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Abstract

High-throughput single-cell RNA-seq methods assign limited unique molecular identifier (UMI) counts as gene
expression values to single cells from shallow sequence reads and detect limited gene counts. We thus developed a
high-throughput single-cell RNA-seq method, Quartz-Seq2, to overcome these issues. Our improvements in the
reaction steps make it possible to effectively convert initial reads to UMI counts, at a rate of 30–50%, and detect
more genes. To demonstrate the power of Quartz-Seq2, we analyzed approximately 10,000 transcriptomes from in
vitro embryonic stem cells and an in vivo stromal vascular fraction with a limited number of reads.
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Background
Single-cell transcriptome analysis is a powerful tool to iden-
tify nongenetic cellular heterogeneity, which includes differ-
ences in cell type due to differentiation and differences in
cell state within a cell population. In previous studies,
various methods for single-cell RNA-seq were developed
[1–19]. Some of these that generate read coverage across all
transcripts have been exploited to detect alternative tran-
scription splicing isoforms [14, 17], and others using a
unique molecular identifier (UMI) have been applied to
quantify the number of transcripts expressed in a cell [1–3,
6, 7, 9, 11–13, 20]. To extract substantial information on a
cell population, such as the composition of different cell
types or the distribution of cell states, it is necessary to
analyze hundreds or thousands of cells. Cell barcoding is a
key technology for this, which enables us to deal with sam-
ples from numerous cells in a single tube. Cell barcoding
technology, which tags nucleotides unique to each cell to

target RNA molecules from that cell, is a key technology for
increasing the throughput of single-cell RNA-seq [16, 18].
Mixing cDNA tagged with cell barcodes before whole-
transcript amplification decreases the cost of reaction re-
agents and the laboriousness of experimental steps. There
are two types of cell barcoding technology according to the
method of cell sampling used. One method involves single
cells being selectively sorted to multi-well plates using flow
cytometry, which allows us to remove dead or aggregated
cells. Besides, transcriptome data can be linked to cellular
information obtained by flow cytometry. The other method
involves single cells and barcoded beads being captured in
water-in-oil droplets using droplet-generation microfluidic
devices [6, 7]. In this latter method, thousands of cells can
probabilistically be captured in half an hour. However, the
total number of sequence reads generated by a deep sequen-
cer is still limited. To increase the number of analyzed cells,
each cell is assigned a limited number of initial sequence
reads. For example, approximately 400 million initial fastq
reads were sequenced for 3000–4000 cells in several previ-
ous studies [6, 7]. In this case, the input data size for a single
cell involves shallow initial reads (100,000 fastq reads;
Fig. 1b). UMI counts were converted from shallow initial se-
quence reads for each cell, the conversion ratio of which
was limited to approximately one-tenth [21]. Ideally, greater
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Fig. 1 Overview of Quartz-Seq2 experimental processes. a Quartz-Seq2 consists of five steps. (1) Each single cell in a droplet is sorted into lysis buffer in
each well of a 384-well PCR plate using flow cytometry analysis data. (2) Poly-adenylated RNA in each well is reverse-transcribed into first-strand cDNA with
reverse transcription primer, which has a unique cell barcode (CB). We prepare 384 or 1536 kinds of cell barcode with a unique sequence based on the
Sequence–Levenshtein distance (SeqLv). The edit distance of SeqLv is 5. The RT primer also has a UMI sequence for reduction of PCR bias (MB) and a poly
(dT) sequence for binding to poly(A) RNA. (3) Cell barcode-labeled cDNAs from all 384 wells are promptly collected by centrifugation using assembled col-
lectors. (4) Collected first-strand cDNAs are purified and concentrated for subsequent whole-transcript amplification. In the poly(A) tailing step, purified cDNA
is extended with a poly(A) tail by terminal deoxynucleotidyl transferase (TdT). Subsequently, second-strand cDNA is synthesized with a tagging primer,
which has a poly(dT) sequence. The resulting second-strand cDNA has a PCR primer sequence (M) at both ends of it. The cDNA is amplifiable in a subse-
quent PCR amplification. (5) For conversion from amplified cDNA to sequence library DNA, we fragment the amplified cDNA using the ultrasonicator Cov-
aris. Such fragmented cDNA is ligated with a truncated Y-shaped sequence adaptor, which has an Illumina flow-cell binding sequence (P7) and a pool
barcode sequence (PB). The PB makes it possible to mix different sets of cell barcode-labeled cDNA. Ligated cDNA, which has CB and MB sequences, is
enriched by PCR amplification. The resulting sequence library DNA contains P7 and P5 flow-cell binding sequences at respective ends of the DNA. We
sequence the cell barcode site and the UMI site at Read1, the pool barcode site at Index1, and the transcript sequence at Read2. b The relationship
between initial fastq reads and the number of single cells for sequence analysis in NextSeq500 runs. Typically, one sequence run with NextSeq 500/550
High Output v2 Kit reads out 400–450 M fastq reads. The x-axis represents the input cell number for one sequence run. The y-axis represents the initial data
size (fastq reads) on average per cell. The red outline represents the typical range of shallow input read depth for a single cell. c We define the formula for
calculating the UMI conversion efficiency. Each parameter is defined as follows: UMIsc is the number of UMI counts, assigned to a single-cell sample, fastqsc
is the number of fastq reads derived from each single-cell sample, fastqnon-sc is the number of fastq reads derived from non-single-cell samples, which
include experimental byproducts such as WTA adaptors, WTA byproducts, and non-STAMPs. Initial fastq reads are composed of fastqsc and fastqnon-sc
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UMI counts should be generated from limited sequence
reads because the increase in UMI count assigned to each
cell leads to the detection of low-copy genes and the identi-
fication of cell type-specific genes using statistical tests.
In this study, we developed a novel high-throughput

single-cell RNA-seq method, Quartz-Seq2. As Quartz-Seq
is a sensitive and reproducible single-cell RNA-seq method,
Quartz-Seq2 was developed based on it [15]. Quartz-
Seq is based on a poly(A) tagging strategy. By the com-
bination of molecular biological improvements, includ-
ing major improvement of poly(A) tagging, Quartz-Seq2
resulted in an increase in the effectiveness with which
the initial sequence reads were converted to the expres-
sion UMI counts (UMI conversion efficiency 30–50%).
To demonstrate the highly effective use of initial reads
in Quartz-Seq2, we analyzed a population of approxi-
mately 9000 mouse embryonic stem (ES) cells as in
vitro cells and approximately 1000 cells from the stro-
mal vascular fraction (SVF) as in vivo cells.

Results
Outline of Quartz-Seq2 experiment
To increase the UMI conversion efficiency (Fig. 1), we im-
proved several steps in the preparation of the single-cell
RNA-seq library (Additional file 1: Figure S1), resulting in
the development of Quartz-Seq2. Below, we explain the
five steps of the Quartz-Seq2 procedure (Fig. 1).

(1)The first step is single-cell collection using a cell
sorter. We selectively sort living single cells into lysis
buffer in a 384-well PCR plate without dead cells. In
cell sorting, various types of channel information, such
as the intensity of fluorescence, are obtained for each
cell. This enables us to link the transcriptome to cellu-
lar information from a cell sorter for each cell.

(2)The second step is cell barcoding. Each well contains
lysis buffer and reverse-transcription (RT) primer,
which includes a cell barcode sequence (14- or 15-
mer), a UMI sequence (8-mer), and an oligo-dT se-
quence (24-mer). Using these RT primers, respective
RNA from single cells is converted to cDNA with
unique cell barcodes. Note that a long RT primer re-
sulted in a severe problem regarding the synthesis of
byproducts at the downstream reaction in our sys-
tem (Additional file 1: Figure S2 and Supplemental
note). Therefore, we use a relatively short RT primer
(73- or 74-mer), which allows us to skip the step of
removing byproducts using exonuclease I. We design
two types of RT primer set (v3.1, 384 barcodes; v3.2,
1536 barcodes). Within each primer set, barcode se-
quences are designed such that the minimum Se-
quence–Levenshtein distance between two
sequences should be greater than 5, which leads to
the correction of mutations of two nucleotides,

including substitution, insertion, or deletion in se-
quence reads [22]. We also optimize the buffer and
temperature in the RT reaction, leading to an im-
provement of RT efficiency from that of the original
Quartz-Seq (Additional file 1: Figure S3 and Supple-
mental note). We apply a low enzyme concentration
in RT to Quartz-Seq2. These conditions reduce the
cost and technical variability of Quartz-Seq2. We de-
scribe the details of this in the “Reduction of enzyme
concentration in RT decreased the experimental cost
of Quartz-Seq2” section.

(3)The third step involves the pooling of cell-barcoded
cDNA. By cell barcoding, Quartz-Seq2 can pool
cDNA of up to 1536 individual cells into one mixture.
We developed a rapid and high-throughput method
for collecting small volumes of cDNA in multiwell
plates. This method also achieves higher efficiency of
collection than dispensing with pipettes and tips (Add-
itional file 1: Figure S4 and Supplemental note). As the
efficiency of cDNA purification after pooling was
93.77%, we estimated that approximately 80% of cell-
barcoded cDNA could be used for subsequent whole-
transcript amplification in our system (Additional file 1:
Figure S3a and Supplemental note).

(4)The fourth step is whole-transcript amplification
based on an improved poly(A) tagging strategy. Poly
(A) tagging is one of the methods of converting first-
strand cDNA to amplifiable cDNA. First-strand
cDNA is extended with a poly(A) tail by the terminal
transferase. Subsequently, second-strand cDNA is
synthesized with tagging primers that contain a poly
(dT) sequence, followed by PCR amplification. Here,
we improve the efficiency of poly(A) tagging by 3.6-
fold. This improvement is a crucial point in the de-
velopment of Quartz-Seq2. We describe the details
of this in the next subsection.

(5)The fifth step is library preparation for deep
sequencing. Amplified cDNA is fragmented, ligated
with the sequence adapter, and amplified by PCR. In
sequencing using Illumina sequencers, a sequence
for a cell barcode and a UMI is read in Read1, while
a sequence for a region of a transcript (mRNA) is
read in Read2.

Improvement of poly(A) tagging efficiency
We previously reported Quartz-Seq based on the poly(A)
tagging strategy, which has significant potential for detect-
ing a large number of genes expressed in a cell [15]. How-
ever, the efficiency of poly(A) tagging itself for single-cell
RNA-seq has not been improved. We hypothesized that
the improvement of poly(A) tagging would lead to high
UMI conversion efficiency. Therefore, we attempted to
improve the efficiency of this tagging step. Poly(A) tagging
is composed of two processes: (1) the first-strand cDNA is
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modified with a poly(A) tail by terminal deoxynucleotidyl
transferase; and (2) the poly(A)-tailed cDNA is annealed
with a tagging primer, which has a poly(dT) sequence.
Then, the second-strand cDNA is extended. The resulting
second-strand cDNA is amplifiable cDNA, which has a
PCR primer sequence at both ends of it.
It is known that the DNA yield of amplified cDNA

generally reflects the quantitative performance of
single-cell RNA-seq methods [3, 13, 14]. Thus, we de-
termined the effects of various buffers for the poly(A)
tailing step on the amplified cDNA yield. We per-
formed the poly(A) tailing reaction with various
buffers using purified first-strand cDNA from 1 ng of
total RNA (Fig. 2a; Additional file 1: Figure S5).
Finally, we obtained amplified cDNA. We found that
the use of T55 buffer in the poly(A) tailing reaction
efficiently improved the cDNA yield (Fig. 2a). The
amount of amplified cDNA increased 2.88-fold using
T55 buffer compared with the level using Quartz-Seq
buffer (Fig. 2a). In these buffer conditions, we did not
observe any obvious byproducts derived from the RT
primer (Fig. 2a; Additional file 1: Figures S2 and S5
and Supplemental note).
Next, we added an “Increment” temperature condition

for the tagging and second-strand synthesis steps (see
“Methods”). In this condition, the reaction temperature
of these steps was gradually increased. As a result, the
amount of cDNA tended to increase, by approximately
1.2-fold (Fig. 2a). Moreover, upon combining T55 buffer
and the Increment condition, the amount of cDNA in-
creased approximately 3.6-fold. We also confirmed the
reproducibility of this phenomenon of cDNA increment
in additional experiments (Additional file 1: Figure S5).
Moreover, we confirmed the amplified cDNA yield of
various genes by qPCR analysis as another assay. Specific-
ally, we determined the qPCR scores of eight genes from
amplified cDNA and nonamplified cDNA (Additional
file 1: Figure S5c). Spearman’s rank correlation coefficients
(SCCs) between amplification and nonamplification were
approximately 0.79 in the T55 + Increment condition.
The SCC was approximately 0.66 in Quartz-Seq-like
conditions. We also observed clear increments of qPCR
scores for almost all genes. These results show that the
combination of T55 buffer and this temperature condi-
tion improved the efficiency of the poly(A) tagging step.
We also found that other conditions (NBF40 + Incre-
ment) improved the cDNA yield. Under these condi-
tions, however, byproducts were clearly synthesized
(Additional file 1: Figures S2c and S5b). Moreover, the
amount of cDNA with T55 buffer was slightly greater
than that with RH55 (Fig. 2; Additional file 1: Figure
S5a). Therefore, we used the combination of T55 buffer
and the Increment temperature condition for the poly
(A) tagging strategy for Quartz-Seq2.

