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Abstract

Transcripts are frequently modified by structural variations, which lead to fused transcripts of either multiple genes,
known as a fusion gene, or a gene and a previously non-transcribed sequence. Detecting these modifications, called
transcriptomic structural variations (TSVs), especially in cancer tumor sequencing, is an important and challenging
computational problem. We introduce SQUID, a novel algorithm to predict both fusion-gene and non-fusion-gene
TSVs accurately from RNA-seq alignments. SQUID unifies both concordant and discordant read alignments into one
model and doubles the precision on simulation data compared to other approaches. Using SQUID, we identify novel
non-fusion-gene TSVs on TCGA samples.
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Background
Large-scale transcriptome sequence changes are known to
be associated with cancer [1, 2]. Those changes are usually
a consequence of genomic structural variation (SV). By
pulling different genomic regions together or separating
one region into pieces, structural variants can potentially
cause severe alteration to transcribed or translated prod-
ucts. Transcriptome changes induced by genomic SVs,
called transcriptomic structural variants (TSVs), can have
a particularly large impact on disease genesis and pro-
gression. In some cases, TSVs bring regions from one
gene next to regions of another, causing exons from both
genes to be transcribed into a single transcript (known
as a fusion gene). Domains of the corresponding RNA or
proteins can be fused, inducing new functions or causing
loss of function, or the transcription or translation lev-
els can be altered, leading to disease states. For example,
BCR-ABL1 is a well-known fusion oncogene for chronic
myeloid leukemia [3], and the TMPRSS2-ERG fusion
product leads to over-expression of ERG and helps trig-
gers prostate cancer [4]. These fusion events are used as
biomarkers for early diagnosis or treatment targets [5]. In
other cases, TSVs can affect genes by causing a previously
non-transcribed region to be incorporated into a gene,
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causing disruption to the function of the altered gene.
There have been fewer studies on these TSVs between
transcribed and non-transcribed regions, but their ability
to alter downstream RNA and protein structure is likely to
lead to similar results as fusion-gene TSVs.
Genomic SVs are typically detected fromwhole-genome

sequencing (WGS) data by identifying reads and read
pairs that are incompatible with a reference genome (e.g.,
[6–11]). However, WGS data are not completely suitable
for inferring TSVs since they neither inform which region
is transcribed nor reveal how the transcribed sequence
will change if SVs alter a splicing site or the stop codon.
In addition, WGS data are scarcer and more expensive
to obtain than RNA-seq measurements [12], which target
transcribed regions directly. RNA-seq is relatively inex-
pensive, high-throughput, and widely available in many
existing and growing data repositories. For example, The
Cancer Genome Atlas (TCGA, https://cancergenome.nih.
gov) contains RNA-seq measurements from thousands
of tumor samples across various cancer types, but 80%
of tumor samples in TCGA have RNA-seq data but no
WGS data (Additional file 1: Figure S1). While methods
exist to detect fusion genes from RNA-seq measure-
ments (e.g., [13–21]), fusion genes are only a subset
of TSVs, and existing fusion-gene detection methods
rely heavily on current gene annotations and are gener-
ally not able or at least not optimized to predict non-
fusion-gene TSV events. De novo transcript assembly

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-018-1421-5&domain=pdf
mailto: carlk@cs.cmu.edu
https://cancergenome.nih.gov
https://cancergenome.nih.gov
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Ma et al. Genome Biology  (2018) 19:52 Page 2 of 16

(e.g., [22–25]) followed by transcript-to-genome align-
ment (e.g., [26–28]) is used in some fusion-gene detection
methods. These approaches rely on annotation-based fil-
tering steps to achieve high accuracy. Although it is pos-
sible to extend these approaches to non-fusion-gene TSV
detection, the lack of annotation information for non-
transcribing regions makes these approaches less suitable
for finding non-fusion-gene TSVs. This motivates the
need for a method to detect both types of TSVs directly
from RNA-seq data.
We present SQUID, the first computational tool that is

designed to predict both types of TSVs comprehensively
from RNA-seq data. SQUID divides the reference genome
into segments and builds a genome segment graph (GSG)
from both concordant and discordant RNA-seq read
alignments. Using an efficient, novel integer linear pro-
gram (ILP), SQUID rearranges the segments in the GSG
so that as many read alignments as possible are concor-
dant with the rearranged sequence. TSVs are represented
by pairs of breakpoints realized by the rearrangement. In
this way, it can detect both fusion-gene events and TSVs
incorporating previously non-transcribed regions in tran-
scripts. Discordant reads that cannot be made concordant
through the optimal rearrangement given by the ILP are
discarded as false positive discordant reads, likely due
to misalignments. By building a consistent model of the
entire rearranged genome and maximizing the number
of overall concordant read alignments, SQUID drastically
reduces the number of spurious TSVs reported compared
with other methods.
SQUID is highly accurate. It is usually>20%more accu-

rate than applying WGS-based SV detection methods to
RNA-seq data directly. It is similarly more accurate than
the pipeline that uses de novo transcript assembly and
transcript-to-genome alignment to detect TSVs. We also
show that SQUID is able to detect more TSVs involv-
ing non-transcribed regions than any existing fusion-gene
detection method.
We use SQUID to detect TSVs within 401 TCGA tumor

samples of four cancer types (99–101 samples each of
breast invasive carcinoma [29], bladder urothelial car-
cinoma [30], lung adenocarcinoma [31], and prostate
adenocarcinoma [32]). SQUID’s predictions suggest that
breast invasive carcinoma has a larger variance in terms
of number of TSVs/non-fusion-gene TSVs per sample
than other cancer types. We also characterize the dif-
ferences between fusion-gene TSVs and non-fusion-gene
TSVs. Observed non-fusion-gene TSVs, for example, are
more likely to be intra-chromosomal events.We show that
similar breakpoints can occur in multiple samples, and
among those that do repeatedly occur, their breakpoint
partners are also often conserved. Finally, we identify
several novel non-fusion-gene TSVs that affect known
tumor suppressor genes (TSGs), which may result in loss

of function of corresponding proteins and play a role in
tumorigenesis.

Results
A novel algorithm for detecting TSVs from RNA-seq
SQUID predicts TSVs from RNA-seq alignments to the
genome (Fig. 1 provides an overview). To do this, it seeks
to rearrange the reference genome to make as many of
the observed alignments consistent with the rearranged
genome as possible. Formally, SQUID constructs a graph
from the alignments where the nodes represent bound-
aries of genome segments and the edges represent adja-
cencies implied by the alignments. These edges represent
both concordant and discordant alignments, where con-
cordant alignments are those consistent with the reference
genome and discordant alignments are those that are not.
SQUID then uses ILP to order and orient the vertices of
the graph to make as many edges consistent as possible.
Adjacencies that are present in this rearranged genome
but not present in the original reference are proposed
as predicted TSVs. The identification of concordant and
discordant alignments, construction of the genome seg-
ments, creation of the graph, and the reordering objective
function are described in the “Methods” section.

