. 10. The earliest branch-
ing gene, Ccdc36, was found to branch before all other
genes in the network within the 95% confidence thresh-
old. The Actg1 and Ccdc36 genes branch before the later
branching genes Krt8, Krt18, Bc1 and Hsp90aa1. The epi-
blast markers Krt8 and Krt18 and the Bc1 gene branch
before Hsp90aa1, which has the latest branching time
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(a) Posterior branching times (b) Marker genes with rank shown

Fig. 9 Summary plots for mouse embryonic stem cell droplet data. The horizontal axis denotes pseudotime and the vertical axis is the gene index.
a The most likely branching time (diamonds) and confidence interval (blue region) for all genes found to show evidence of branching. b The
posterior for selected marked genes is coloured by the branch that is enriched (brown or magenta)

(0.36). The earliest branching genes can also be found
by directly computing the posterior rank for each (see
section ‘Overview of BGP’). These genes are listed in the
supplementary material (Additional file 1: Section 6).

Conclusion
We have presented a flexible non-parametric probabilistic
approach for robustly identifying individual gene branch-
ing times. For scalability, our model uses sparse varia-
tional inference implemented using the GPflow package
[16]. The probabilistic nature of our model allows for
well-defined parameter estimation via maximisation of a
bound on the marginal likelihood.
The spline model used by BEAM uses global branch

assignments for each cell and is, therefore, unable to

Fig. 10Mouse embryonic stem cell droplet data. Expression profiles
for genes appearing in the branching order network (Fig. 11) and an
example of a gene with higher branching uncertainty (Perp). The
bottom panel in each gene expression denotes the posterior
branching time over the discrete set considered. a Ccdc36 b = 0.05.
b Actg1 b = 0.08. c Actb b = 0.08. d Krt8 b = 0.11. e Krt18 b = 0.11.
f Bc1 b = 0.11. g Hsp90aa1 b = 0.36. h Perp b = 0.20

accurately identify branching times earlier than the global
branching time. We found that branching time estimates
from this spline-based approach were generally biased
towards the global branching time. In contrast, the BGP
method can robustly identify branching times, as it esti-
mates the cell branch association for each gene indepen-
dently while accounting for cell assignment uncertainty
in the posterior branching times. We also found the BGP
approach to be robust to global state estimation errors
and high noise. The BGP branching time uncertainty can
also be used in a downstream analysis of the individual
gene branching times, for example, ranking genes in
terms of their most likely or minimum branching times.
In the BGP model, a separate assignment of cells to

branches is performed for each gene, since they are treated
independently. This can lead to potentially misleading
results, as cells may be assigned to different branches
for different genes. Therefore, to achieve good results,
we use an informative prior based on the cell assign-
ment of a global method such as Monocle [3], DPT [1] or
Wishbone [2]. This gives a high prior confidence of cell
assignments after the global branching point. By using this
strongly informative prior, we avoid the issue of incon-
sistent assignments for cells with pseudotime after the
global branching point. However, cell assignments can
differ for genes branching prior to the global branching
time and therefore, care must be taken when interpret-
ing the results for such genes. This is an improvement
over methods such as BEAM that randomly assign cells
prior to the global branching time. In future work, we
plan to extend the BGPmodel to share the cell assignment
across all genes, therefore avoiding such inconsistencies
and simplifying any downstream analysis.
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(a) Ccdc36 b = 0.05 (b) Actg1 b = 0.08 (c) Actb b = 0.08 (d) Krt8 b = 0.11

(e) Krt18 b = 0.11 (f) Bc1 b = 0.11 (g) Hsp90aa1 b = 0.36 (h) Perp b = 0.20

Fig. 11Mouse embryonic stem cell droplet data. Gene network of branching times of most significantly branching genes (log Bayes factor >500).
A directed edge A → B denotes that gene A branches before gene B with a 95% probability. The edge colours are used to group genes that have
identical later branching genes. The horizontal placement of each gene is based on its most likely branching time

We have also included in our comparison a probabilis-
tic linear method [17]. The linearity allows for an effi-
cient joint estimation of both the pseudotime and global
branching structure. Although this method does not esti-
mate gene bifurcation times, a probabilistic estimate of
whether an individual gene exhibits branching behaviour
is available. However, in our synthetic study, we found
that the pseudotime estimation was not robust and this
reduces the effectiveness of the method.
The application of the BGP method to the haema-

topoiesis data revealed the importance of modelling tran-
sitory gene expression, which has the potential to confuse
non-probabilistic methods. The model was able to select
automatically the most likely branching location, even in
the presence of multiple crossing points in gene expres-
sion without the need for any post-processing heuristics
such as those included in the BEAM package.
We also demonstrated the flexibility of our approach

by applying it to droplet-based single-cell data using the
pseudotime and branching association derived from the
DPT method [1]. As the BGP approach does not rely on a
particular method to estimate pseudotime and branching
association, a modular approach is possible in which the
best method for a given study is used. The prior uncer-
tainty specification on the branching association allows
the BGP user to quantify the expected accuracy of the
global branching method.