Reduction of enzyme concentration in RT decreased the
experimental cost of Quartz-Seq2
The cost of experiments for the single-cell RNA-seq
method is one of the most important benchmarks regarding
high-throughput performance. The cost of experimental
preparation per cell was approximately ¥2600 ($23) for our
previously reported Quartz-Seq, which does not use cell
barcoding (Additional file 1: Figure S6a). To improve on
this value, we first applied the “RT100” enzyme condition in
RT to Quartz-Seq2. In this condition, we used approxi-
mately 20 U reverse transcriptase in 2 μL of solution for
RT. This enzyme concentration in the RT reaction is
broadly used for various molecular biological applications,
including single-cell RNA-seq methods [3, 14, 15]. By using
the cell barcoding strategy, the cost of experimental prepar-
ation for Quartz-Seq2 under the RT100 condition was re-
duced (¥122 or $1.08 per cell; Additional file 1: Figure S6a).
We found that 65% of the cost of experimental steps is

derived from RT in Quartz-Seq2 under the RT100 condi-
tion (Additional file 1: Figure S7a). To further reduce the
cost of experimental preparation of sequence libraries on a
large scale, we investigated the effect of a low enzyme con-
centration in RT in Quartz-Seq2. In the assessment assay,
we noticed that a low enzyme concentration did not mark-
edly affect the efficiency of RT in T100 buffer (Additional
file 1: Figure S7b). We performed a similar experiment with
a broader range of concentrations of enzymes in RT under
conditions with T100 buffer (Fig. 2b; Additional file 1:
Figure S7c). We found that the RT25 condition maintained
the efficiency of RT at the 99% level on average, which was
comparable to that in the RT100 condition. Therefore, we
prepared three technical replicates of a 384-well PCR plate
with 10 pg of total RNA with the RT100 condition or the
“RT25” low-enzyme condition. In the RT25 condition, the
cDNA yield showed a tendency for a slight increase of
approximately 1.17-fold, which although not being a major
improvement, did at least not involve a decrease
(Additional file 1: Figure S7d). The cost of experimental
preparation per cell was approximately ¥46–63 ($0.40–
0.56) in the RT25 condition (Additional file 1: Figure S6a).
We thus mainly used the RT25 condition for Quartz-Seq2.

Evaluation of the quantitative performance of Quartz-Seq2
using 10 pg of purified total RNA
Finally, we adopted three molecular biological improve-
ments (poly(A) tailing buffers (T55), the Increment
temperature condition, and low-enzyme concentration
(RT25) in RT) for Quartz-Seq2 (Additional file 1: Figure
S1). To determine the technical variability and specificity of
Quartz-Seq2, we performed whole-transcript amplification
using 10 pg of diluted mouse total RNA as a single cell-like
averaged sample with the v3.1384 cell barcode RT primer in
a 384-well plate (Fig. 2). In this experiment, we used the
RT25 enzyme concentration for Quartz-Seq2. The effect of
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RT enzyme concentration on the quantitative performance
is specifically described in the last paragraph of this subsec-
tion. We analyzed 10 pg of total RNA in all wells at

approximately 0.19 M fastq reads on average per well. In
the case of the Quartz-Seq-like conditions, we detected
18,407 ± 4040 UMI counts and 5728 ± 604 gene counts
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Fig. 2 Sequence performance of Quartz-Seq2 with molecular biological improvements. a Improvement of poly(A) tagging efficiency. The relative DNA yield
in various poly(A) tagging conditions using purified first-strand cDNA from 1 ng of total RNA. T55 buffer as the terminal deoxynucleotidyl transferase (TdT)
buffer and the temperature condition “Increment” for the poly(A) tagging step improved the cDNA yield of whole-transcript amplification. Buffer
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approach described in the original Quartz-Seq paper. Finally, we quantified cDNA yield (300–9000 bp) and byproduct DNA yield (50–300 bp) using a
Bioanalyzer (Agilent). The presented p value was obtained using two-tailed Welch’s t-test. b Reverse transcription efficiency with serially diluted RT enzymes.
The x-axis represents the average relative RT qPCR score from ten genes. Detailed concentrations of RT enzymes are presented in Additional file 1: Figure
S7. c, f–h Comparison between Quartz-Seq2 in the RT25 condition and Quartz-Seq-like conditions regarding sequence performance. cWe analyzed 384
wells with 10 pg of total RNA and used approximately 0.19 M fastq reads on average per well. We show the UMI count and gene count in box plots. d A
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theoretical variability of gene expression in the form of a Poisson distribution. e Gene expression reproducibility between bulk poly(A)-RNA-seq (1 μg of total
RNA) and Quartz-Seq2 (10 pg of total RNA, averaged over 384 wells). f Dispersion of gene expression. The x-axis represents gene expression variability. g Re-
producibility of gene expression for internal gene and external control RNA. h Accuracy of gene expression for internal gene and external control RNA
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(n = 768 wells from two 384-well plates). In the case of
Quartz-Seq2, we achieved a UMI count of 44,100 ±
7521 and a gene count of 7442 ± 484 (n = 1152 wells
from three 384-well plates; Fig. 2c). We observed simi-
lar results at the level of individual 384-well plates
(Additional file 1: Figure S8a). We also calculated the
UMI conversion efficiency for the respective protocol at
approximately 0.19 million initial fastq reads on average
per well. We defined the formula for calculating the
“UMI conversion efficiency”, which indicates how ef-
fectively initial fastq reads can be converted to UMI
counts (Fig. 1c; Additional file 1: Figure S9). The UMI
conversion efficiency levels of Quartz-Seq2 and Quartz-
Seq-like were about 22.88% and 9.55%, respectively.
The UMI conversion efficiency was reproducible among
individual 384-well plates (Additional file 1: Figure S8a).
In addition, the UMI conversion efficiency depended on
the Read2 length and the number of initial fastq reads
(Additional file 1: Figure S8b). These results indicated
that the combination of the molecular biological improve-
ments for Quartz-Seq2 clearly improved the conversion
ratio from target RNA to sequence library DNA.
We also validated the technical reproducibility of gene

expression. In the mean-CV (coefficient of variation)
plot, the technical gene expression variability of Quartz-
Seq2 became fairly close to the theoretical variability of a
Poisson distribution (Fig. 2d). The mean of gene expres-
sion variability for Quartz-Seq2 was lower than that for
the Quartz-Seq-like method (Fig. 2f ). To quantify the
technical reproducibility of internal gene expression and
external gene (ERCC spike-in RNA) expression, we used
a pairwise comparison of technical replicates for each
protocol. Regarding the reproducibility of internal gene
expression, the SCCs of Quartz-Seq2 and Quartz-Seq-
like were 0.71 ± 0.01 and 0.59 ± 0.02, respectively. Re-
garding the reproducibility of external gene expression,
the SCCs of Quartz-Seq2 and Quartz-Seq-like were 0.90
± 0.02 and 0.83 ± 0.04, respectively. Subsequently, we
validated the accuracy of internal/external gene expres-
sion. We observed that the average internal gene expres-
sion of Quartz-Seq2 highly correlated with the internal
gene expression of conventional RNA-seq (Fig. 2e). We
calculated all combinations of pairwise correlation be-
tween the internal gene expression of Quartz-Seq2 with
10 pg of total RNA and that of conventional RNA-seq
with 1 μg of total RNA. Moreover, we calculated the
pairwise correlation between the external gene expres-
sion of Quartz-Seq2 and the input molecule count of ex-
ternal genes (ERCC spike-in RNA). Regarding the
accuracy of internal gene expression, the SCCs of
Quartz-Seq2 and Quartz-Seq-like were 0.70 ± 0.01 and
0.60 ± 0.02, respectively. Regarding the accuracy of ex-
ternal gene expression, the SCCs of Quartz-Seq2 and
Quartz-Seq-like were 0.90 ± 0.01 and 0.74 ± 0.03,

respectively. These results indicate that the combination
of the molecular biological improvements for Quartz-
Seq2 clearly improved the technical reproducibility and
accuracy of gene expression.
We noted that a low enzyme concentration improved the

quantitative performance of Quartz-Seq2. We validated the
quantitative performance with 10 pg of total RNA in the
RT100 and RT25 conditions at various input data sizes. Un-
expectedly, we found that the RT25 condition improved the
quantitative performance (Additional file 1: Figure S8a). We
compared RT25 with RT100 at approximately 0.096 M
fastq reads on average per well. In the case of Quartz-Seq2
in the RT25 condition, we achieved a UMI count of 30,117
± 789 and a gene count of 6320 ± 35 (three 384-well plates).
In the case of Quartz-Seq2 in the RT100 condition, we
achieved a UMI count of 25,671 ± 1020 and a gene count
of 5889 ± 35 (three 384-well plates). We also observed that
the well-to-well technical variability for the UMI count and
gene count clearly decreased in the RT25 condition (Add-
itional file 1: Figure S8a). These results showed that the
RT25 low-enzyme condition clearly reduced the experimen-
tal cost and improved the quantitative performance. We
thus applied the RT25 condition in subsequent experiments
using real single cells. Note that, in the RT1.5625-RT6.25
condition, RT efficiency was maintained at an average level
of over 90% (Fig. 2b). The average RT efficiency rapidly de-
creased below the RT1.56 low enzyme concentration. In
addition, in actual experiments (not serially diluted experi-
ments) at conditions below RT3.12, it was not guaranteed
that enzymes could be collected given the viscosity and low
volume of the mixture. Therefore, we validated the RT6.25
condition for subsequent analysis. It seems that UMI
counts, gene counts, and ERCC capture efficiency (also
called “ERCC spike-in RNA detection efficiency”) slightly
increased in the RT6.25 condition, which although not be-
ing a major improvement, did at least not involve a decrease
(Additional file 1: Figure S10). The cost of experimental
preparation per cell was approximately ¥31–48 ($0.27–
0.43) in the RT6.25 condition (Additional file 1: Figure S6a,
Additional file 2: Table S1). The RT6.25 low-enzyme condi-
tion thus further reduced the experimental cost and slightly
improved the quantitative performance.