SQUID is accurate on simulated data
Overall, SQUID’s predictions of TSVs are far more pre-
cise than other approaches at similar sensitivity on sim-
ulated data. SQUID achieves 60% to 80% precision and
about 50% sensitivity on simulation data (Fig. 2a, b).
SQUID’s precision is >20% higher than several de novo
transcriptome assembly and transcript-to-genome align-
ment pipelines (for details see Additional file 1: Additional
Text), and the precision of WGS-based SV detection
methods on RNA-seq data is even lower. The sensitivity
of SQUID is similar to de novo assembly with MUMmer3
[26], but a little lower than DELLY2 [6] and LUMPY [7]
with the SpeedSeq [33] aligner. The overall sensitivity is
not as high as the precision, which is probably because
there are not enough supporting reads aligned correctly
to some TSV breakpoints. That assembly andWGS-based
SV detection methods achieve similar sensitivity corrob-
orates the hypothesis that the data limit the achievable
sensitivity.
We test SQUID’s robustness to various parameter

choices of SQUID itself (Additional file 1: Table S1).
SQUID is robust against different values of the seg-
ment degree threshold (Additional file 1: Figure S2a, b),
which filters edges from segments that are connected
to too many other segments. Another parameter, the
edge weight threshold, is equivalent to the read sup-
port threshold in other SV detection software. It con-
trols the precision–sensitivity tradeoff (Additional file 1:
Figure S2c, d). The discordant edge weight coefficient,
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Fig. 1 Overview of the SQUID algorithm. Based on the alignments of RNA-seq reads to the reference genome, SQUID partitions the genome into
segments (step 1), connects the endpoints of the segments to indicate the actual adjacency in transcript (step 2), and finally reorders the endpoints
along themost reliable path (step 3). Thick black lines are genome sequences or segments. Grey, red, and cyan short lines are read alignments, where
grey represents concordant alignment, and red and cyan represent discordant alignments of different candidate TSVs. Vertical dashed lines are the
separation boundaries between genome segments, and the boundaries are derived based on read alignments. The heads of genome segments are
denoted by As, Bs, etc., and the tails are denoted by At, Bt, etc. Step 2: Each read alignment generates one edge between segment endpoints. An
edge is added in the following way. When traversing the genome segments along the edge to generate a new sequence, the read can be aligned
concordantly onto the new sequence. Multi-edges are collapsed into one weighted edge, where the weight is the number of reads supporting that
edge. Red and cyan edges correspond to different candidate TSVs. Step 3: Genome segments are reordered and reoriented to maximize the total
number of concordant alignments (concordant edge weights) with respect to the new sequence. Step 4: Discordant edges that are concordant after
rearrangement are output as TSVs (in this case, both red edges and cyan edges are output). chr chromosome, TSV transcriptomic structural variant

which up-weights initially discordant reads to com-
pensate for heterogeneous mixtures, does not affect
precision or sensitivity in simulation data because sim-
ulated reads are homogeneous, and there is no need to
adjust for the normal/tumor cell ratio (Additional file 1:
Figure S2e, f ).
We also test the robustness of SQUID against different

RNA-seq experimental settings. Specifically, we simulate
RNA-seq data with read lengths of 51, 76 and 100 bp
combined with fragment lengths of 250 bp and 350 bp
(Fig. 2c, d). For the full table showing the accuracy of
SQUID and other methods, see Additional file 2. Each
experimental setting has four replicates. With increased
read length, SQUID in general performs better in both
precision and sensitivity (although there are a few excep-
tions where the randomness of the simulation shad-
ows the benefit from the longer read length). However,
with increased fragment length, SQUID performs slightly
worse. In this case, there are fewer reads aligned at the
exact breakpoint, possibly due to an increase in split-
alignment difficulty for aligners. A short read length

(51 bp) with long fragment length (350 bp) leads to the
worst precision and sensitivity.
The low precision of the pipeline- and WGS-based

methods (Fig. 2) shows that neither of these types of
approaches are suitable for TSV detection from RNA-
seq data. WGS-based SV detection methods are able to
detect TSV signals, but not able to filter out false pos-
itives. Assembly-based approaches require solving the
transcriptome assembly problem, which is a harder and
more time-consuming problem, and thus, errors are more
easily introduced. Further, the performance of assembly
pipelines depends heavily on the choice of software. For
example, MUMmer3 [26] is better at discordantly align-
ing transcripts than GMAP [27]. Dissect [28] is another
transcript-to-genome alignment method that is designed
for when SVs exist. (Unfortunately, Dissect did not run
to completion on some of the dataset tested here.) It is
possible that different combinations of de novo transcript
assembly and transcript-to-genome alignment tools can
improve the accuracy of the pipelines, but optimizing the
pipeline is out of the scope of this work.
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Fig. 2 Performance of SQUID and other methods on simulation data. a, b Different numbers of SVs (200, 500, and 800 SVs) are simulated in each
dataset. Each simulated read is aligned with the aligners (a) STAR and (b) SpeedSeq. If the method allows for user-defined minimum read support
for prediction, we vary the threshold from 3 to 9, and plot a sensitivity–precision curve (SQUID and LUMPY), otherwise it is shown as a single point.
c, d Performance of SQUID under different RNA-seq experimental parameter combinations (read lengths of 51, 76, and 100 bp combined with
fragment lengths of 250 and 350). A longer read length increases both the precision and sensitivity of SQUID. A longer fragment length slightly
decreases SQUID’s performance. A short read length with a long fragment length leads to the worst precision and sensitivity. SV structural variant

SQUID’s effectiveness is likely due to its unified model
for both concordant reads and discordant reads. Cover-
age in RNA-seq alignment is generally proportional to
the expression level of the transcript, and using one read
count threshold for TSV evidence is not appropriate.
Instead, the ILP in SQUID puts concordant and discor-
dant alignments into competition and selects the winner
as the most reliable TSV.

