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Abstract

Accurate typing of human leukocyte antigen (HLA) is important because HLA genes play important roles in immune
responses and disease genesis. Previously available computational methods are database-matching approaches and
their outputs are inherently limited by the completeness of already known types, making them unsuitable for
discovery of novel alleles. We have developed a graph-guided assembly technique for classical HLA genes, which can
construct allele sequences given high-coverage whole-genome sequencing data. Our method delivers highly
accurate HLA typing, comparable to the current state-of-the-art methods. Using various data, we also demonstrate
that our method can type novel alleles.

Background
Human leukocyte antigen (HLA) genes are crucial in the
regulation of the immune system as they encode for the
major histocompatibility complex (MHC) consisting of
cell surface proteins that control the adaptive immune
response. HLA genes are also known to play important
roles in transplant rejection as well as infectious and
autoimmune diseases [1–4]. For these reasons, accurate
HLA typing is important both in clinical and research
settings. HLA typing is considered challenging because
of the hyper-polymorphic nature of the HLA region in
the human genome. Such high polymorphism in the HLA
region is thought to be maintained by strong balanc-
ing selection promoting genetic diversity [5, 6]. Espe-
cially with personal genome sequencing becoming widely
common, better computational methods are needed to
provide rapid and inexpensive typing with high accuracy.
Traditionally, HLA typing or categorization was done

by laborious serology-based methods that screen for HLA
antibodies in a donor/receiver pair.With the birth of DNA
sequencing and the polymerase chain reaction (PCR),
molecular typing assays, such as specific oligonucleotide
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probe hybridization, sequence-specific primer amplifica-
tion, and sequence-based typing (SBT), have been devel-
oped [7]. The SBT method can be used with either Sanger
sequencing or next-generation sequencing (NGS) tech-
niques. By using specific primers for target enrichment
prior to sequencing, SBT delivers accurate and reliable
typing of HLA alleles. However, all of the above molecular
typing assays require a specially designed set of probes or
primers.
With the increasing availability of personal whole-

genome sequencing (WGS) services, the availability of
accurate computational HLA typing methods that do not
require additional experiments can be valuable. Chal-
lenges in computational HLA typing are mainly driven by
the high level of polymorphism found in the HLA region
in the human genome. Over 30 genes are maintained in
the IPD-IMGT/HLA database [8] and six to eight classical
HLA genes (HLA-A, -B, -C, -DQA, -DQB, and -DRB) are
routinely used for HLA typing in clinical settings. More
than 15,000 known alleles (just for these classical genes)
have been reported in the database and the number of
alleles is growing rapidly (Fig. 1). Also, the known alleles
share high sequence similarities, where many alleles dif-
fer just by a base-pair substitution. Thus, it is challenging
to pinpoint correctly an individual’s HLA types among the
known alleles using WGS data [9].
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Fig. 1 The number of alleles in the IPD-IMGT/HLA database by year
from 1999 to 2016. The database releases updates four times a year
(January, April, July, and October) and the plot is based on the numbe
r of alleles from all the April releases reported on the statistics page of
the IPD-IMGT/HLA website (http://www.ebi.ac.uk/ipd/imgt/hla/stats.
html). HLA human leukocyte antigen

Previously developed enrichment-free computational
methods can use WGS, whole-exome sequencing (WES),
or transcriptome sequencing (RNA-seq) without the use
of HLA-enriched data, unlike SBT. However, many do not
provide typing accuracy comparable to what SBT pro-
vides [10], with the exception of a recently developed
method, HLA*PRG [11]. However, the high accuracy of
HLA*PRG comes at the cost of speed.
These computational methods either use one or both of

two major techniques (alignment and assembly) to com-
pare reads accurately when correcting HLA genes and
inferring allele types. For computational HLA typing of
NGS data, an alignment-based method was first devel-
oped for HLA typing using targeted sequencing of class I
genes [12]. This method incorporated the Bayesian geno-
typing information from a widely used toolkit GATK [13]
and additionally modeled the phasing by considering
pairs of adjacent variant sites. Other computational typ-
ing methods that can work with enrichment-free data
were developed later. Alignment-based methods, such as
seq2HLA [14], HLAforest [15], and PHLAT [16], first
attempt to assign NGS reads correctly to HLA loci using
various stringent quality filtering procedures to selec-
tively discard erroneous reads with low alignment scores,
then use probabilistic variant-calling approaches simi-
lar to that in [12] to infer the closest matching allele
in the database. Unlike most alignment-based methods,