Quartz-Seq2 shows higher efficiency of UMI conversion
and detects more biological pathways than Drop-seq
In the high-throughput single-cell RNA-seq methods,
the total number of sequence reads generated by a deep
sequencer is limited. Ideally, greater UMI counts should
be generated from limited sequence reads because the
increase in UMI count assigned to each cell leads to the
detection of low-copy genes and the identification of cell
type-specific genes using statistical tests. We compared
Quartz-Seq2 to the high-throughput single-cell RNA-seq
method using two distinct cell types. To prepare these
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two distinct cell types, we cultured G6GR ES cells and
Dex-treated G6GR cells because it has been reported
that almost all G6GR ES cells differentiated into primi-
tive endoderm-like cells upon dexamethasone treatment
[15, 23]. Drop-seq is one of the high-throughput single-
cell RNA-seq methods and can capture thousands of
cells and barcoded beads in half an hour [6]. The Drop-
seq experiments were validated by species-mixing ana-
lysis (Additional file 1: Figure S11a, b). We performed
Quartz-Seq2 and Drop-seq on a mixture of mouse ES
cells and Dex-treated mouse ES cells (primitive endo-
derm (PrE) cells) and calculated the UMI conversion effi-
ciency (Fig. 3a and Additional file 1: Figure S11c). The

effectiveness of Quartz-Seq2 ranged from 25 to 35% de-
pending on the initial fastq read depth (Fig. 3), which
was higher than that of Drop-seq.
As Fig. 3a shows, Quartz-Seq2 detected more genes

with high UMI conversion efficiency. To examine the
power for identifying differentially expressed genes, we
performed principal component analysis (PCA) and clus-
tering. We randomly selected single cells from ES cluster
cells and PrE cluster cells. The number of genes differen-
tially expressed between two distinct cell types was cal-
culated (ES and PrE cells; Additional file 1: Figure S11
h). We also identified differentially expressed genes
(DEGs) between bulk ES cells and PrE cells by using
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Fig. 3 Quartz-Seq2 with high UMI conversion efficiency identified more differentially expressed genes and biological pathways. a UMI counts, gene counts,
and UMI conversion efficiency for Quartz-Seq2 and Drop-seq experiments. These values depended on the initial fastq reads on average per cell. Error bars
represent standard deviations. bWe calculated overlapping differentially expressed genes between bulk RNA-seq data and single-cell RNA-seq data. We
randomly picked up the indicated number of single cells and calculated differentially expressed genes 20 times. c, d We randomly selected 100 ES cells
and 100 PrE cells for each method. c Venn diagram of genes that were differentially expressed between the ES cluster and the Dex-treated ES (PrE) cluster,
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conventional bulk RNA-seq. We then counted the num-
ber of overlapping DEGs between single-cell RNA-seq
methods and bulk RNA-seq. We observed that this num-
ber linearly correlated with the cell number (Fig. 3b).
Quartz-Seq2 required fewer cells for the detection of
overlapping DEGs. These results showd that more genes
that were differentially expressed between the two cell
types were identified with Quartz-Seq2 (Fig. 3b, c). In
addition, more biological pathways particularly associ-
ated with the differentially expressed genes were detected
with Quartz-Seq2 (Fig. 3c). Furthermore, we calculated
the highly variable expression of genes with Quartz-Seq2
and Drop-seq, which potentially include not only genes
that are differentially expressed between cell types but
also genes for which expression changes depending on
the cell state in a cell type. Terms related to the cell
cycle state were only enriched for the genes calculated
with Quartz-Seq2 (Fig. 3d). Note that simulation-based
power analysis also showed that Quartz-Seq2 detected
more DEGs than Drop-seq (Additional file 1: Figure
S12a; see “Methods”). These results suggest that high
UMI conversion efficiency with limited initial reads leads
to more biological information being revealed, such as
functional terms and biological pathways.

Superiority of Quartz-Seq2 regarding quantitative
performance in the same experimental design
compared with other methods
To obtain additional evidence for the superiority of
Quartz-Seq2 in terms of the UMI conversion efficiency
and gene count, we compared it to other methods. Using
mouse J1 ES cells, Ziegenhain et al. systematically com-
pared the quantitative performance of several single-cell
RNA sequencing (RNA-seq) methods (CEL-seq2(C1),
SCRB-seq, MARS-seq, and Drop-seq) that use the UMI
technique [21]. Therefore, we cultured J1 ES cells under
2i/LIF conditions in accordance with the procedure de-
scribed in this previous paper [21]. We sorted J1 ES cells
into five 384-well plates. Subsequently, we prepared se-
quence library DNA of Quartz-Seq2 (RT25) with 1152
wells (three 384-well plates) or 768 wells (two 384-well
plates) on different days. To compare our data with those
obtained in the previous study mentioned above, we used
the same analytical conditions as previously applied, such
as a HiSeq sequencer platform, Read2 length, the same
genome file, and the same transcript annotation file.
First, we compared the quantitative performance be-

tween Quartz-Seq2 and other methods at 0.1 million initial
fastq reads on average per cell (Fig. 4). The results indicate
that the UMI conversion efficiency levels of Quartz-Seq2
were approximately 32.55% (day 1) and 32.25% (day 2); the
UMI conversion efficiency of the other methods ranged
from 7.11 to 22.45%. The average gene counts using
Quartz-Seq2 were approximately 6636 (day 1) and 6584

(day 2), while the average gene counts for the other
methods ranged from 2738 to 5164. We also validated the
quantitative performance for external control RNA. The
levels of ERCC capture efficiency for Quartz-Seq2 were
approximately 6.12% (day 1) and 6.38% (day 2), while the
ERCC capture efficiencies for the other methods ranged
from 0.76 to 3.22% (Fig. 4a; Additional file 1: Figure S13d).
We also calculated the copy number of ERCC spike-in
RNA at 50% detection probability. The copy number of
ERCC spike-in RNA at 50% detection probability for
Quartz-Seq2 was approximately 6.82 (day 1) and 6.57 (day
2), while those for the other methods ranged from 13.26 to
710.24 (Additional file 1: Figure S13d).
We also performed simulation-based power analysis to

estimate the power for identifying differentially expressed
genes (Additional file 1: Figure S12b; see “Methods”). The
true positive rate (TPR) at the data point of 128 cells
ranged from 0.91 to 0.92, and the false discovery rate
(FDR) at the data point of 128 cells ranged from 0.07 to
0.08. Therefore, the TPR and FDR for each method were
comparable to each other. We found that Quartz-Seq2 de-
tected more simulated DEGs than the different methods.
In particular, the UMI conversion efficiency and gene

count of the Quartz-Seq2 method were significantly better
than those of the other methods at approximately 0.1 mil-
lion initial reads. We also estimated the UMI and gene
counts and the UMI conversion efficiency at various num-
bers of initial fastq reads (Fig. 4a). We found that Quartz-
Seq2 is greatly advantageous for detecting the UMI and
gene counts from limited initial amounts of data (under
0.2 million fastq reads). These results showed that the
quantitative performance of Quartz-Seq2 was almost al-
ways better than that of other methods under conditions
with a limited number of initial fastq reads.

Quartz-Seq2 achieves high UMI conversion efficiency at
relatively low cost
The experimental cost for sequence library preparation is
an important benchmark for single-cell RNA-seq methods
because it is highly correlated with the throughput of
single-cell RNA-seq methods within a limited budget. In
the case of using 384 indexes, the library preparation cost
of Quartz-Seq2 (RT25) is ¥63 ($0.56) (Additional file 1: Fig-
ure S6a). For Quartz-Seq2 with 384 indexes, we used three
purification columns per 384-well plate at the cDNA purifi-
cation step. To reduce the amount of enzyme solution in
the downstream reaction after cDNA purification, we used
one purification column per 384-well plate (Additional file 2:
Table S1). In the previous subsection, we also described that
the RT6.25 low-enzyme condition improved the experimen-
tal cost of Quartz-Seq2. The combination of the RT6.25
low-enzyme condition and reduction of the number of puri-
fication columns thus further improved the library prepar-
ation cost of Quartz-Seq2 (RT6.25 + column1) to ¥37
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($0.32) (Additional file 1: Figure S6a). For comparison, the
library preparation costs of other methods that use a cell
sorter range from ¥146 ($1.30) to ¥372 ($3.29) (Additional
file 1: Figure S6a). Quartz-Seq2 is thus highly competitive
with regard to cost with other single-cell RNA-seq methods
that use a cell sorter.
To show the potential of Quartz-Seq2 for high-

throughput performance, we additionally carried out
Quartz-Seq2 (RT6.25 + column1) and Quartz-Seq2
(RT6.25) using J1 ES cells (Fig. 4b). We estimated that

the number of processable single cells per 1000 US dol-
lars spent on Quartz-Seq2 ranges from 1785 to 3058
(Fig. 4b). We also calculated the total cost, including the
sequencing and library preparation costs, for each
method. The total cost per cell is extremely low (ap-
proximately ¥71–131, or $0.63–1.16) for Drop-seq.
The total cost per cell is ¥97–183 ($0.85–1.62) for
Quartz-Seq2. Thus, the total cost of Quartz-Seq2, a
cell sorter-based method, approaches that typical of
droplet-based methods (Additional file 1: Figure S6b).

Fig. 4 Quantitative comparison among Quartz-Seq2 and previously reported methods using embryonic stem cells. a We determined the UMI and
gene counts with Quartz-Seq2 in the RT25 condition using J1 ES cells. We performed Quartz-Seq2 (RT25) with three sets of 384-well plates and two sets
of 384-well plates on different days. We also estimated the UMI conversion efficiency of other single-cell RNA-seq methods (CEL-seq2(C1), SCRB-seq,
MARS-seq, and Drop-seq) from a previous study that used mouse ES cells [21]. In our comparison, the Read2 length for transcript mapping was 45
nucleotides for all of the methods, including Quartz-Seq2. We estimated the average UMI and gene counts and the UMI conversion efficiency with
various numbers of initial fastq reads for each method. The findings indicate that, compared with the other methods, Quartz-Seq2 has a superior ability
to detect UMI and gene counts from limited initial amounts of data (under 0.2 million fastq reads). b To investigate the throughput capacity for
establishing sequence library DNA, we estimated the number of processable single cells per $1000 spent on each method: Quartz-Seq2 (384 indexes,
RT25) yielded 1785 cells, Quartz-Seq2 (384 indexes, RT6.25) yielded 2325 cells, Quartz-Seq2 (384 indexes, RT6.25 + column1) yielded 3058 cells,
Quartz-Seq2 (1536 indexes, RT25) yielded 2500 cells, CEL-seq2(C1) yielded 111 cells, SCRB-seq yielded 500 cells, MARS-seq yielded 769 cells, and
Drop-seq yielded 10,000 cells. The UMI conversion efficiency was approximately 32.55% (n = 1152), 32.25% (n = 768), and 32.12% (n = 192) for
Quartz-Seq2 (384 indexes, RT25), 35.48% (n = 2304) for Quartz-Seq2 (1536 indexes, RT25), 34.04% (n = 768) for Quartz-Seq2 (384 indexes, RT6.25),
35.51% (n = 768) for Quartz-Seq2 (384 indexes, RT6.25 + column1), 22.4% for CEL-seq2(C1), 13.3% for SCRB-seq, 10.6% for MARS-seq, and 7.1% for
Drop-seq. The average gene count was approximately 6636 (n = 1152), 6584 (n = 768), and 6529 (n = 192) for Quartz-Seq2 (384 indexes, RT25), 6712
(n = 2304) for Quartz-Seq2 (1536 indexes, RT25), 6753 (n = 768) for Quartz-Seq2 (384 indexes, RT6.25), 6794 (n = 768) for Quartz-Seq2 (384 indexes,
RT6.25 + column1), 5164 for CEL-seq2(C1), 4044 for SCRB-seq, 3252 for MARS-seq, and 2738 for Drop-seq
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In summary, the Quartz-Seq2 method achieves the
highest UMI conversion efficiency and high-sensitivity
detection of genes under conditions with limited numbers
of initial reads, providing single-cell RNA-seq data in a
high-throughput manner.