SQUID is able to detect non-fusion-gene TSVs for two
previously studied cell lines
Fusion-gene events are a strict subset of TSVs where the
two breakpoints are each within a gene region and the
fused sequence corresponds to the sense strand of both
genes. Fusion genes, thus, exclude TSV events where a
gene region is fused with an intergenic region or an anti-
sense strand of another gene. Nevertheless, fusion genes
have been implicated in playing a role in cancer.
To probe SQUID’s ability to detect both fusion-gene

and non-fusion-gene TSVs from real data, we use two
cell lines, HCC1954 and HCC1395, both of which are
tumor epithelial cells derived from breast. Previous stud-
ies have experimentally validated the predicted SVs and

fusion-gene events for these two cell lines. Specifically, we
compile results from [34–38] for HCC1954 and results
from [13, 35] for HCC1395. After removing short dele-
tions and overlapping SVs from different studies, we have
326 validated SVs for the HCC1954 cell line, of which 245
have at least one breakpoint outside a gene region, and the
rest (81) have both breakpoints within a gene region. In
addition, we have 256 validated true SVs for the HCC1395
cell line, of which 94 have at least one breakpoint outside
a gene region, while the rest (162) have both breakpoints
within a gene. For a predicted SV to be a true positive,
both predicted breakpoints should be within a window of
30 kb of true breakpoints and the predicted orientation
should agree with the true orientation. We use a relatively
large window, since the true breakpoints can be located
within an intron or other non-transcribed region, while
the observed breakpoint from RNA-seq reads will be at a
nearby coding or expressed region.
We use publicly available RNA-seq data from the

Sequencing Read Archive (SRA) of the National Insti-
tutes of Health (SRA accessions SRR2532344 [39] and
SRR925710 [40] for HCC1954, and SRR2532336 [41]
for HCC1395). Because the data are from a pool of
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experiments, the sample from which RNA-seq was col-
lected may be different from those used for experimental
validation. We align reads to the reference genome using
STAR. We compare the result with the top fusion-gene
detection tools evaluated in [42] and newer software not
evaluated by [42], specifically, SOAPfuse [20], deFuse [14],
FusionCatcher [16], JAFFA [15], and INTEGRATE [15].
In addition, we compare to the same pipeline of de novo
transcriptome assembly and transcript-to-genome align-
ment as in the previous section (also see Additional file 1:
Additional Text). Trans-ABySS [22] is chosen for the
de novo transcriptome assembly and MUMmer3 [26] is
chosen for the transcript-to-genome alignment, because
this combination performed the best with simulation
data. Table 1 summarizes the total number of predicted
TSVs, and the number of TSVs corresponding to pre-
viously validated TSVs (hits). For the full list of TSV
predictions by SQUID for the two cell lines, refer to
Additional files 3 and 4.
When restricted to fusion-gene events, SQUID achieves

similar precision and sensitivity compared to fusion-gene
detection tools (Fig. 3a). These methods have different
rankings for the two cell lines. There is no uniformly
best method for fusion-gene TSV predictions for both
cell lines. SQUID has one of the highest precision val-
ues and the second highest sensitivity for the HCC1954
cell line and ranks in the middle for the HCC1395 cell
line. For both cell lines, the pipeline of de novo transcrip-
tome assembly and transcript-to-genome alignment has
very low precision, which suggests that without filtering
steps, assembly-based methods are not able to distinguish
between noise and true TSVs.
It is even harder to predict non-fusion-gene TSVs accu-

rately, since current annotations cannot be used to limit
the search space for potential read alignments or TSV
events. Only SQUID, deFuse, and the pipeline of de novo
transcriptome assembly and transcript-to-genome align-
ment are able to detect non-fusion-gene events. SQUID
has both a higher precision and a higher sensitivity com-
pared to deFuse (Fig. 3b). The assembly pipeline has a
higher sensitivity but very low precision, which again

indicates that this pipeline outputs non-fusion-gene TSV
signals without distinguishing them from noise. A con-
siderable proportion of validated TSVs are non-fusion-
gene TSVs. Correctly predicted non-fusion-gene TSVs
make up almost half of all correct predictions of SQUID
(Fig. 3c).
We test the robustness of SQUID with respect to dif-

ferent parameter values on the two cell lines (Additional
file 3: Figure S3). We find the same trend regarding the
segment degree threshold and the edge weight thresh-
old as with simulated data. The segment degree thresh-
old does not affect either precision or sensitivity much,
and the edge weight threshold determines the precision–
sensitivity tradeoff. The discordant edge weight coeffi-
cient does not change the sensitivity on the HCC1954
cell line, possibly indicating that the sequencing data is
relatively homogeneous. As this parameter increases, pre-
cision for the HCC1954 cell line slightly decreases because
more TSVs are predicted. In contrast, an increase of
the discordant edge weight coefficient increases both the
precision and sensitivity of the HCC1395 cell line. This
implies that for some transcripts, normal reads dominate
tumor reads, and increasing this parameter allows us to
identify those TSVs.
The sensitivity for both cell lines of all tested methods

is relatively low. One explanation for this is the difference
between the source of the data used for prediction and val-
idation. In the ground truth, some SVs were first identified
using WGS data or BAC end sequencing and then vali-
dated experimentally. Not all genes are expressed in the
RNA-seq data used here, and lowly expressed genes may
not generate reads spanning SV breakpoints due to read
sampling randomness. To quantify the feasibility of each
SV being detected, we count the number of supporting
chimeric reads in RNA-seq alignments. The proportion of
ground-truth fusion-gene TSVs with supporting reads is
very low for both cell lines: 26.5% for HCC1954 (13 out
of 49) and 27.1% for HCC1395 (47 out of 173). The max-
imum sensitivity of fusion-gene TSV prediction is limited
by these numbers, which explains the relatively low sensi-
tivity we observed. For non-fusion-gene TSVs, only 13.0%