HLA-VBSeq [17] uses variational Bayesian inference to
assign reads correctly to alleles based on alignment, as
done in solutions to the RNA-seq quantification prob-
lem [18]. OptiType [19] also uses alignment; however,
it formulates the typing problem as an optimization
problem via integer linear programming (ILP), where
the objective is to find a solution set of alleles such
that the number of mapped reads is maximized with
constraints that each locus requires at least one allele
(homozygous) and at most two alleles (heterozygous). The
recently published xHLA [20] also adopts OptiType’s
ILP formulation but uses protein-level alignment of the
typing exons as it focuses on four-digit resolution typ-
ing (protein-level). After solving the optimization prob-
lem restricted to just the typing exons, it uses itera-
tive refinement steps to select alleles that further maxi-
mize the number of mapped reads when considering all
exons. Assembly-based methods, such as HLAminer [21]
and HLAreporter [22], first construct longer-than-read
contigs using de novo assembly techniques and search for
best matches among known alleles. Direct assembly of
haplotypes by traditionally available de novo or reference-
based assemblers is severely confounded by the high level
of polymorphisms. Often, assembly-based methods com-
bine the techniques used in alignment-based methods.
For example, HLAreporter first uses read alignment
to known alleles and identifies reads that are likely from
HLA regions prior to its assembly step. Most recently,
HLA*PRG [11] improved the accuracy of alignment-based
methods by representing the database alleles as graphs
and using amore sensitive alignment on the graphs. It first
aligns extracted reads likely from the HLA region to pop-
ulation reference graphs [23] that encode all known alleles
and it outputs the most likely alleles from the database.
One common aspect of the enrichment-free computa-

tional HLA typing methods is that they are all primarily
driven by the finding-the-nearest-match paradigm. Their
goal is to find the best-matching alleles to HLA genes of a
test individual in a preexisting database of known entries.
Given the sequencing data of an individual, such a typing
scheme outputs the best-matching alleles for each HLA
gene. This typing strategy is limited by the completeness
of the collection of known alleles, as it cannot detect novel
alleles missing in the database of known types. We col-
lectively refer to these approaches as database-matching
methods. Novel alleles can possibly have protein-coding
changes that may have a profound impact for organ
transplantation and disease association. One might argue
that there are already many known alleles and that the
chance of finding novel alleles is low. However, the num-
ber of known alleles in the IPD-IMGT/HLA database is
still increasing rapidly (Fig. 1). There is continuing effort
among immunogenetics communities to study rare and
novel alleles. For example, the International HLA and
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Immunogenetics Workshop has been organizing projects
to investigate and collect rare and novel alleles since the
15th workshop in 2002. Immunogenetics-related journals,
such as the International Journal of Immunogenetics and
HLA (formerly known as Tissue Antigens), have a dedi-
cated section where new alleles are announced in every
issue.
For these reasons, it is important to be able to recover

HLA sequences at 1-bp resolution to enable novel allele
discovery as done in SBT. To achieve this goal, we present
a graph-guided assembly technique called Kourami that
constructs full sequences for the peptide-binding domain
(exons 2 and 3 for class I and exon 2 for class II HLA
genes, which are regions typed by the SBTmethods) using
a modified partial-order graph (POG) [24] as a guide. The
graph representation compactly captures variant regions
among related sequences to take advantage of known
alleles, and it also provides a framework in which to incor-
porate information from the sequencing reads to encode
novel alleles.
In fact, graphs have long been used to represent varying