The probabilistic nature of the BGP model allows for
additional biological insights to be gained by constructing
a gene branch order network and identifying early lineage
priming. The former is accomplished by computing a pair-
wise gene probability that assesses the likelihood of a gene
branching before another. The latter can be inferred by
examining the gene network and identifying the earliest
branching genes. We demonstrated this approach on both
single-cell data sets, identifying early-branching genes and
confident orderings of gene branching events.
Concurrent with our study, [25] used changepoint ker-

nels to develop similar branching GPs to identify bifur-
cations in single-cell transcriptional data sets. They use
a Markov chain Monte Carlo approach to estimate cell
branch association and branching times. Their approach
also explicitly models recombination, in which individual
branches are merged, and they can jointly estimate pseu-
dotime. However, the computational complexity of their
method would make application to genome-wide infer-
ence of branching times from unlabelled data challenging
and that is the motivation for our sparse inducing point
variational approach.
A number of extensions of the BGP model are possible

that would increase the range of possible applications. The
branching kernel could be adapted to detect changepoints
in time series. Whereas we have modelled a branch-
ing event as the intersection of three latent functions, a
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changepoint would require only two latent functions. We
would also like to extend our model to non-Gaussian like-
lihoods, which would more accurately describe single-cell
data. This would increase inference complexity but could
provide better calibrated uncertainty estimates. Another
useful extension would be to jointly infer pseudotime and
branching behaviour, which would also improve uncer-
tainty estimation as the uncertainty arising from the esti-
mation of the former would be included in the posterior
branching uncertainty. Extending our model to multi-
ple branching points is straightforward from a modelling
standpoint but presents a more challenging optimisation
problem, for which a tree prior on the branching struc-
ture may prove helpful [26]. This extension would allow us
to address the problem of selecting the correct number of
branches in the global cellular branching dynamics.

Methods
Branchingmodel derivation outline
We present an overview of the probabilistic model for
BGP. The full model description and derivation of the
variational inference lower bound is given in the supple-
mentary material (Additional file 1: Section 2).
First, we define the Gaussian process kernel describ-

ing a branching structure. We then derive a lower bound
on the model likelihood using variational inference. In
the supplementary material (Additional file 1: Section
2.2), we present a formulation of a sparse inducing point
approximation that allows the application of the model
to large data sets. How to perform prediction on the full
and sparse models is also presented in the supplementary
material (Additional file 1: Section 2.3).

Branching kernel
To model the branching process, we specify a branch-
ing kernel that constrains the latent branching functions
to intersect at the branching point. We use a modified
version of the kernel proposed in [12]. The trunk f and
branch kernel functions g and h are constrained to cross at
the branching point tp. We place Gaussian process priors
on all three functions and constrain them to intersect:

f ∼ GP(0,K),
g ∼ GP(0,K),
h ∼ GP(0,K),

f
(
tp

) = g
(
tp

) = h
(
tp

)
.

(6)

For simplicity, the same kernel is used for all three
functions although it would be straightforward to extend
our framework to specify different kernels for each latent
function. This would allow for instance, one branch to be
modelled as a periodic function and the others as non-
periodic. The extra flexibility would come at the cost
of increasing the number of parameters that need to be
estimated.

The resulting covariance between any two latent func-
tions f and g constrained to cross at tp is

� =
(
Kff Kfg
Kgf Kgg

)

=
⎛

⎝
K(T,T)

K(T,tp)K(tp,T)
K(tp,tp)

K(T,tp)K(tp,T)
K(tp,tp)

K(T,T)

⎞

⎠ . (7)

where K(T,T), K(T, tp) and K(tp, tp) are the kernel func-
tions evaluated between all training data pseudotimes T,
between the training data and branching point, and solely
at the branching, point respectively.
In [12], only two latent functions were specified, a con-

trol and perturbation condition where the former spanned
the branching point. In our modified formulation, three
functions are used, allowing for a discontinuity in the gra-
dient between the trunk and both branch latent functions.
As an extension of our model, the derivatives of the latent
functions could also be constrained to intersect at the
branch point to allow for differentiable paths.