Table 1 Summary of TSV predictions for HCC1954 and HCC1395 cell lines

Method SQUID FusionCatcher JAFFA deFuse INTEGRATE SOAPfuse Pipeline

HCC1954 Fusion-gene predictions 46 54 67 95 67 177 2118

Fusion-gene hits 7 5 4 12 10 5 4

Non-fusion-gene predictions 46 0 0 83 0 0 1080

Non-fusion-gene hits 7 0 0 5 0 0 11

HCC1395 Fusion-gene predictions 44 42 44 110 61 185 2413

Fusion-gene hits 11 11 16 15 16 19 23

Non-fusion-gene predictions 57 0 0 121 0 0 1185

Non-fusion-gene hits 9 0 0 7 0 0 8
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Fig. 3 Performance of SQUID and fusion-gene detection methods on breast cancer cell lines HCC1954 and HCC1395. Predictions are evaluated for
previously validated SVs and fusions. a Fusion-gene prediction sensitivity–precision curve of different methods. b Non-fusion-gene prediction
sensitivity–precision curve. Only SQUID, deFuse, and the pipeline of de novo transcriptome assembly and transcript-to-genome alignment are able
to predict non-fusion-gene TSVs. c Number of fusion-gene TSVs and non-fusion-gene TSVs correctly predicted by SQUID. Non-fusion-gene TSVs
make up a considerable proportion of all TSVs. TSV transcriptomic structural variant

in HCC1954 (36 out of 277) and 21.7% in HCC1395
(13 out of 83) can possibly be identified.
We useWGS data for the corresponding cell lines to val-

idate the novel TSVs predicted by SQUID (SRA accession
numbers ERP000265 [43] for HCC1954 and SRR892417
[44] and SRR892296 [45] for HCC1395). For each TSV
prediction, we extract a 25-kb sequence around both
breakpoints and concatenate them according to the pre-
dicted TSV orientation. We then map the WGS reads
against these junction sequences using SpeedSeq [33]. If a
paired-end WGS read can be mapped only concordantly
to a junction sequence but not to the reference genome,
that paired-end read is marked as supporting the TSV.
If at least three WGS reads support a TSV, the TSV is
considered as validated. With this approach, we are able
to validate 40 more TSV predictions for the HCC1395
cell line and 18 more TSV predictions for the HCC1954
cell line. In total, the percentage of predicted TSVs that
can be validated either by previous studies or by WGS
data is 57.7% for the HCC1395 cell line and 35.2% for
the HCC1954 cell line. The WGS validation rate of the
HCC1954 cell line is much lower than for the HCC1395
cell line, which can be explained by the relatively low read
depth. The read depth for HCC1954 WGS data is 7.6×
and that for HCC1395 WGS data is 22.7×.

Characterizing TSVs on four types of TCGA cancer samples
To compare the distributions and characteristics of TSVs
among cancer types and between TSV types, we applied
SQUID on arbitrarily selected 99 to 101 tumor sam-
ples from TCGA for each of four cancer types: breast
invasive carcinoma (BRCA), bladder urothelial carcinoma
(BLCA), lung adenocarcinoma (LUAD), and prostate ade-
nocarcinoma (PRAD). TCGA aliquot barcodes of the

corresponding samples are listed in Additional file 5. For
data processing details, see Additional file 1: Additional
Text. The running time of SQUID is less than 3 hours for
the majority of the RNA-seq data we selected, and the
maximum memory usage is around 4 or 8GB (Additional
file 1: Figure S4).
To estimate the accuracy of SQUID’s prediction for

selected TCGA samples, we use WGS data for the same
patients to validate TSV junctions. There are 72 WGS
experiments available for the 400 samples (20 BLCA,
10 BRCA, 31 LUAD, and 11 PRAD). We use the same
approach with WGS to validate SQUID predictions as in
the previous section. SQUID’s overall validation rate is
88.21%, which indicates that SQUID is quite accurate and
reliable on TCGA data.
We find that most samples have ∼18–23 TSVs, includ-

ing ∼3–4 non-fusion-gene TSVs among all four cancer
types (Fig. 4a, b). For BRCA, the tail of the distribu-
tion of TSV counts is larger, and more samples contain a
larger number of TSVs. The same trend is observed when
restricted to non-fusion-gene TSVs.
Inter-chromosomal TSVs are more prevalent than intra-

chromosomal TSVs for all cancer types (Fig. 4c), although
this difference is much more pronounced in bladder
and prostate cancer. Non-fusion-gene TSVs are more
likely to be intra-chromosomal events than fusion-gene
TSVs (Fig. 4d), and in fact in breast and lung can-
cer, we detect more intra-chromosomal non-fusion-gene
TSVs than inter-chromosomal non-fusion-gene TSVs.
Prostate cancer is an exception in that, for non-fusion-
gene TSVs, inter-chromosomal events are observed
much more often than intra-chromosomal events. Nev-
ertheless, non-fusion-gene TSVs are more likely to be
intra-chromosomal than fusion-gene TSVs, because the
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Fig. 4 a, b Number of TSVs and non-fusion-gene TSVs in each sample in different cancer types. BRCA has slightly more samples with a larger
number of (non-fusion-gene) TSVs. Thus, it has a longer tail on the y-axis. c, d Number of inter-chromosomal and intra-chromosomal TSVs within all
TSVs and within non-fusion-gene TSVs. Non-fusion-gene TSVs contain more intra-chromosomal events than fusion-gene TSVs. (e) For breakpoints
occurring more than 3 times in the same cancer type, the distribution of the entropy of its TSV partner. The lower the entropy, the more likely it is
that the breakpoint has a fixed partner. The peak near 0 indicates a large portion of breakpoints are likely to be rejoined with the same partner in the
TSV. However, there are still some breakpoints that have multiple rejoined partners. BLCA bladder urothelial carcinoma, BRCA breast invasive
carcinoma, LUAD lung adenocarcinoma, PRAD prostate adenocarcinoma, TSV transcriptomic structural variant

percentage of intra-chromosomal TSVs within non-
fusion-gene TSVs is higher than that within all TSVs.
For a large proportion of breakpoints occurring multi-

ple times within a cancer type, their partner in the TSV
is likely to be fixed and to reoccur every time that break-
point is used. To quantify this, for each breakpoint that
occurred ≥3 times, we compute the entropy of its partner
promiscuity. Specifically, we derive a discrete empirical
probability distribution of partners for each breakpoint
and compute the entropy of this distribution. This mea-
sure, thus, represents the uncertainty of the partner given
one breakpoint, with higher entropy corresponding to a
less conserved partnering pattern. In Fig. 4e, we see that
there is a high peak near 0 for all cancer types, which indi-
cates that for a large proportion of recurring breakpoints,
we are certain about its rejoined partner once we know the
breakpoint. However, there are also promiscuous break-
points with entropy larger than 0.5.