regions. For example, de Bruijn graphs [25] and string
graphs [26] have been extensively used in fragment assem-
bly. More recently, graph-based representations of popu-
lations of genomes, which are also related to POG, have
been an active research area [23, 27–30]. Our method is
the first that directly assembles both haplotypes of HLA
genes rather than inferring the best-matching alleles in the
database. For known alleles, we show that Kourami can
correctly type with high accuracy (>98%), equaling that
of the state-of-the-art database-matching method, across
various WGS data sets, such as simulated data, Illumina
Platinum Genomes, and high coverage WGS from the
1000 Genomes Project. At the same time, Kourami takes
only a fraction of the time compared to other available
methods with a moderate use of memory.
Kourami is the first HLA typer to be able to assemble

novel alleles that do not appear in the database. It does
this by treating the HLA typing problem as an instance
of graph-guided assembly, where the known alleles are
combined into a graph that is used to guide the assem-
bly of new alleles. Kourami, therefore, also represents an
early example of how a population of reference sequences
can be used during genome assembly. We systematically
show that Kourami is very accurate in constructing novel
alleles by performing leave-one-out experiments where
a known allele is artificially removed from the allele
database. Kourami is able to reconstruct 98% of these
alleles perfectly.

Results
HLA typing nomenclature
The current HLA allele nomenclature [31] uses a hier-
archical numbering system with four major levels of

hierarchies. From the highest to the lowest category,
it annotates allele groups (two-digit resolution), protein
sequence (four-digit resolution), exon sequence (six-digit
resolution), and intron sequence (eight-digit resolution).
For example, if two alleles encode an identical protein,
they will have the same numbers for the first two lev-
els of (four-digit) hierarchies. In practice, HLA typing
is often carried out at either the protein or exon level.
Furthermore, the current gold standard, SBT, types just
the exons that are responsible for encoding the peptide-
binding domain (exons 2 and 3 for class I genes and exon
2 for class II genes). Using only the subset of exons creates
ambiguous alleles where two ormore alleles share an iden-
tical sequence over these exons but differ in other regions.
These ambiguous sequences are grouped as a six-digit G
allele. Similarly, four-digit P grouping is used for the alleles
that share the same amino acid sequence over these exons.
Ourmethod provides a fully assembled sequence covering
these exons and also outputs a six-digit G resolution typ-
ing result by selecting known alleles that have the smallest
edit distance to the assembled sequences. Like many other
HLA tools, we focus on the routinely typed classical genes
(HLA-A, -B, -C, -DQA1, -DQB1, and -DRB1).

Overview of method
Our method takes advantage of POGs to capture all
known alleles and further modifies the graph to include
variants found in the sequencing data so that the graph
include the paths of true alleles. An overview of our
method is illustrated in Fig. 2, and the major steps are
labeled from (a) to (e).More details are given in “Methods”.
We first create a comprehensive reference panel from a
combined multiple sequence alignment (MSA) of both
full-length and exon-only known alleles for each HLA
locus (step a). Reads mapped to all known HLA loci
in the human reference genome (GRCh38) are extracted
(step b) and aligned to the comprehensive reference panel
(step c). Gene-wise POGs are constructed using the com-
bined MSAs. The alignments of the extracted reads are
projected onto the graphs so that each read alignment is
stored as a path in the graphs and the read depths on
the edges naturally become edge weights (step d). When
these read- or read-pair-backed paths connect two or
more neighboring heterozygous sites of two alleles, they
provide phasing information. During the alignment pro-
jection, the graphs are modified by adding nodes and
edges to incorporate differences found by the alignment,
such as substitutions and indels. Note that a sequence of
an allele is encoded as a path through the entire graph.
Finally, using the weighted graphs with alignment paths,
we formulate the problem of constructing the best pair of
HLA allele sequences as finding the pair of paths through
the graph. When finding the pair, we consider consistent
phasing information from the reads and coverage using
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Fig. 2 Overview of our method. a A gene-wise MSA is obtained from the IMGT/HLA database. The reads aligning to HLA regions are extracted
b from the input BAM and they are realigned c to the sequences in the MSA. d A POG is constructed from MSA and further modified via alignment
projection. e Haplotype assembly of two alleles is obtained by finding two paths (drawn in red and blue; overlap in purple) through the graph. DB
database, HLA human leukocyte antigen, MSA multiple sequence alignment, POG partial-order graph, WGS whole-genome sequencing

base quality scores. Additionally, the pair of paths may be
identical, to permit homozygous alleles.