Full GP inference
Let Y ∈ R

N be the data of interest and letMf be the num-
ber of functions that are dependent. We specify a set of
latent functions F for each data point using an expanded
representation of size M × 1 where M = NMf

2. Let Z ∈
{0, 1}N×M be the binary indicator matrix on the expanded
representation that describes the association of each data
point to a latent function. Each row of Z has only one
non-zero entry. The model likelihood is

p (Y |F ,Z) = N
(
Y |ZF , σ 2I

)
. (8)

The extension to multiple independent outputs is
straightforward as the likelihood factorises:

p (Y |F ,Z) =
D∏

d=1
N

(
Yd|ZFd, σ 2I

)
, (9)

where Yd denotes theN×1 column vector of observations
for output d and similarly Fd denotes the M × 1 column
vector of latent function values. We omit the multiple
output case from the derivation below for clarity.
As in [13], we place a categorical prior on the indicator

matrix Z and a GP prior on the latent functions F. Note
that the latter does not factorise as in [13], as we assume
the latent functions are dependent:

p(Z) =
N∏

n=1

M∏

m=1
[�][Z]nmn,m , (10)

p(F) = N (0,K) , (11)

where for the multinomial distribution we have∑M
m=1 [�]nm = 1 and K is the GP kernel3.
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The log likelihood is not analytically tractable, as it
involves integrating out the indicator matrix Z:

log p (Y |F) = log
∫

p (Y ,Z|F) dZ. (12)

We proceed to compute a lower bound using Jensen’s
inequality:

log p (Y |F) = log
∫

p (Y ,Z|F)
q(Z)

q(Z)
dZ

= Eq(Z)

[
log p (Y ,Z|F)

] − Eq(Z)

[
log q(Z)

]
.

(13)

From the mean-field assumption, the latent functions F
are independent of the association indicators Z:

q (Z, F) = q(Z)q(F). (14)

The log likelihood term is

logN
(
Y |ZF , σ 2I

) = − N
2
log(2π) − N

2
log

(
σ 2)

− 1
2σ 2 (Y − ZF)T (Y − ZF) .

(15)

Taking the expectation with respect to the variational
distribution q(Z):

Eq(Z)

[
logN

(
Y |ZF , σ 2I

)] = − N
2
log(2π) − N

2
log

(
σ 2)

− 1
2σ 2

(
YTY + FTAF − 2FT�TY

)
,

(16)

where we have defined

� � Eq(Z)(Z),

A � Eq(Z)

(
ZTZ

)
,

and the variational approximation is

q(Z) =
∏

n,m
�

Zn,m
n,m . (17)

This encodes the mean-field assumption as we assume
the posterior indicators factorise.
The second-order expectation for A is

[
Ai,j

] = Eq(Z)

[
∑

n
zn,izn,j

]

=
[
∑

n
�n,i

]

δi,j, (18)

where zi the N × 1 indicator vector for latent function
i = m.
The KL divergence term is computable as

KL
[
q(Z) || p(Z)

] =
∑

n,m
�n,m log

(
�n,m
[�]n,m

)
.

Our bound is, therefore,

log p (Y |F) ≥ L1,

where we have defined

L1 � −N
2
log

(
2πσ 2) − KL

[
q(Z) || p(Z)

]

− (1)
2σ 2

(
YTY + FTAF − 2FT�TY

)
.

(19)

We proceed to integrate out the latent functions F to
obtain the variational collapsed bound:

log p(Y ) = log
∫

p (Y |F) p(F)dF

≥ log
∫

exp [L1] p(F)dF .
(20)

This bound holds because L1 is a bound to log p (Y |F)

and the exponent function is monotonic. More details can
be found in [27].
Setting the prior on the latent function as a GP,

log p(F) = logN (F|0,K), and substituting (19) into (20)
results in the collapsed bound

L2 � − N
2
log(2πσ 2) − 1

2σ 2Y
TY − 1

2
log |K |

− 1
2
log

∣
∣Aσ−2 + K−1∣∣

+ 1
2
σ−4YT�

(
Aσ−2 + K−1)−1

�TY

− KL
[
q(Z) || p(Z)

]
.

(21)

We can also derive this bound when using an inducing
point approximation. This allows the algorithm to scale
up to larger data sets. The full derivation is given in the
supplementary material (Additional file 1: Section 2).

Endnotes
1 Timemeasured on aMacBook Pro with 2.2GHz quad-

core Intel Core i7 and 16GB of DDR3L onboard memory.
2This expanded representation allows for efficient

recomputation of the marginal likelihood for different
branching times.

3 For simplicity, we assume the same kernel for every
output and latent trajectory function. Removing this
restriction does not affect the derivation but will increase
the inference complexity.

Additional file

Additional file 1: Supplementary material for BGP: identifying
gene-specific branching dynamics from single-cell data with a branching
Gaussian process. This also contains additional results for both the
synthetic and single-cell data sets. (PDF 1206 kb)
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