Tumor suppressor genes can undergo TSV and generate
altered transcripts
TSGs protect cells from becoming cancer cells. Usually
their functions involve inhibiting cell cycle, facilitating

apoptosis, and so on [46]. Mutations in TSGs may lead
to loss of function of the corresponding proteins and
benefit tumor growth. For example, a homozygous loss-
of-function mutation in p53 is found in about half of
cancer samples across various cancer types [47]. TSVs are
likely to cause loss of function of TSGs as well. Indeed, we
observe several TSGs that are affected by TSVs, both of
the fusion-gene type and the non-fusion-gene type.
The ZFHX3 gene encodes a transcription factor

that transactivates cyclin-dependent kinase inhibitor 1A
(CDKN1A), a cell cycle inhibitor [48]. We find that in
one BLCA and one BRCA sample, there are TSVs affect-
ing ZFHX3. These two TSVs events are different from
each other in terms of the breakpoint partner outside of
ZFHX3. In the BLCA tumor sample, an intergenic region
is inserted after the third exon of ZFHX3 (see Fig. 5a; for
a visualization with Integrative Genomics Viewer (IGV)
[49], see Additional file 1: Figure S5). The fused transcript
stops at the inserted region, causing the ZFHX3 transcript
to lose the rest of its exons. In the BRCA tumor sample, a
region of the anti-sense strand of geneMYLK3 is inserted
after the third exon of theZFHX3 gene (Fig. 5b, Additional
file 1: Figure S6). Because codons and splicing sites are
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Fig. 5 Tumor suppressor genes are affected by both fusion-gene and non-fusion-gene TSVs and generate transcripts with various features. a ZFHX3
is fused with an intergenic region after exon 3. The transcript stops at the inserted region, losing the rest of the exons. b ZFHX3 is fused with a part of
theMYLK3 anti-sense strand after exon 3. Codon and splicing signals are not preserved on anti-sense strands, thus, anMYLK3 anti-sense insertion
acts like an intergenic region insertion and causes transcription to stop before reaching the rest of the ZFHX3 exons. c ASXL1 is fused with an
intergenic region in the middle of exon 12. The resulting transcript contains a truncated ASXL1 exon 12 and intergenic sequence. d The first three
exons of the ASXL1 gene are joined with the last three exons of PDRG1, resulting in a fused transcript containing six complete exons from both
ASXL1 and PDRG1. chr chromosome, TSV transcriptomic structural variant

not preserved on the anti-sense strand, the transcribed
insertion region does not correspond to known exons of
the MYLK3 gene, but covers the range of the first exon of
MYLK3 and extends to the first intron and 5′ intergenic
region. Transcription stops within the inserted region, and
causes the ZFHX3 transcript to lose exons after exon 3,
which resembles the fusion with the intergenic region in
the BLCA sample.
Another example is given by the ASXL1 gene, which is

essential for activating CDKN2B to inhibit tumorigene-
sis [50]. We observe two distinct TSVs related to ASXL1
from BLCA and BRCA samples. The first TSV merges
the first 11 exons and half of exon 12 of ASXL1 with an
intergenic region on chromosome 4 (Fig. 5c, Additional
file 1: Figure S7). Transcription stops at the inserted inter-
genic region, leaving the rest of exon 12 untranscribed.
The breakpoint within ASXL1 is before the 3′ untrans-
lated region, so the downstream protein sequence from
exon 12 will be affected. The other TSV involving ASXL1

is a typical fusion-gene TSV where the first three exons of
ASXL1 are fused with the last three exons from the
PDRG1 gene (Fig. 5d, Additional file 1: Figure S8). Protein
domains afterASXL1 exon 4 and before PDRG1 exon 2 are
lost in the fused transcript.
These non-fusion-gene examples are novel predicted

TSV events, which are not typically detectable via tra-
ditional fusion-gene detection methods using RNA-seq
data. They suggest that non-fusion-gene events can also
be involved in tumorigenesis by disrupting TSGs.

Discussion
SQUID is able to predict both traditional fusion-gene
TSVs and non-fusion-gene TSVs from RNA-seq data with
high accuracy. This is due to its unique approach to pre-
dicting TSVs, whereby it constructs a consistent model
of the underlying rearranged genome that explains as
much of the data as possible. In particular, it simulta-
neously considers both concordant and discordant reads,
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and by rearranging genome segments to maximize the
number of concordant reads, SQUID generates a set of
compatible TSVs that are most reliable in terms of the
numbers of reads supporting them. Instead of a universal
read support threshold, the objective function in SQUID
naturally balances reads supporting and not supporting
a candidate TSV. This design is efficient in filtering out
sequencing and alignment noise in RNA-seq, especially in
the annotation-free context of predicting non-fusion-gene
TSV events.
By applying SQUID to TCGA RNA-seq data, we are

able to detect TSVs in cancer samples, especially non-
fusion-gene TSVs. We identify novel non-fusion-gene
TSVs involving the known TSGs ZFHX3 and ASXL1.
Both fusion-gene and non-fusion-gene events detected in
TCGA samples are computational predictions and need
further experimental validation.
Other important uses and implications for general TSVs

have yet to be explored and represent possible direc-
tions for future work. TSVs will impact the accuracy
of transcriptome assembly and expression quantification,
and methodological advances are needed to correct those
downstream analyses for the effect of TSVs. For exam-
ple, current reference-based transcriptome assemblers are
not able to assemble from different chromosomes for
inter-chromosomal TSVs. In addition, expression levels
of TSV-affected transcripts cannot be quantified if they
are not present in the transcript database. Incorporating
TSVs into transcriptome assembly and expression quan-
tification can potentially improve their accuracy. SQUID’s
ability to provide a new genome sequence that is as con-
sistent as possible with the observed reads will facilitate
its use as a preprocessing step for transcriptome assem-
bly and expression quantification, though optimizing this
pipeline remains a task for future work.
Several natural directions exist for extending SQUID.

First, SQUID is not able to predict small deletions.
Instead, it treats small deletions the same as introns. This
is to some extent a limitation of using RNA-seq data.
Introns and deletions are difficult to distinguish, as both
result in concordant split reads or stretched mate pairs.
Using gene annotations could somewhat address this
problem. Second, when the RNA-seq reads are derived
from a highly heterogeneous sample, SQUID is likely not
able to predict all TSVs in the same region if they conflict,
since it seeks a single consistent genome model. Instead,
SQUID will pick only the dominating one that is compat-
ible with other predicted TSVs. One approach to handle
this would be to re-run SQUID iteratively, removing reads
that are explained at each step. Again, this represents an
attractive avenue for future work.
SQUID is open source and available at http://

www.github.com/Kingsford-Group/squid and the scripts
to replicate the computational experiments described

here are available at http://www.github.com/Kingsford-
Group/squidtest.