Demonstration of high-throughput Quartz-Seq2 analysis
of 4484 mouse ES cells and differentiated conditions
To demonstrate the capability of Quartz-Seq2 for quanti-
fying the transcriptome of a large number of cells and

identifying rare cell populations, we analyzed approximately
4484 cells from a mixture of mouse ES cells and
differentiation-induced cells. Cells were prestained with
Hoechst 33,342 and/or Calcein-AM as an indicator of DNA
content and culture condition (ES or PrE cells), respectively
(Fig. 5a). Calcein-AM-positive and -negative cells were
sorted to 12 384-well plates (4608 well in total) in a check-
ered pattern (Fig. 5a). These conditions maximize the likeli-
hood of detecting the cell doublets caused by mis-sorting.
In this analysis, as an average for cells, 0.1 M initial fastq
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Fig. 5 High-throughput Quartz-Seq2 analysis of 4484 cells from mouse embryonic stem cells and differentiated cells. a We successfully analyzed
97.3% of 4608 wells. The procedures for cell suspension as used in this assay are shown. Cells cultured under ES-maintenance and Dex-treatment
conditions were separately dissociated into single cells, stained with Hoechst 33,342 and/or Calcein-AM, and mixed evenly. Calcein-AM-positive
and -negative cells were sorted to 384-well plates in a checkered pattern. White scale bars represent 100 μm. b Clustering of 4484 single cells
according to the transcriptome. Plotting of cells on t-SNE space with color labeling for each cluster. The percentage indicates the proportion of
cells for each cluster relative to all cells analyzed. Numbers in parentheses indicate the numbers of cells making up the cluster. c Marker genes for
each cluster identified by Quartz-Seq2. Cluster-specific or cluster-enriched genes were calculated for each cluster, and their expression is displayed
as a color in a heatmap. No more than 50 cells are shown for simplicity. d Reconstructed distribution of Calcein-AM intensity for each cluster. The
x-axis represents the intensity of Calcein-AM dye staining. e Reconstructed distribution of Hoechst 33,342 intensity for each cluster. The y-axis
represents the density of cells. The x-axis represents the intensity of Hoechst 33,342 dye staining
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reads were effectively converted to 35,915 ± 1188 UMI
counts in a final gene expression matrix. The UMI conver-
sion efficiency was 35.91 ± 1.18%.
Dimensionality reduction of the expression UMI matrix

resulting from Quartz-Seq2 showed clear separation of six
clusters, including the main populations of ES cells and PrE
cells, as well as four small populations. We did not observe
a clear batch effect among the 12 384-well plates (Additional
file 1: Figure S15). One cluster contained a relatively high
proportion of mitochondrial RNA (Additional file 1: Figure
S16), which was judged to reflect low-quality cells [24]. An-
other cluster showed high values of detected UMI counts
and gene counts, and expressed both ES and PrE marker
genes, which were judged to represent doublets of an ES cell
and a PrE cell (Additional file 1: Figure S16). To characterize
the identified populations, we determined the genes that
were specific or enriched for each cluster using binomial
tests (Fig. 5c). Although cells in cluster 3 shared gene ex-
pression with the main population of ES cells (cluster 1),
some genes, including Stmn2 and Rhox5, were additionally
expressed, suggesting that cluster 1 and cluster 3 shared the
same cell type but had different cell states. Cluster 5 was a
small population (0.17%; Fig. 6b) but was characterized by
many specific marker genes (Fig. 5c), including Zscan4c and
Zscan4d, which are known to be expressed in a subpopula-
tion of mouse ES cells [25]. However, among our culture
conditions, these genes were more expressed in the Dex-
treatment condition than in the ES-maintenance condition.
Flow cytometry information on cells in cluster 5 also
showed no fluorescence of Calcein-AM, indicating that
these cells were from the suspension of Dex-treated cells
(Fig. 5d). These observations are consistent with a previous
study demonstrating that Zscan4 was more expressed in a
differentiation condition induced by the withdrawal of
leukemia inhibitory factor [7].
In the sampling of cells using a cell sorter, flow cytometry

information, including the intensity of Hoechst 33,342
staining for each cell, was collected. Using this information,
we reconstructed the distribution of Hoechst 33,342 stain-
ing intensity for each cluster (Fig. 5e). The main population
of ES cells (cluster 1) showed an embryonic pattern of dis-
tribution of DNA content, which is characterized by a high
ratio of cells in G2 and M phases to cells in the G1 phase.
In contrast, the main population of PrE cells (cluster 4)
showed a somatic pattern of distribution of DNA content.
This was consistent with PrE cells being differentiated from
ES cells. The cells in cluster 3, the gene expression of which
was similar to that of the ES main population (cluster 1),
showed an embryonic pattern rather than a somatic one.
As the number of cells in cluster 5 that expressed Zscan4c/
d was small, it was difficult to classify the observed pattern
as the embryonic or somatic type. These findings indicate
the usefulness of single-cell RNA-seq using flow cytometry
for the reconstruction of population information after

transcriptome-based clustering. For good interpretation of
the distribution, a large number of cells for each cluster are
required.

Quartz-Seq2 classified genes with variable expression
within a cell type
When cells were plotted on t-SNE (t-distributed stochastic
neighbor embedding) space using transcriptome analysis
and the intensity of Hoechst 33,342 staining was depicted
using a color-based scale, the gradient pattern was easily
observed for clusters 1, 3, and 4 (Fig. 6a), suggesting that
Quartz-Seq2 was highly sensitive for detection of the cell
cycle state. To examine this, we plotted the gene expres-
sion of several cell cycle markers against the intensity of
Hoechst 33,342 staining. We observed a strong relation-
ship between the gene expression of several cell cycle
markers and DNA content (Fig. 6b). Using the intensity of
Hoechst 33,342 staining as reference for the cell cycle
phase, we calculated the relationship between the cell cycle
phase and all genes detected in Quartz-Seq2 experiments
(see “Methods”). The results enabled us to identify numer-
ous genes for which the expression level changed in rela-
tion to the DNA content (Fig. 6c, d; Additional file 1:
Figure S17). We call these genes “cell cycle associated vari-
able genes”. These genes include cell cycle markers. Again,
it was confirmed that the ratio of cells in G1 and S phases
to those in G2 and M phases differed between ES and PrE
cells (Fig. 6c). As we showed that the efficiency of UMI
conversion was high in the Quartz-Seq2 method, we ex-
amined whether 10,000 initial reads are sufficient for cell
cycle analysis (Additional file 1: Figure S18). In this ana-
lysis, the final UMI count was 4774 ± 62 and the UMI
conversion efficiency was 47.74 ± 0.66% (n = 3, 1536
wells). Plotting cells on t-SNE space while using color to
depict the intensity of Hoechst 33,342 staining revealed a
gradient pattern, which was positively correlated with the
expression of G2/M phase marker genes, including Ccnb1
and Top2a, and negatively correlated with the expression
of G1 phase marker genes such as Ccne1 (Additional file 1:
Figure S18). These observations demonstrate that Quartz-
Seq2 with few initial sequence reads could analyze the cell
cycle due to the high UMI conversion efficiency.
Within a single cell type, there are two types of

cell state categories. One is the different stages of
the cell cycle as mentioned above, and the other re-
fers to cellular heterogeneity, which is only remotely
related to the cell cycle phases. This means that
genes with variable expression in a cell type include
cell cycle associated variable genes and “variable
genes the expression of which is less associated with
the cell cycle phase” (Additional file 1: Figure S24).
We determined the number of the latter group of
genes by subtracting the former group from the
genes with variable expression (Fig. 6e). For the main
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population of ES cells (cluster 1), we identified tens
of variable genes the expression of which is less as-
sociated with the cell cycle phase. These genes in-
cluded Spp1, Rhox5, and S100a6, which were
previously identified as genes with highly variable ex-
pression by scRNA-seq (Fig. 6) [7, 13, 15]. We also
identified Stmn2, Dnmt3l, Tmsb4x, and several other

genes as novel variable genes the expression of which
is less associated with the cell cycle phase. Single-cell
RT-qPCR also showed high variability for Stmn2 and
Rhox5 compared with that for Nanog (Fig. 6f ). In
previous studies, Sgk1 and Actb were identified as
genes with variable expression by scRNA-seq, which
analyzed cells only in the G1 phase or cells without
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measuring the intensity of Hoechst 33,342 [7, 15]. In
this study, these were classified as cell cycle associ-
ated variable genes (Additional file 1: Figure S17).
These results show that Quartz-Seq2 globally classified

genes with variable expression within a cell type into cell
cycle associated variable genes and variable genes the ex-
pression of which is less associated with the cell cycle
phase by using Hoechst 33,342 staining intensity data ob-
tained by flow cytometry.

The global picture of cell-type composition in the stromal
vascular fraction as revealed by Quartz-Seq2
Compared with cultured cells, fresh tissue samples tend to
be composed of multiple cell types, whose sizes are highly
variable. The use of fresh samples is one promising strat-
egy to assess the robustness of high-throughput single-cell
RNA-seq for various samples. Therefore, Quartz-Seq2 was
applied to cells from the mouse stromal vascular fraction
(SVF), which was taken from adipose tissue (Fig. 7a). SVF
is thought to be one of the most important sources of
mesenchymal stem cells (MSCs) due to its potential for
use in cell therapies and the stimulation of endogenous re-
pair [26–29]. However, the global picture of cell-type com-
position in SVF has not been clarified. To achieve this, we
first observed the distribution of cell size in the SVF popu-
lation and found it to be broad (5–13 μm, average 6.43 ±
1.35 μm; n = 200; Fig. 7a). This was confirmed by flow cy-
tometry data that were obtained using a cell sorter. It is
known that the typical amount of total RNA in a mamma-
lian cell is approximately 10 pg [15, 17]. Thus, the average
amount of total RNA in the SVF population of approxi-
mately 1.7 pg is relatively small.
We collected cells in multiple 384-well PCR plates and

analyzed their transcriptome using Quartz-Seq2. In this
analysis, 38,450 ± 3513 initial fastq reads were converted to
UMI counts in the final digital expression matrix. The UMI
conversion efficiency was 26.85 ± 2.70% (n = 3). We ob-
served broader distributions of UMI counts and gene
counts in SVF than in ES and 10 pg of total RNA. The gene
counts correlated well with side scatter (SSC) values, which
were associated with cell size (Additional file 1: Figure S19).
Dimensionality reduction and clustering of single-cell

transcriptome data showed the clear separation of 11 clus-
ters (Fig. 7b). To annotate the cell type for each cluster, we
identified differentially expressed genes and functional
terms that were either specific or enriched for each cluster
(Fig. 7c, d; Additional file 1: Figure S20). As Fig. 7c shows,
clusters 1, 2, 5, and 8–11 expressed cluster-specific genes,
and clusters 3, 4, 6, 7, and 9 shared expressed genes
(marker class C) as well as differentially expressed genes of
classes D–G. Taking these markers and functional terms
as well as previous knowledge together, each cluster was
identified as follows: two types of Cd34-positive MSC
(cluster 1, 7.8% of cells from SVF population; cluster 8,