Conclusion
We developed SQUID, the first algorithm to detect TSVs
accurately and comprehensively that targets both tradi-
tional fusion-gene detection and the much broader class
of general TSVs. SQUID exhibits higher precision at sim-
ilar sensitivities compared with WGS-based SV detection
methods and pipelines of de novo transcriptome assembly
and transcript-to-genome alignment. In addition, it can
detect non-fusion-gene TSVs with similarly high accuracy.
We use SQUID to predict TSVs in TCGA tumor sam-

ples. From our prediction, BRCA has a slightly flatter
distribution of the number of per-sample TSVs than the
other cancer types studied. We observe that non-fusion-
gene TSVs aremore likely to be intra-chromosomal events
than fusion-gene TSVs. This is likely due to the differ-
ent sequence composition features in gene vs. non-gene
regions. PRAD also stands out because it has the largest
percentage of inter-chromosomal TSVs. Overall, these
findings continue to suggest that different cancer types
have different preferred patterns of TSVs, although the
question remains whether these differences will hold up
as more samples are analyzed and whether the different
patterns are causal, correlated, or mostly due to non-
functional randomness. These findings await experimen-
tal validation.
As shown by predictions from SQUID, TSGs are

involved in non-fusion-gene TSVs. In these cases, tran-
scription usually stops within the inserted region of the
non-fusion-gene TSVs, which causes the TSG transcript
to lose some of its exons, and possibly leads to down-
stream loss of function. The large-scale variations of TSGs
suggest that non-fusion-gene TSVs can potentially affect
cancer genesis and progression, and needs to be studied
more carefully.

Methods
The computational problem: rearrangement of genome
segments
We formulate the TSV detection problem as the optimiza-
tion problem of rearranging genome segments to max-
imize the number of observed reads that are consistent
(termed concordant) with the rearranged genome. This
approach requires defining the genome segments that
can be independently rearranged. It also requires defin-
ing which reads are consistent with a particular arrange-
ment of the segments. We will encode both of these
(segments and read consistency) within a GSG. Fig. 6 is
an example.

Definition 1 (Segment) A segment is a pair s = (sh, st),
where s represents a continuous sequence in the reference

http://www.github.com/Kingsford-Group/squid
http://www.github.com/Kingsford-Group/squid
http://www.github.com/Kingsford-Group/squidtest
http://www.github.com/Kingsford-Group/squidtest
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Fig. 6 Example of a genome segment graph. Boxes are genome
segments, each of which has two ends with subscripts h and t. The
color gradient indicates the orientation from head to tail. Edges
connect the ends of genome segments

genome. sh represents its head and st its tail in reference
genome coordinates. In practice, segments will be derived
from read locations.

Definition 2 (Genome Segment Graph (GSG)) A GSG
G = (V ,E,w) is an undirected weighted graph, where
V contains both endpoints of each segment in a set of
segments S, i.e., V = {sh : s ∈ S} ∪ {st : s ∈ S}. Thus, each
vertex in the GSG represents a location in the genome. An
edge (u, v) ∈ E indicates that there is evidence that the
location u is adjacent to location v. The weight function
w : E −→ R

+ represents the reliability of an edge. Gener-
ally speaking, the weight is the number of read alignments
supporting the edge, but we use a multiplier to calculate
edge weights, which is discussed below. In practice, E
and w will be derived from split-aligned and paired-end
reads.

Defining vertices by endpoints of segments is required
to avoid ambiguity. Knowing only that segment i is con-
nected with segment j is not enough to recover the
sequence, since different relative positions of i and j spell
out different sequences. Instead, for example, an edge
(it , jh) indicates that the tail of segment i is connected
to the head of segment j, and this specifies a unique
desired local sequence with the only other possibility
being the reverse complement (i.e., it could be that the
true sequence is i · j or rev(j) · rev(i); here · indicates
concatenation and rev(i) is the reverse complement of
segment i).
A GSG is similar to a breakpoint graph [51] but with

critical differences. A breakpoint graph has edges repre-
senting connections both in the reference genome and in
the target genome. Edges in a GSG represent only the
target genome, and they can be either concordant or dis-
cordant. In addition, a GSG does not require that the
degree of every vertex is 2, and thus, alternative splicing
and erroneous edges can exist in a GSG.
Our goal is to reorder and reorient the segments in

S so that as many edges in G are compatible with the
rearranged genome as possible.

Definition 3 (Permutation) A permutation π on a set of
segments S projects a segment in S to a set of integers from 1
to |S| (the size of S), representing the indices of the segments
in an ordering of S. In other words, each permutation π

defines a new order of segments in S.

Definition 4 (Orientation Function) An orientation
function f maps both ends of a segment to 0 or 1:

f : {sh : s ∈ S} ∪ {st : s ∈ S} −→ {0, 1},
subject to f (sh) + f (st) = 1 for all s = (sh, st) ∈ S. An ori-
entation function specifies the orientations of all segments
in S. Specifically, f (sh) = 1 means sh goes first and st next,
corresponding to the forward strand of the segment, and
f (st) = 1 corresponds to the reverse strand of the segment.

With a permutation π and an orientation function f, the
exact and unique sequence of a genome is determined.
The reference genome also corresponds to a permutation
and an orientation function, where the permutation is the
identity permutation and the orientation function maps
all sh to 1 and all st to 0.

Definition 5 (Edge Compatibility) Given a set of seg-
ments S, a GSG G = (V ,E,w), a permutation π on S,
and an orientation function f, an edge e = (ui, vj) ∈ E,
where ui ∈ {uh,ut} and vj ∈ {vh, vt}, is compatible with
permutation π and orientation f if and only if

1 − f (vj) = 1 [π(v) < π(u)] = f (ui), (1)

where 1[ x] is an indicator function, which is 1 if x is true
and 0 otherwise. Comparison between permuted elements
is defined as comparing their index in permutation, that is,
π(v) < π(u) states that segment v is in front of segment u
in rearrangement π . We write e ∼ (π , f ) if e is compatible
with π and f.

The above two edge compatibility Eqs. 1 require that, for
an edge to be compatible with the rearranged and reori-
ented sequence determined by π and f, it needs to connect
the right side of the segment in front to the left side of the
segment following it. As we will see below, the edges of
a GSG are derived from read alignments. An edge being
compatible with π and f is essentially equivalent to stating
that the corresponding read alignments are concordant
with respect to the target genome determined by π and f.
When (π , f ) is clear, we refer to edges that are compati-
ble as concordant edges and edges that are incompatible
as discordant edges.
With the above definitions, we formulate an optimiza-

tion problem as follows:

Problem 1 Input: A set of segments S and a GSG G =
(V ,E,w).
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Output: Permutation π on S and orientation function f
that maximizes:

max
π ,f

∑

e∈E
w(e) · 1 [

e ∼ (π , f )
]
. (2)

This objective function tries to find a rearrangement of
genome segments (π , f ) such that when aligning reads to
the rearranged sequence, as many reads as possible will
be aligned concordantly. This objective function includes
both concordant alignments and discordant alignments
and sets them in competition, which is effective in reduc-
ing the number of false positives when tumor transcripts
outnumber normal transcripts. There is the possibility
that some rearranged tumor transcripts will be outnum-
bered by normal counterparts. To be able to detect TSVs
in this case, depending on the setting, we may weight
discordant read alignments more than concordant read
alignments. Specifically, for each discordant edge e, we
multiply the weight w(e) by a constant α that represents
our estimate of the ratio of normal transcripts over tumor
counterparts.
The final TSVs are modeled as pairs of breakpoints.