6.4%), two types of Cd4-positive T cells (cluster 3, 45.0%;
cluster 4, 1.0%), Cxcr6-positive T cells (cluster 9, 1.71%), B
cells (cluster 5, 15.9%), killer T cells (cluster 6, 11.0%), nat-
ural killer cells (cluster 7, 3.0%), macrophages (cluster 2,
5.5%), dendritic cells (cluster 10, 0.86%), and plasmacytoid
dendritic cells (cluster 11, 0.57%). We noted that the sizes
of the T cells and B cells from clusters 3–5, which were
measured using a cell sorter, were smaller than those of
MSCs and macrophages from clusters 1, 2, and 8 (Add-
itional file 1: Figure S19). Using immunofluorescence ob-
servation, we confirmed that the sizes of CD4-positive T
cells and CD79-positive B cells were smaller in SVF (Add-
itional file 1: Figure S19). These results show that Quartz-
Seq2 with flow cytometry data are useful for defining re-
spective cell clusters with cell size information.
Subsequently, we investigated the gene expression of re-

ceptors and ligands in cells from the SVF. The variety of re-
ceptors expressed in each cluster was similar (Additional
file 1: Figure S21). However, we found a wide variety of li-
gands expressed in clusters 1 and 8 (Additional file 1: Figure
S21). It is known that MSCs secrete many paracrine media-
tors, which have a therapeutic effect [30, 31]. These results
suggest that clusters 1 and 8 are MSCs, which secrete many
paracrine mediators.
We focused on these two potential MSC clusters (1 and

8) because the heterogeneity of the MSC population has
been discussed in many papers [32, 33]. By using Quartz-
Seq2, clusters 1 and 8 were shown to have the Cd31
−/Cd34+/Cd45− phenotype (Additional file 1: Figure S22).
In a previous study, qPCR-based single-cell transcript ana-
lysis of the Cd31−/Cd34+/Cd45− population of SVF was
reported. By analyzing 140 genes, the authors identified the
Cd55+/Dpp4+/Cd31−/Cd34+/Cd45− cell population and
showed that the administration of this population was ef-
fective for normalizing diabetic wound healing in mice
[32]. They identified 13 marker genes for the Cd55+/Dpp4
+/Cd31−/Cd34+/Cd45− population in mouse SVF. We
compared the expression of those 13 genes between clus-
ters 1 and 8 (Additional file 1: Figure S23). The results
showed that almost all of the genes were more highly
expressed in cluster 1 than in cluster 8, suggesting that the
cluster 1 population was similar to the Cd55+/Dpp4
+/Cd31−/Cd34+/Cd45− population. To further analyze the
relationship between our identified clusters and previously
reported heterogeneity of the MSC population, we exam-
ined the expression of typical MSC markers (CD90,
CD105, PDGFRa, and Sca-1) [32, 34] as well as
subpopulation-specific markers (Pou5f1, Nanog, Sox2,
Tnnt2, andMyog) [35, 36]. PDGFRa (Pdgfra) and Sca1 were
expressed in both clusters 1 and 8, whereas Cd90 was
expressed at a higher level in cluster 8 than in cluster 1,
and Cd105 was not strongly expressed in either cluster.
Cd90 and Cd105 were, however, not specific to these MSC
clusters. Neither pluripotent markers (Pou5f1, Nanog, and
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Sox2) nor skeletal and cardiomyogenic markers (Tnnt2 and
Myog) were detected in either cluster (Additional file 1: Fig-
ure S22). Collectively, our transcriptome analysis showed

that the MSC population is divided into two clusters, sug-
gesting that there is less heterogeneity of MSCs in the SVF
than expected.
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Fig. 7 Quartz-Seq2 analysis of stromal vascular fraction (SVF) from mouse adipose tissue. a Morphology of SVF cells. Adipose tissue
from a cell suspension of SVF was prepared. Upper panels present a photograph of adipose tissues and dissociated SVF samples.
Yellow scale bar represents 1 cm. White scale bar represents 10 μm. Lower panels represent the distribution of cell size information
with different platforms (left, diameter of cell size using photography; right, flow cytometry information using a cell sorter). The
diameter of cell size for SVF samples was 6.43 ± 1.35 μm (n = 200). b Clustering of cells included in SVF. The transcriptome of
approximately 1000 cells was quantified by Quartz-Seq2 and clustering on t-SNE space was performed. In accordance with the genes
and functional terms enriched in each cluster, the cell type was annotated. The percentage indicates the proportion of cells for each
cluster relative to all cells analyzed. Numbers in parentheses indicate the numbers of cells constituting the cluster. c Marker genes for
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expression being displayed as color in a heatmap. No more than 50 cells are shown for simplicity. d The results of Gene Ontology
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displayed as color in the heatmap. No more than 50 cells are shown for simplicity. e Reactome pathway with genes differentially
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Next, we investigated the difference between the
two MSC clusters in SVF. We detected 182 differen-
tially expressed genes between clusters 1 and 8 (Add-
itional file 3: Table S2). Cluster 8 was characterized
by the enriched expression of genes that encode
extracellular matrix proteins, including collagens,
Hspg2, and Bgn. By contrast, cluster 1 was character-
ized by the expression of IGFBPs (Igfbp4, Igfbp5,
Igfbp6), prostaglandin endoperoxidase synthases
(Ptgs2), and secreted factors Fgf2 and Bmp2. Notably,
the expression of stem cell-characteristic genes
Aldh1a3, Fgf2, Bmp2, and Tgfbr2 were identified as
important modules in cluster 1, suggesting that this
cluster included more stem-like phenotypes that se-
crete medicinal factors.
To leverage the power of the entire transcriptome ana-

lysis, we performed an enrichment analysis of biological
pathways using the 182 genes differentially expressed be-
tween the two clusters (Fig. 7e; Additional file 4: Table S3).
Cluster 1 was characterized by elastic fiber pathways and
IGF transport pathways. Elastic fibers are constituents of
various connective tissues and are related to vascular func-
tion [37]. Growth factors including FGF2, BMP2, IGFBPs,
and PGE2 regulate growth and differentiation [38]. A tightly
linked network of collagen metabolism pathways was found
to be highly enriched in cluster 8. These results suggest that
two MSC clusters of SVF have different functions. Cluster 1
could feature medicinal cells characterized by the expres-
sion of growth and development-related genes. In contrast,
cluster 8 may be characterized by the production of extra-
cellular matrix.
Taking the obtained findings together, our transcrip-

tome analysis by Quartz-Seq2 successfully identified cell
populations that consisted of various types of both large
and small cells, which were isolated from in vivo tissue,
and demonstrated that fresh SVF contains two closely re-
lated types of MSCs that have distinct characteristics.

Discussion
The rate of conversion from initial reads to UMI counts
has been low, especially in high-throughput single-cell
RNA-seq. Ideally, greater UMI counts should be generated
from limited sequence reads because the increase in UMI
count assigned to each cell leads to the detection of low-
copy genes and the identification of cell type-specific genes
using statistical tests. To overcome these issues, we devel-
oped a novel high-throughput single-cell RNA-seq
method, Quartz-Seq2. We calculated the UMI conversion
efficiency, which indicated how effectively initial reads can
be converted to UMI counts. The UMI conversion effi-
ciency of Quartz-Seq2 was 1.44–4.55-fold higher than
those of other single-cell RNA-seq methods (Fig. 4).
Quartz-Seq2 could detect 1.28–2.41-fold more genes from
limited fastq reads and at a lower cost (Fig. 4). Moreover,

we decreased the cDNA preparation cost per cell of
Quartz-Seq2 by 97.5–98.5% compared with that of
Quartz-Seq (Additional file 1: Figure S6a). The total cost
(cDNA preparation cost and sequence cost per cell) of
Quartz-Seq2 as a cell sorter-based method approaches that
of a droplet-based method (Additional file 1: Figure S6b).
Furthermore, the use of evaporation-preventing oil might
reduce the cDNA preparation cost of Quartz-Seq2 by 75%
[2]. By cell barcoding, Quartz-Seq2 can pool cDNA of up
to 1536 individual cells into one mixture. Streamlined and
simplified experimental processes of Quartz-Seq2 allowed
us to handle thousands of single cells within a few days.
Quartz-Seq2 also showed high accuracy and high reprodu-
cibility, leading to precise measurement of the transcrip-
tome from single cells (Fig. 2d, e). We demonstrated
Quartz-Seq2 analyses on a total of approximately 9000
mouse ES cells as an in vitro sample and approximately
1000 cells from mouse SVF samples, including MSCs, as
an in vivo sample.
We proposed that UMI conversion efficiency could be a

useful variable for evaluating performance for the further
development of high-throughput single-cell RNA-seq
methods with shallow reads. The increase of initial se-
quence reads by additional sequencing does not cancel out
the low efficiency of UMI conversion at an equal rate. For
example, approximately 24,000 fastq reads were converted
to approximately 11,000 UMI counts in Quartz-Seq2, while
Drop-seq required approximately 169,000 fastq reads to
generate the same UMI counts. Under these conditions, the
difference in UMI conversion efficiency was 2.5-fold but the
difference in required fastq reads to generate the same UMI
count was sevenfold. This is because UMI counts do not in-
crease linearly with an increase in initial sequence reads due
to UMI filtering. Unfortunately, the rate of increase of se-
quence throughput was lower than that of the processing
ability for single cells. It will thus continue to be important
to utilize limited initial fastq reads for high-throughput
single-cell RNA-seq methods.
Quartz-Seq2 is based on poly(A) tagging, which is one

of the strategies of converting first-strand cDNA to amp-
lified cDNA [19, 39]. However, the poly(A) tagging
efficiency itself has not been improved for single-cell
RNA-seq. In this study, three molecular biological im-
provements of Quartz-Seq2 contributed to the increase
of amplified cDNA, which led to high UMI conversion
efficiency (Fig. 2; Additional file 1: Figure S1). In
addition, the improvement of poly(A) tagging steps was
the most efficient approach to increase amplified cDNA
for Quartz-Seq2 (up 360%; Additional file 1: Figure S1).
Several previous studies improved the efficiency of con-
version from an mRNA molecule to amplifiable cDNA,
and showed that the increase of amplified cDNA is a
good guidepost to improve UMI counts or quantitative
performance for single-cell RNA-seq [3, 14, 15]. These
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results suggest that improved poly(A) tagging was the
most important feature for the high UMI conversion effi-
ciency of Quartz-Seq2.
Several improvements proposed in this study could con-

tribute to the further development of other single-cell
RNA-seq methods, as follows. (1) We showed that a de-
crease of enzyme concentration in RT solution led to de-
creases in technical error and cDNA preparation cost. (2)
We applied the Sequence–Levenshtein distance for the de-
sign of cell barcodes containing RT primer sets. The use of
primer sets designed in this study allows the user to correct
mutations of at most two nucleotides of a cell barcode, in-
cluding substitution, insertion, or deletion; the correction
capability of these primer sets is higher than that of barcode
sets used in previous studies [1, 3]. Such correction of the
cell barcode increased the average UMI count by 3–5%. (3)
We hope that the spin-down collection system developed in
this study can be applied to other cell sorter-based single-
cell RNA-seq methods [2, 3, 11, 12]. (4) In Quartz-Seq2, we
improved the efficiency of poly(A) tagging itself (Fig. 2).
Several single-cell RNA-seq methods, including Quartz-Seq,
are based on poly(A) tagging [4, 5, 10, 15, 19, 40]. Such im-
provement may directly contribute to these methods having
increased quantitative performance.
We achieved a marked improvement in UMI conver-

sion efficiency at a low cost from initial reads to UMI
counts, allowing us to analyze three- to tenfold more sin-
gle cells in limited sequence experiments. However, it is
difficult to sort more than 20,000 single cells in a day
when using one cell sorter. While there is greater scal-
ability for cell sampling in droplet-based single-cell
RNA-seq methods than in cell sorter-based methods,
these latter methods can utilize additional information
obtained in flow cytometry [41, 42], which cannot be de-
termined from transcriptome data alone. These two
types of method provide complementary approaches for
investigating complex biological phenomena. C1 Single-
Cell Auto Prep System (Fluidigm) is another widely used
platform for single-cell RNA-seq methods [43]. CEL-
seq2 shows high UMI conversion efficiency, so it is a
very convenient method for users of the C1 platform as
a single-cell RNA-seq method based on UMI count [3].
Quartz-Seq2 cannot be performed with the C1 platform,
but it can assimilate 1536 cell barcodes in a cell sorter in
a high-throughput manner. We think that both methods
can be effective as long as the most appropriate one is
selected for each situation.
In this study, we showed that Quartz-Seq2 has advan-

tages in gene detection and the identification of bio-
logical pathways via high UMI conversion efficiency
(Fig. 3). Moreover, we analyzed thousands of single cells
from all cell cycle phases within a cell type (Fig. 6).
These specifications with Quartz-Seq2 allow us to per-
form the global classification of genes with variable

expression in a cell type into cell cycle associated vari-
able genes and variable genes the expression of which is
less associated with the cell cycle phase.
While Hoechst 33,342 is used as an indicator of