Denote the permutation and orientation corresponding to
an optimally rearranged genome as (π∗, f ∗) and those that
correspond to the reference genome as (π0, f0). An edge e
can be predicted as a TSV if e ∼ (π∗, f ∗) and e � (π0, f0).

Integer linear programming formulation
We use ILP to compute an optimal solution (π∗, f ∗) of
Problem 1. To do this, we introduce the following Boolean
variables:

• xe = 1 if edge e ∼ (π∗, f ∗) and 0 if not.
• zuv = 1 if segment u is before v in the permutation

π∗ and 0 otherwise.
• yu = 1 if f ∗(uh) = 1 for segment u.

With this representation, the objective function can be
rewritten as

max
xe,yu,zuv

w(e) · xe. (3)

We add constraints to the ILP derived from edge com-
patibility Eq. 1.Without loss of generality, we first suppose
segment u is in front of v in the reference genome, and
edge e connects ut and vh (which is a tail–head connec-
tion). Plugging in ut , the first equation in (1) is equivalent
to 1−1[π(u) > π(v)]= 1− f (ut) and can be rewritten as
1[π(u) < π(v)]= f (uh) = yu. Note that 1[π(u) < π(v)]
has the same meaning as zuv; it leads to the constraint
zuv = yu. Similarly, the second equation in (1) indicates
zuv = yv. Therefore, xe can reach 1 only when yu =
yv = zuv. This is equivalent to the inequalities (4) below.
Analogously, we can write constraints for the other three

types of edge connections: tail–tail connections impose
inequalities (5), head–head connections impose inequali-
ties (6), and head–tail connections impose inequalities (7):

xe ≤ yu − yv + 1,
xe ≤ yv − yu + 1,
xe ≤ yu − zuv + 1,
xe ≤ zuv − yu + 1,

(4)

xe ≤ yu − (1 − yv) + 1,
xe ≤ (1 − yv) − yu + 1,
xe ≤ yu − zuv + 1,
xe ≤ zuv − yu + 1,

(5)

xe ≤ (1 − yu) − yv + 1,
xe ≤ yv − (1 − yu) + 1,
xe ≤ (1 − yu) − zuv + 1,
xe ≤ zuv − (1 − yu) + 1,

(6)

xe ≤ (1 − yu) − (1 − yv) + 1,
xe ≤ (1 − yv) − (1 − yu) + 1,
xe ≤ (1 − yu) − zuv + 1,
xe ≤ zuv − (1 − yu) + 1.

(7)

We also add constraints to enforce that zuv forms a valid
topological ordering. For each pair of nodes u and v, one
must be in front of the other, that is zuv + zvu = 1. In
addition, for each triple of nodes, u, v, and w, one must be
at the beginning and one must be at the end. Therefore,
we add 1 ≤ zuv + zvw + zwu ≤ 2.
Solving an ILP in theory takes exponential time, but

in practice, solving the above ILP to rearrange genome
segments is very efficient. The key is that we can solve
for each connected component separately. Because the
objective maximizes the sum of compatible edge weights,
the best rearrangement of one connected component is
independent of the rearrangement of another because,
by definition, there are no edges between connected
components.

Concordant and discordant alignments
Discordant alignments are alignments of reads that con-
tradict the library preparation in sequencing. Concordant
alignments are alignments of reads that agree with the
library preparation. Take Illumina sequencing as an exam-
ple. For a paired-end read alignment to be concordant,
one end should be aligned to the forward strand and
the other to the reverse strand, and the forward strand
aligning position should be in front of the reverse strand
aligning position (Fig. 7a). Concordant alignment tradi-
tionally used in WGS also requires that a read cannot be
split and aligned to different locations. However, these
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Fig. 7 Constructing edges from alignment. a Read positions and orientations generated from the target genome. b If the reference genome does
not have rearrangements, the read should be concordantly aligned to the reference genome. An edge is added to connect the right end of u to the
left end of v. Traversing the two segments along the edge reads out u · v, which is the same as the reference. c Both ends of the read align to the
forward strand. An edge is added to connect the right end of u to the right end of rev(v). Traversing the segments along the edge reads out
sequence u · rev(rev(v)) = u · v, which recovers the target sequence and the read can be concordantly aligned. d If both ends align to the reverse
strand, an edge is added to connect the left end of the front segment to the left end of the back segment. e If two ends of a read point away from
each other, an edge is added to connect the left end of the front segment to the right end of the back segment

requirements are invalid in RNA-seq alignments because
alignments of reads can be separated by an intron with
unknown length.
We define concordance criteria separately for split-

alignment and paired-end alignment. If one end of a
paired-end read is split into several parts and each part
is aligned to a location, the end has split alignments.
Denote the vector of the split alignments of an end as
R = [A1,A2, . . . ,Ar] (r depends on the number of splits).
Each alignment R [i] = Ai has four components: a chro-
mosome (Chr), an alignment starting position (Spos), an
alignment ending position, and an orientation (Ori, with
value either + or −). We require that the alignments Ai
are sorted by their position in the read. A split-aligned
end R = [A1,A2, . . . ,Ar] is concordant if all the following
conditions hold:

Ai.Chr = Aj.Chr, ∀i, ∀j,
Ai.Ori = Aj.Ori, ∀i, ∀j,

Ai.Spos < Aj.Spos, if Ai.Ori = + for all i < j,
Ai.Spos > Aj.Spos, if Ai.Ori = − for all i < j.

(8)

If the end is not split, but continuously aligned, the
alignment automatically satisfies Eq. 8. Denote the align-
ments of R’s mate as M = [B1,B2, . . . ,Bm]. An alignment
of the paired-end read is concordant if the following
conditions all hold:

Ai.Chr = Bj.Chr, ∀i, ∀j,
Ai.Ori �= Bj.Ori, ∀i, ∀j,

A1.Spos < Bm.Spos, if A1.Ori = +,
Am.Spos > B1.Spos, if A1.Ori = −.