DNA content, FUCCI reporter systems monitor the
ratio of activities for two different cell cycle-
associated proteins. Therefore, the latter has an
advantage in cell cycle analysis via providing more
detailed resolution, although the introduction of re-
porter constructs into the cells cannot be applied for
all purposes, especially for the analysis of human
samples. A previous study utilizing the FUCCI fluor-
escent reporter system reported that competence to
respond to specific differentiation signaling was
limited to only an early or a late window of the G1

phase in human ES cells [44]. In the future, combin-
ing Quartz-Seq2 and FUCCI/FUCCI2 or other
fluorescent reporter systems should lead to an un-
derstanding of the global picture of differentiation
dynamics regarding competence, response, transition,
and commitment because Quartz-Seq2 can analyze
changes of cell state for thousands of cells.
In summary, Quartz-Seq2 can be used to obtain

continuous data on cell states because of the large
number of cells with which it deals and the high effi-
ciency of use of initial sequence reads. Quartz-Seq2
can facilitate investigation of the cell state within a
cell type, such as gradated or stochastic changes of
the cell population in organism development and dis-
ease progression.

Conclusions
In this study, we developed a high-throughput single-cell
RNA-seq method, Quartz-Seq2, which can analyze cells
numbering up to 1536 that are pooled together in a sin-
gle sample. Quartz-Seq2 allows us to effectively utilize
initial sequence reads from a next-generation sequencer.
The UMI conversion efficiency in Quartz-Seq2 ranged
from 32 to 35%, which is much higher than for other
single-cell RNA-seq methods (7–22%). This was caused
by the improvements in several molecular biological
steps including poly(A) tagging. The technical gene ex-
pression variability of Quartz-Seq2 was close to the the-
oretical variability of a Poisson distribution. As we
showed in the analysis of SVF and the ES/PrE mixture,
cell types in the population were identified with marker
genes and functional terms that characterized each cell
type. We identified two types of Cd34-positive MSCs in
SVF, namely, those that express numerous transcription
factor-encoding and secreted protein-encoding genes
specific to each. Quartz-Seq2 can also be used to provide
continuous data on cell states because of the large num-
ber of cells with which it deals and the high efficiency in
the use of initial sequence reads. Quartz-Seq2 should
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facilitate investigations of the cell state within a cell type,
such as gradated or stochastic changes of cell popula-
tions in organism development and disease progression.

Methods
Cell culture
Mouse ES cells were cultured as described previously [15].
Briefly, 1.0 × 105 cells were seeded on a 60-mm dish coated
with gelatin (0.1%). Cells were maintained in GMEM-based
medium containing 10% FBS and 1000 units/ml leukemia
inhibitory factor (Millipore ESGRO). The cell line used in
this study was G6GRGFP, which was established in a
previous study [23]. It has been reported that almost all
G6GRGFP differentiated into primitive endoderm-like cells
upon dexamethasone treatment [15, 23]. To differentiate ES
cells into primitive endoderm-like cells, 1.0 × 105 cells were
seeded on a 60-mm dish coated with gelatin and cultured
in GMEM-based medium containing 10% FBS, 1000 units/
ml LIF, and 100 mM dexamethasone for 72 h. We con-
firmed that almost all of the Dex-treated G6GR ES cells dif-
ferentiated into primitive endoderm-like cells. Moreover, we
cultured J1 ES cells in accordance with a procedure de-
scribed in a previous report [21].

Cell staining
To identify dead or damaged cells, propidium iodide (PI)
was added to the cell suspension (final concentration 1–2
μg/ml). As an indicator of an undifferentiated state in a
suspension containing a mixture of cells, Calcein-AM was
used. Suspensions for cells cultured under maintenance
and differentiation conditions were prepared independ-
ently, and cells in the maintenance condition were treated
with 1 μg/ml Calcein-AM for 10 min on ice. After washing
with PBS, cell suspensions of ES cells and PrE cells at the
same concentration were mixed. Hoechst 33,342 was used
as an indicator of the DNA content in a cell. The proce-
dures were performed as described previously [15].

Single-cell preparation for stromal vascular fraction
These experiments were carried out in accordance with
the protocol approved by the Committee on Animal Re-
search at Nara Institute of Science and Technology and
the RIKEN Animal Experiment Committee. Subcutane-
ous fat tissues from three- to four-month-old ICR male
mice (n = 3 per sample, two biological replicate samples)
were minced into small pieces and incubated with 0.4 U/
mL collagenase NB4G (Serva) at 37 °C for 35 min in a
shaking water bath. The digested solution was sequen-
tially filtered through 100- and 40-μm cell strainers
(Corning), followed by centrifugation at 250×g for 5 min
to remove mature adipocytes. The pellet was treated with
erythrocyte lysis buffer (BD Biosciences) and centrifuged
at 180×g for 5 min. The nucleated cells were suspended
in HBSS with 0.1% BSA, filtered through a 20-μm cell

strainer (pluriSelect), and then kept on ice (Cell solution
A). The cell aggregates that did not pass through the 20-
μm strainer were further treated with Accutase (Thermo
Fisher Scientific) at 37 °C for 15 min to dissociate them
into single cells, centrifuged at 180×g for 5 min, and sus-
pended in HBSS with 0.1% BSA (Cell solution B). Cell
solutions A and B were mixed and again filtered through
the 20-μm cell strainer, followed by centrifugation at
180×g for 5 min. The pellet was resuspended with HBSS
with 0.1% BSA, stained with PI, and used for single-cell
analysis.

RNA preparation
Total RNA was purified from cultured cells using Direct-
zol RNA MiniPrep kit (Zymo Research) with TRIzol RNA
Isolation Reagents (Thermo). We measured the concentra-
tion of purified total RNA using a NanoDrop 1000 Spec-
trophotometer (Thermo). We confirmed that the RNA
integrity number of total RNA was over 9.5 using an Agi-
lent RNA 6000 Nano Kit (Agilent). Estimation of the aver-
age amount of total RNA per single cell for respective
samples was performed in accordance with our previous
study [15]. For high-throughput single-cell RNA-seq, we
prepared total RNA from a single cell with ERCC spike-in
RNA. First, we diluted the ERCC spike-in RNA tenfold.
We then added 6 μL of 1:10 diluted ERCC spike-in RNA
per 10 μg of total RNA. We used diluted 10 pg of total
RNA with ERCC spike-in RNA for the technical validation
of Quartz-Seq2. For single cells, we used the same concen-
tration of ERCC spike-in RNA.

Bulk RNA-seq methods for populations of cells
We prepared sequence library DNA with 1 μg of total
RNA using NEBNext Poly(A) mRNA Magnetic Isolation
Module and NEBNext Ultra Directional RNA Library Prep
Kit. The total RNA did not contain ERCC spin-in mix I. In
addition, we used SuperScript III instead of ProtoScript in
the RT step and KAPA HiFi DNA polymerase instead of
NEBNext High-Fidelity PCR DNA polymerase in the PCR
step. The resulting sequence library DNA was analyzed by
HiSeq2500.

Design of cell barcodes
The selection of 384 or 1536 sequences for v3.1 and v3.2
barcode primer sets was performed as described below.
First, 1582 or 4714 candidate sequences were created
using the DNABarcodes package of R Bioconductor for
the v3.1 set with 14-mer and the v3.2 set with 15-mer,
respectively (version 1.0.0). To reduce the loss of reads
converted into UMI counts, we applied the Sequence–
Levenshtein distance as an edit distance in order to
maximize the ability to correct errors that occur during
the synthesis of oligonucleotides or sequencing [22]. The
minimum distance between any two sequences was
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controlled to 5, leading to the correction of a maximum
of two errors of substitution, insertion, or deletion. As
the base composition of the created sequences was not
uniform, we selected 384 or 1536 sequences from among
1582 or 4714 created sequences so that the variance of
base composition decreased. These sequences are listed
in Additional file 5: Table S4.

Single-cell collection using flow cytometry
Stained cells were analyzed using flow cytometry SH800
(Sony) or MoFlo Astrios EQ (Beckman Coulter). For
SH800, we used 130-μm microfluidic sorting chips. For
MoFlo Astrios EQ, we used 100-μm nozzle sizes. Each
cell sorter was equipped with a custom-made splash-
guard to prevent contamination from unexpected drop-
lets between the target well and neighboring wells. We
used two sets of RT primer for Quartz-Seq2. The set of
v3.1 RT primers has 384 kinds of unique cell barcodes,
with a length of 14 nucleotides (OPC purification, FAS-
MAC). The set of v3.2 RT primers has 1536 kinds of
unique cell barcodes, with a length of 15 nucleotides
(OPC purification, Sigma). The set of v3.1 RT primers
corresponds to one set of the 384-well PCR plate with
lysis buffer, the wells of which have unique barcodes.
The set of v3.2 RT primers corresponds to four sets of
the 384-well PCR plate with lysis buffer. The RT primer
position in the 384-well plate and the sequence were as
described in Additional file 5: Table S4. Single cells were
isolated in the 384-well PCR plate with 1 μL of lysis buf-
fer (0.1111 μM respective RT primers, 0.12 mM dNTP
mix, 0.3% NP-40, 1 unit/μL RNasin plus) containing
ERCC spike-in RNA. During single-cell sorting, the 384-
well PCR plate was kept on a 384 aluminum stand at 4 °
C. For Moflo Astrios EQ, we used G5498B-060 Insert
384 Eppendorf twin.tec PCR as a 384 aluminum stand
(Agilent). For SH800, we used an SH800 384 aluminum
stand (Sony). Immediately after the cell collection, the
plate was temporarily sealed with LightCycler 480
Sealing Foil (Roche) and the sealed 384-well PCR plate
was centrifuged at 10,000 g and 4 °C for 1 min using
TOMY MX307, equipped with a Rack-in-Rotor and cen-
trifugation rack PCR96-02. These steps were very im-
portant to collect the droplet with a single cell in lysis
buffer in an efficient manner. By altering the volume of
lysis buffer from 0.4 μL (as described in the original
Quartz-Seq paper) to 1 μL (Quartz-Seq2), bubbling of
lysis buffer was not required before single-cell sorting
and the lysis buffer could easily be handled. We then
peeled open the temporary seal and re-sealed it with Agi-
lent PlateLoc Thermal Microplate Sealer (Agilent). We
agitated the plate at 2600 rpm and 4 °C for 1 min using
ThermoMixer C (Eppendorf ), after which we centrifuged
the plate again. The resulting 384-well plate was then
immediately cryopreserved at −80 °C and maintained

under such conditions until subsequent RT for cell bar-
coding. After cryopreservation, we performed subsequent
whole-transcript amplification using the cryopreserved
384-well PCR plate within a few months.