(9)

We require only that the leftmost split of the forward
read R is in front of the leftmost split of the reverse read
M, since the two ends in a read pair may overlap. For a
paired-end read to be concordant, each end should satisfy
split-read alignment concordance (8), and the pair should
satisfy paired-end alignment concordance (9).

Splitting the genome into segments S
We use a set of breakpoints to partition the genome. The
set of breakpoints contains two types of positions: (1) the
start position and end position of each interval of overlap-
ping discordant alignments and (2) an arbitrary position
in each 0-coverage region.
Ideally, both ends of a discordant read should be in sep-

arate segments, otherwise, a discordant read in a single
segment will always be discordant, no matter how the
segments are rearranged. Assuming discordant read align-
ments of each TSV pile up around the breakpoints and do
not overlap with the discordant alignments of other TSVs,
we set a breakpoint on the start and end positions of each
contiguous interval of overlapping discordant alignments.
Each segment that contains discordant read alignments

may also contain concordant alignments that connect
the segment to its adjacent segments. To avoid having all
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segments in a GSG connected to their adjacent segments
and thus, creating one big connected component, we
pick the starting point of each 0-coverage region as a
breakpoint. By adding those breakpoints, different genes
will be in separate connected components unless some
discordant reads support their connection. Overall, the
size of each connected component is not very large. The
number of nodes generated by each gene is approximately
the number of exons located in them and these gene
subgraphs are connected only when there is a potential
TSV between them.

Defining edges and filtering out obvious false positives
In a GSG, an edge is added between two vertices when
there are reads supporting the connection. For each read
spanning different segments, we build an edge such that
when traversing the segments along the edge, the read
is concordant with the new sequence [Eqs. (8) and (9)].
Examples of deriving an edge from a read alignment are
given in Fig. 7. In this way, the concordance of an align-
ment and the compatibility of an edge with respect to a
genome sequence are equivalent.
The weight of a concordant edge is the number of read

alignments supporting the connection, while the weight of
a discordant edge is the number of supporting alignments
multiplied by the discordant edge weight coefficient α.
The discordant edge weight coefficient α represents the
normal/tumor cell ratio (for a complete table of SQUID
parameters, see Additional file 1: Table S1). If normal tran-
scripts dominate tumor transcripts, α enlarges the discor-
dant edge weights and helps to satisfy the discordant edges
in the rearrangement of the ILP.
We filter out obvious false positive edges to reduce both

the ILP computation time and the mistakes after the ILP.
Edges with very low read support are likely to be a result
of alignment error, therefore, we filter out edges with a
weight lower than a threshold θ . Segments with too many
connections to other regions are likely to have low map-
pability, so we also filter out segments connecting to more
than γ other segments. The parameters α, θ , and γ are
the most important user-defined parameters in SQUID
(Additional file 1: Table S1, Figures S2 and S3). An inter-
leaving structure of exons from different regions (different
genes) seems more likely to be a result of sequencing or
alignment error rather than an SV. Thus, we filter out the
interleaving edges between two such groups of segments.

Identifying TSV breakpoint locations
Edges that are discordant in the reference genome indicate
potential rearrangements in transcripts. Among those
edges, some are compatible with the permutation and
orientation from ILP. These edges are taken to be the pre-
dicted TSVs. For each edge that is discordant initially but
compatible with the optimal rearrangement found by ILP,

we examine the discordant read alignments to determine
the exact breakpoint within related segments. Specifi-
cally, for each end of a discordant alignment, if there
are two other read alignments that start or end in the
same position and support the same edge, then the
end of the discordant alignment is predicted to be
the exact TSV breakpoint. Otherwise, the boundary of
the corresponding segment will be output as the exact
TSV breakpoint.

Simulation methodology
Simulations with randomly added SVs and simu-
lated RNA-seq reads were used to evaluate SQUID’s
performance in situations with a known correct answer.
RSVsim [52] was used to simulate SVs in the human
genome (Ensembl 87 or hg38) [53]. We use the five
longest chromosomes for simulation (chromosome 1 to
chromosome 5). RSVsim introduces five different types
of SVs: deletion, inversion, insertion, duplication, and
inter-chromosomal translocation. To vary the complexity
of the resulting inference problem, we simulated genomes
with 200 SVs of each type, 500 SVs of each type, and
800 SVs of each type. We generated four replicates for
each level of SV complexity (200, 500, and 800). For
inter-chromosomal translocations, we simulate only two
events because only five chromosomes were used.
In the simulated genome with SVs, the original gene

annotations are not applicable, and we cannot simulate
gene expression from the rearranged genome. Therefore,
for testing, we interchange the roles of the reference
(hg38) and the rearranged genome, and use the new
genome as the reference genome for alignment, and hg38
with the original annotated gene positions as the target
genome for sequencing. Flux Simulator [54] was used
to simulate RNA-seq reads from the hg38 genome using
Ensembl annotation version 87 [55].
After simulating SVs in the genome, we need to trans-

form the SVs into a set of TSVs, because not all SVs affect
the transcriptome, and thus, not all SVs can be detected
by RNA-seq. To derive a list of TSVs, we compare the
positions of simulated SVs with the gene annotation. If a
gene is affected by an SV, some adjacent nucleotides in
the corresponding transcript may be in a far part of the
RSVsim-generated genome. The adjacent nucleotides may
be consecutive nucleotides inside an exon if the break-
point breaks the exon, or the endpoints of two adjacent
exons if the breakpoint hits the intron. So for each SV that
hits a gene, we find the pair of nucleotides that are adja-
cent in the transcript and separated by the breakpoints,
and convert them into the coordinates of the RSVsim-
generated genome, thus, deriving the TSV.
We compare SQUID to the pipeline of de novo

transcriptome assembly and transcript-to-genome align-
ment. We also use the same set of simulations to test



Ma et al. Genome Biology  (2018) 19:52 Page 14 of 16

whether existing WGS-based SV detection methods can
be directly applied to RNA-seq data. For the de novo tran-
scriptome assembly and transcript-to-genome alignment
pipeline, we use all combinations of the existing software
Trinity [23], Trans-ABySS [22], GMAP [27], and MUM-
mer3 [26]. ForWGS-based SV detection methods, we test
LUMPY [7] and DELLY2 [6]. We test both STAR [56] and
SpeedSeq [33] (which is based on BWA-MEM [57]) to
align RNA-seq reads to the genome. LUMPY is compati-
ble only with the output of SpeedSeq, so we do not test it
with STAR alignments.
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