Whole-transcript amplification of Quartz-Seq2
Cryopreserved 384-well plates with single-cell lysate were
centrifuged at 10,000 g and 4 °C for 1 min. Subsequently,
we denatured total RNA in each 384 plate at 70 °C for 90 s
and hybridized the RT primer to poly-adenylated RNA at
35 °C for 15 s using the C1000/S1000 thermal cycler. The
resulting plates were again centrifuged at 10,000 g and 4 °
C for 1 min. Next, the plates were placed on the 384
aluminum plate at 0 °C. We peeled away the seal and
added 1 μL of RT premix (2× Thermopol buffer, 5 units/
μL SuperScript III, 0.55 units/μL RNasin plus) to 1 μL of
lysis buffer for each well using a Mantis microfluidic dis-
pensing system (Formulatrix) or a 384 Transfer Plate sys-
tem (1859-384S, Watson). The above RT solution was
used for the RT25 condition. For the RT100 condition, we
used the following RT solution: 2× Thermopol buffer, 20
units/μL SuperScript III, and 2.2 units/μL RNasin plus.
We sealed the plates again and agitated them at 2600 rpm
and 4 °C for 1 min. The plates were then centrifuged at
10,000 g and 4 °C for 1 min. We then performed RT at 35
°C for 5 min and 50 °C for 50 min. The RT was stopped at
70 °C for 15 min. Then, the plates were placed on a pre-
chilled aluminum block, after which we peeled off their
seals. Subsequently, we turned the plates upside down on
the assembled collector type A or type B (Additional file 1:
Figure S4). We mainly used type A. We centrifuged the
plates with an assemble collector at 3010 g and 4 °C for 3
min with swing-bucket rotors. Subsequently, we collected
the cDNA solution into a disposable reservoir. Typically,
we obtained 650–700 μL of cDNA solution from one 384-
well PCR plate. We purified and concentrated the cDNA
solution using the DNA Clean & Concentrator™-5 kit
(Zymo Research). We used three purification columns for
one 384-well PCR plate in the case of the v3.1 RT primer
system (384-cell barcode). Purified cDNA was extracted
into 20 μL of nuclease-free water from one column purifi-
cation and transferred into an eight-linked PCR tube
(TaKaRa). The PCR tubes were placed on an aluminum
PCR stand at 0 °C. We added 25 μL of TdT solution (1×
Thermopol buffer, 2.4 mM dATP, 0.0384 units/μL RNase
H (Invitrogen), 26.88 units/μL terminal transferase
(Roche)) into 20 μL of extracted cDNA using a pipette at 0
°C. The resulting 45 μL of TdT solution was mixed with a
pipette at 0 °C or ThermoMixer at 2000 g and 0 °C for 1
min. Immediately thereafter, the PCR tubes were centri-
fuged at 10,000 g and 0 °C for 1 min. We used a C1000/
S1000 thermal cycler equipped with the 96-Deep Well Re-
action Module for the following steps. The PCR tubes
were placed on the block of the thermal cycler, which had
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been prechilled to 0 °C. We then performed a poly(A) tail-
ing reaction at 37 °C for 75 s. The solution was inactivated
at 65 °C for 10 min. The PCR tubes were placed on an
aluminum PCR stand at 0 °C. We then dispensed approxi-
mately 11 μL of solution into four wells from 45 μL of
TdT solution. We added 46.16 μL of PCR I premix
(1.08492× MightyAmp Buffer version 2, 0.06932 μM Tag-
ging primer, 0.05415 units/μL MightyAmp DNA polymer-
ase) to 11 μL of TdT solution for the respective wells of
the PCR tube. MightyAmp DNA polymerase, which was
used in Quartz-Seq and Quartz-Seq2, are marketed as
Terra PCR Direct polymerase [15]. We performed gentle
inversion mixing on the resulting solution in the PCR
tube. The tubes were then centrifuged at 10,000 g and 4 °C
for 1 min. Subsequently, the solution was mixed with
ThermoMixer at 2000 rpm and 4 °C for 2 min. Then, we
spun down the tube again. Next, we denatured the solu-
tion at 98 °C for 130 s and hybridized tagging primer to
poly(A)-tailed cDNA at 40 °C for 1 min. After that, we per-
formed the Increment step by heating to 68 °C at 0.2 °C
every second and performed second-strand synthesis at 68
°C for 5 min. The tubes were placed on an aluminum PCR
stand at 0 °C. We added 50.232 μL of PCR II premix
(0.99697× MightyAmp Buffer version.2, 1.8952 μM gM
primer) to 56.16 μL of PCR I solution. We performed gen-
tle inversion mixing on the resulting solution in the PCR
tube. The tubes were then centrifuged at 10,000 g and 4 °C
for 1 min. Subsequently, the solution was mixed with
ThermoMixer at 2000 rpm and 4 °C for 2 min, after which
we spun down the tube again. We then placed it on the
block of the thermal cycler at 68 °C. Subsequently, we
amplified the cDNA for 11 cycles under the following con-
ditions: 98 °C for 10 s, 65 °C for 15 s, and 68 °C 5 min. We
then incubated the tube at 68 °C for an additional 5 min.
Finally, we transferred all of the PCR solution, derived
from one 384-well PCR plate, to a 50-mL polypropylene
centrifuge tube (Watson). Typically, we obtained approxi-
mately 1.2 mL of PCR solution per 384-well PCR plate.
We added 32 μL of 3 M sodium acetate (pH 5.2) and 6420
μL PB-Buffer (Qiagen) to the PCR solution. The mixture
was then purified using a MinElute Spin Column (Qiagen).
Purified cDNA was extracted into 40 μL of nuclease-free
water. We additionally purified the cDNA with 32 μL of
Ampure XP beads. Finally, we obtained 32 μL of purified
cDNA. We checked the length distribution of amplified
cDNA with an Agilent High Sensitivity DNA Kit (Agilent).
The typical average size of the amplified cDNA in Quartz-
Seq2 was approximately 1400 bp (Additional file 1: Figure
S2c). Primer sequences are listed in Additional file 5:
Table S4.
In the case of the usage of the v3.2 RT primer in

Quartz-Seq2, we modified the above steps as follows. After
RT, we collected cDNA solution into a disposable reser-
voir from four sets of 384-well plates, which corresponded

to 1536 wells. We purified and concentrated the cDNA so-
lution using eight purification columns for four 384-well
PCR plates in the case of the v3.2 RT primer system. In
the PCR step, we amplified cDNA for nine cycles with the
following conditions: 98 °C for 10 s, 65 °C for 15 s, and 68
°C for 5 min. Finally, we transferred all of the PCR solution
derived from four 384-well plates to a 50-mL polypropyl-
ene centrifuge tube (Watson). Typically, we obtained ap-
proximately 3.5 mL of PCR solution per four 384-well
PCR plates. We added 88 μL of 3 M sodium acetate (pH
5.2) and 17.6 mL of PB-Buffer (Qiagen) to the PCR solu-
tion. The mixture was purified using the MinElute Spin
Column (Qiagen). Subsequently, cDNA was again purified
using Ampure XP magnetic beads.
For the Quartz-Seq1-like reaction, we performed the

following procedure in accordance with our previous
study. We added 1 μL of RT premix (2× PCR buffer, 5
units/μL SuperScript III, 0.55 units/μL RNasin plus) to 1
μL of lysis buffer. We then performed RT at 35 °C for 5
min and 45 °C for 20 min. This RT was stopped at 70 °C
for 15 min. We added 5 μL of ExoIB solution (1.6× Exo-
nuclease I buffer, 3.2× PCR buffer, 16 mM DTT) and 20
μL of TdT solution (1× PCR buffer, 3 mM dATP, 0.0384
units/μL RNase H (Invitrogen), 33.6 units/μL terminal
transferase (Roche)) into 20 μL of extracted cDNA using
a pipette at 0 °C. The PCR tubes were placed on the
block of the thermal cycler that had been prechilled to 0
°C. We performed a poly(A) tailing reaction at 37 °C for
75 s. We then denatured the solution at 98 °C for 130 s
and hybridized tagging primer to poly(A)-tailed cDNA at
40 °C for 1 min. After that, we performed second-strand
synthesis at 68 °C for 5 min. Subsequently, we amplified
the cDNA via a PCR reaction for 12 cycles.

Preparation of truncated sequence adaptor
The truncated sequence adaptor was composed of an
rYshapeP5 primer (HPLC-purified) and rYshapeP7LT
primers (HPLC-purified), which had a TruSeqLT-
compatible pool barcode. We prepared 100 μM respect-
ive primers with adaptor buffer (10 mM Tris-HCl pH
7.8, 0.1 mM EDTA pH 8.0, 50 mM NaCl). We added 5
μL of 100 μM rYshapeP5 primer and rYshapeP7LTxx pri-
mer into a single PCR tube. We denatured the solution
at 90 °C for 90 s. After that, we achieved annealing by
cooling to 10 °C by 0.5 °C every 30 s and then maintain-
ing the sample at 4 °C. We then placed the tube on an
aluminum PCR stand at 0 °C. Subsequently, we added
adaptor buffer, which was prechilled at 0 °C, to 10 μL of
50 μM truncated adaptor. Finally, we obtained about 50
μL of 10 μM truncated adaptor. We cryopreserved 1 μL
of 10 μM truncated adaptor in a PCR tube at −80 °C
until usage in the adaptor ligation step. Primer sequences
are listed in Additional file 5: Table S4.
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Sequence library preparation of Quartz-Seq2
We added 130 μL of nuclease-free water including 5–10
ng of amplified cDNA into a Crimp-Cap microTUBE
with AFA Fiber. We then performed cDNA fragmenta-
tion using an LE220 Focused-ultrasonicator (Covaris)
under the following conditions: duty factor 15%, peak in-
cident power 450 W, cycles per burst 200, and treatment
time 80 s. We purified and concentrated the cDNA solu-
tion using the DNA Clean & Concentrator™-5 kit. Puri-
fied cDNA was extracted into 10 μL of nuclease-free
water from one column purification and transferred into
an eight-linked PCR tube (TaKaRa).
We then added 2 μL of End-Repair premix (1.4 μL of End

repair & A-tailing buffer and 0.6 μL of End repair & A-
tailing Enzyme (KAPA Biosystems)) to 10 μL of fragmented
cDNA solution. Subsequently, we mixed the solution by
pipetting on an aluminum PCR stand at 0 °C. The PCR
tubes were placed on the block of the thermal cycler, which
had been prechilled to 20 °C. We then incubated the tubes
at 37 °C for 60 min and 65 °C for 30 min. After this, we
added 2 μL of adaptor buffer (1.5 μM truncated adaptor, 10
mM Tris-HCl pH 7.8, 0.1 mM EDTA pH 8.0, 50 mM NaCl)
and 8 μL of ligation premix (6 μL of ligation buffer, 2 μL of
DNA ligase (KAPA Biosystems)) at 4 °C. The 22 μL of
ligation solution was well mixed by pipetting at 4 °C. Then,
we performed adaptor ligation at 20 °C for 15 min. After
ligation, we added 18 μL of Ampure XP beads to 22 μL of
adaptor ligation solution and mixed them well. Adaptor-
ligated cDNA was extracted into 20 μL of nuclease-free
water. We added 32 μL of PCR premix (25 μL of 2×KAPA
HiFi ready mix, 1.75 μL of 10 μM TPC2 primer (HPLC-
purified), 10 μM P5-gMac hybrid primer (HPLC-purified))
to 18 μL of adaptor-ligated cDNA. We denatured the solu-
tion at 98 °C for 45 s. Subsequently, we amplified cDNA for
eight cycles under the following conditions: 98 °C for 15 s,
60 °C for 30 s, and 72 °C for 1 min. Finally, we additionally
incubated the tube at 72 °C for 5 min.
We added 40 μL of Ampure XP beads to 50 μL of PCR

solution. Purified sequence-library DNA was eluted into
20–30 μL of nuclease-free water. We checked the DNA
concentration and DNA size of sequence library DNA
using the Agilent High Sensitivity DNA Kit (Agilent) and
QuantiFluor® dsDNA System (Promega). We also prepared
sequence library DNA with Tn5 transposase, in accord-
ance with a modified version of a procedure used in a pre-
vious study [6]. Specifically, the modifications were as
follows. We used 0.75 ng of amplified cDNA for the Nex-
tera XT library preparation kit. We amplified sequence li-
brary DNA with the P5-gMac hybrid primer and the
Nextera XT primer, which has the P7 sequence.

Deep sequencing for Quartz-Seq2
We analyzed the sequence library DNA from Quartz-
Seq2 using NextSeq500 (Illumina) and HiSeq2500

(Illumina). For the Read1 sequence, we used a custom
sequence primer named Read1DropQuartz primer
(HPLC-purified). In the case of the v3.1 RT primer, se-
quence specification was as follows (Read1, 22 cycles;
Index1, 6 cycles; Read2, 64–118 cycles). In the case of the
v3.2 RT primer, sequence specification was as follows
(Read1, 23 cycles; Index1, 6 cycles; Read2, 63 cycles).
When Read1 length was within 64 nucleotides we mainly
used the NextSeq 500/550 High Output v2 Kit (75 cycles),
which can be used for sequencing up to 92 nucleotides.
For long sequences (over 64 nucleotides), we analyzed se-
quence library DNA using the HiSeq Rapid SBS Kit v2. Se-
quence analysis with HiSeq2500 was supported by the
Genomic Network Analysis Support facility (GeNAS) in
RIKEN and Phyloinformatics Unit of RIKEN Center for
Life Science Technologies (formerly GRAS) in RIKEN.

Amplification-free single-cell qPCR analysis
Amplification-free single-cell qPCR was performed in ac-
cordance with our previous study with the following
modifications [15]. We collected a single cell into 1 μL
of lysis buffer (2.5 μM random hexamer, 1 mM dNTP
mix, 0.3% NP40, 2 units/μL RNasin plus) of a 384-well
PCR plate (Eppendorf ) using SH800. The resulting 384-
well PCR plate was cryopreserved at −80 °C. We dena-
tured total RNA in the 384-well PCR plate at 70 °C for
1.5 min using a C1000/S1000 thermal cycler and hybrid-
ized the random primer to RNA at 0 °C for 2 min. We
added 1 μL of RT solution (2× SSIV buffer, 10 mM DTT,
2 units/μL RNasin plus, 20 units/μL SuperScript IV) to
the lysis buffer. Subsequently, we performed RT at 23 °C
for 10 min and 50 °C for 10 min. The RT was stopped at
80 °C for 10 min. The resulting solution was diluted with
qPCR solution (10 mM Tris-HCl pH 8.0, 0.05% Tween-
20). The obtained diluted solution was then used for
qPCR detection with QuantiTect SYBR Green PCR Mas-
ter Mix and the LightCycler480 system. For primer sets
for each gene, see Additional file 5: Table S4.

Drop-seq experiments and data analysis
Drop-seq was performed as reported previously [6] and
in line with an online protocol (http://mccarrolllab.com/
dropseq/), but with the following modifications: flow
rates for oil and aqueous suspensions were 14,000 μl/h
and 4000 μl/h, respectively. The diameter of droplets
was 95–100 μm. Microfluidic devices were fabricated by
Fluidware Technologies (Japan). The lot number of bar-
coded beads was 051415 (ChemGenes). Data analysis for
Drop-seq was performed as described online (http://
mccarrolllab.com/dropseq/). The versions of the software
and databases were as follows: STAR: v2.5.1b; mouse
genome, GRCm38/mm10; genome annotation, gencode
GRCm38.p4 vM9; and Drop-seq tools, v1.11.

Sasagawa et al. Genome Biology  (2018) 19:29 Page 20 of 24

http://mccarrolllab.com/dropseq/
http://mccarrolllab.com/dropseq/
http://mccarrolllab.com/dropseq/
http://mccarrolllab.com/dropseq/


Quartz-Seq2 read alignment and generation of digital
expression data
The structure of the sequence library and data processing
was designed based on those of Drop-seq ([6] and online as
referenced above). BCL files generated by Illumina Next-
Seq500 were converted to fastq files by bcl2fastq2
(v2.17.1.14) with demultiplexing pool barcodes. The
–mask-short-adapter-reads parameter was set to 20. If
needed, fastq reads were randomly downsampled by seqtk
software (version sgdp). We mainly trimmed read2 length
to 62 nucleotides for Quartz-Seq2 by using FASTX-Toolkit
(version 0.0.14). Fastq files for Read1 and Read2 were con-
verted to a bam file by FastqToSam of Picard tools (version
1.134). Extracting cell barcodes and UMI (also called as
molecular barcode) and filtering out of reads with low bar-
code quality were performed using Drop-seq tools (version
1.11). The resulting bam files were re-converted to fastq
files by SamToFastq of Picard tools, and mapped to the
mouse genome (GRCm38/mm10) using STAR (version
2.5.1b). After sorting the resulting bam files using SortSam
of Picard tools, the unaligned bam and aligned bam were
merged by MergeBamAlignment of Picard tools. Then,
gene names were assigned to each record using TagRead-
WithGeneExon of Drop-seq tools and gtf file (version gen-
code GRCm38.p4 vM9). For the correction of errors of cell
barcodes considering the Sequence–Levenshtein distance, a
custom-made Python program (correct_bacode.py) was
used, which enabled the correction of up to two nucleotide
errors of substitution, insertion, or deletion. This program
used Python2 (version 2.7.11+), PypeR (version 1.1.2), R
(version 3.2.3), Bioconductor (version 3.2), and the Biocon-
ductor package DNABarcodes (version 1.0.0). Finally, the
UMI for each gene for each cell was counted using Digita-
lExpression of Drop-seq tools, which generated the digital
expression matrix. To generate a non-UMI-filtered matrix,
a custom-made Python program that counts reads for each
gene for each cell was used. To compare the quantitative
performance between Quartz-Seq2 and reported data in
Fig. 4, we used Ensembl75 as a reference transcript. More-
over, we trimmed the read2 length to 45 nucleotides for the
comparison.

Dimensionality reduction, clustering, and term analysis
Cells with low detected gene counts were removed for fur-
ther analysis (Quartz-Seq2 on ES/PrE mixture, 4000 genes;
Quartz-Seq2 on SVF, 500 genes). Total counts of each cell
were normalized to 10,000 or the mean of total UMI
counts for cells. UMI counts had 1 added to them and
were then log-transformed (natural logarithm), after which
they were scaled to have mean and variance for each gene
of 0 and 1, respectively. For PCA, UMI counts for all de-
tected genes (for ES/PrE mixture) or genes with highly
variable expression (for SVF) were used. For t-SNE, the
top 10 to 40 principal components of matrices produced

by PCA were used. For clustering, the DBSCAN algorithm
was used. The values of the parameter epsilon were 0.69
for Quartz-Seq2 on the 4500 mouse ES/PrE mixture, 5 for
Quartz-Seq2 on the 384 mouse ES/PrE mixture, 3 for
Drop-seq on the 500 mouse ES/PrE mixture, and 2.2 for
SVF analysis. Significantly enriched Gene Ontology (GO)
terms with the top principal components were calculated
using the GO-PCA package [45].

Identification of differentially expressed genes for each
cluster
Marker genes for each cluster were identified based
on a generalized linear model. The difference in de-
viance between two models, in which the gene was
or was not differentially expressed between two clus-
ters, was calculated for the genes. To filter out noise,
pseudocount 1 was added to the averaged gene ex-
pression in clusters and only genes with fold change
of 2 or more between two clusters were further ana-
lyzed. P values were calculated as 1 − cumulative
density function of a chi-squared continuous random
variable for difference in deviance. After corrections
for multiple testing, genes with FDR of less than
0.05 were identified as differentially expressed genes
for the cluster. For comparison between differentially
expressed genes identified by scRNA-seq methods
and those identified by bulk RNA-seq, this pseudo-
count was not added.

Identification of variable genes in the same cell-type
To identify genes for which the expression changes depend-
ing on the phase of the cell cycle, we used the intensity of
Hoechst 33,342 staining measured using a cell sorter. First,
cells were discretized into 40 equal-sized buckets based on
the rank of Hoechst 33,342 staining intensity. Then, the CV
of averaged UMI counts for a gene in each bin was calcu-
lated. After z-scaling of this, genes with high z-scores were
identified. To identify genes whose expression fluctuates in
a manner not relating to the cell cycle phase, we calculated
the CV of UMI counts for a gene in each cell and the CV
of averaged UMI counts for a gene in each bin. After z-
scaling of such data, the genes for which the difference be-
tween two scaled CVs was large were identified as “variable
genes the expression of which is less associated with the cell
cycle phase”.

Enrichment analysis on pathway and GO terms
Pathways that were particularly enriched for the differen-
tially expressed genes were calculated using the Reacto-
mePA package of R Bioconductor (version 1.14.4) [46]
and Metascape (http://metascape.org/) [47]. The cut-off
parameter for the q value was 0.05. Terms that were
enriched for genes with highly variable expression were
calculated using DAVID, the Database for Annotation,
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Visualization and Integrated Discovery (version 6.8) [48,
49]. Ontology used for calculation was GOTERM_BP_-
FAT, GOTERM_MF_FAT, and GOTERM_CC_FAT. The
terms with FDR < 0.05 were identified as enriched terms.

Quantitative analysis for external RNA molecules
To calculate the ERCC capture efficiency, we deter-
mined the slope of regression between the input
ERCC molecules and detected UMI counts for each
ERCC. We tested our calculation using digital expres-
sion matrix (GSM1599501) of the inDrop single-cell
sequence method as a control, and confirmed that
our calculated ERCC capture efficiency (7.2%) ap-
proximately matched their reported ERCC capture ef-
ficiency (7.1%). To calculate the copy number of
ERCC spike-in RNA at the 50% detection probability,
the method of Svensson et al. was used [50]. We con-
firmed that our calculated results and those in the
paper by Svensson et al. were approximately similar.
For calculation of ERCC capture efficiency and the
copy number of ERCC spike-in RNA at the 50% de-
tection probability for previous data, we used the con-
centration of ERCC spike-in RNA, which was
reported by the original authors. For the paper by
Ziegenhain et al. [21], we confirmed the concentration
by personal communication.

Simulation-based power analysis
PowsimR was used to perform power analysis [51]. The
parameters of the negative binomial distribution,
namely, mean, dispersion, and dropout probability, were
estimated by the function estimateParam with the fol-
lowing parameters: sigma = 1.96, distribution = “NB,”
RNAseq = “singlecell”, and normalization = “scran”. To
simulate differential expression between two groups
using these parameters, the number of genes is repre-
sented by the number of detected genes (count > 0) in
each method. Differentially expressed genes set up sim-
ulations with number of detected genes, 23.6% genes
being differentially expressed, log fold change sample
from a narrow gamma distribution (shape 1.02, rate
0.78). That parameter was derived from parameter esti-
mates based on bulk RNA-seq data from mouse ES and
PE cells (n = 3). The function simulateDE was used to
run power analysis with the following parameters:
DEmethod = MAST and normalization = scran. The re-
sults of power simulation were plotted using R with
ggplot2 packages.

Data resources
Raw and processed data files for Quartz-Seq2 and
Drop-seq experiments are available under GEO (ac-
cession GSE99866; https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE99866) for single-cell RNA-seq

data and DRA002954 for bulk-RNA-seq data. A
custom-made python program (correct_bacode.py) has
been deposited under GitHub (DOI: https://doi.org/
10.5281/zenodo.1118151, https://github.com/rikenbit/
correct_barcode/).
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