Simulation
To check that our method performs well, we tested it
on simulated data (see “Methods” section). For each of
the six HLA genes, two alleles from the set of full-length
gene sequences in the IPD-IMGT/HLA database were
randomly chosen.We repeated this for a total of 100 repli-
cates, resulting in 200 randomly selected alleles across all
replicates. For each replicate, we simulated 50× cover-
age (25× for each haplotype) of paired-end WGS data.
We compared Kourami, PHLAT, and HLA*PRG on the
simulated data. Our method was evaluated using all 1200

alleles (2 alleles × 6 genes × 100 replicates). However, not
all alleles could be used for the evaluation of PHLAT and
HLA*PRG, as both tools use their own digested format of
the HLA database, which is built in, so that the content of
the database cannot be updated by a user. The database
versions used by PHLAT and HLA*PRG are older com-
pared to the version (v3.24.0) used for Kourami. Given a
set of WGS data of an individual with an allele that is not
in the database built into PHLAT andHLA*PRG, both tools
will fail to type the allele correctly as they are designed
strictly to find the nearest match among the known alleles.
For this reason, the evaluations of PHLAT and HLA*PRG
are based only on the subset of simulated alleles (1011 for
PHLAT and 990 for HLA*PRG) that are in the database
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versions they use. For PHLAT, four-digit P resolution was
used and six-digit G resolution was used for HLA*PRG
and Kourami for evaluation.
Table 1 shows the number of correctly inferred alle-

les as well as the accuracy for each HLA gene tested.
For our method, we report both the typing and assembly
accuracy. We define the assembly accuracy as the percent-
age of assembled alleles with sequence identical to the
true allele sequence (no mismatch or indel). Even when
an assembled allele is not identical to its expected true
sequence, the typing of the allele may be correct if the
closest sequence (minimum edit distance) in the database
is the true allele. PHLAT achieves 93.6% accuracy across all
HLA genes tested (89.8% for class I and 96.6% for class II).
HLA*PRG and our method perform equally well, achiev-
ing 99.8% typing accuracy across all genes (99.5% for class
I and 100% for class II). Additionally, Kourami achieves
99.3% assembly accuracy.

Novel allele detection
The major benefit of our method is that it can assemble
novel alleles across the typing exons. Therefore, its typing
ability is not limited by known alleles as is the case with
other database-matching methods. Unlike these methods,
Kourami uses the known alleles in the input database
only to construct the HLA graph that serves as a template
for the reference-based assembly and it does not discrim-
inate between the paths that encode known alleles and
novel alleles.
To demonstrate its ability to assemble novel alleles, we

evaluated Kourami across various data for which the
ground truth is known.We tested with simulated data and
real data with previously validated HLA types (NA12878–
NA12891–NA12892 Platinum trio and 11 samples from
the 1000 Genomes Project) with a modified database
of known alleles so that Kourami is not aware of the
true allele sequences. For each sample, we randomly
selected one allele from each of the six HLA genes and
removed the selected alleles from the reference MSAs
(full-length and exon-only) provided by release 3.24.0 of
the IPD/IMGT-HLA database. When removing an allele,
we removed all entries in the G group to which the allele
belongs. The entire list of alleles removed from each

individual is shown in Additional file 1: Tables S1, S2,
and S3. We removed corresponding rows for the alleles
from both the full-length MSA and exon-only MSA and
obtained a new reference panel by combining the mod-
ified MSAs. The number of G group alleles removed is
shown in Table 2. The extracted paired-end reads were
aligned to the newly obtained reference panel, and the
BAM files obtained were used as inputs to Kourami.
Note that this experiment cannot be done with PHLAT
and HLA*PRG, as the database of known alleles is built
into the tools.
Kourami correctly assembled 98.3%, 100%, and 98.3%

of the removed alleles for the simulation data, the Plat-
inum trio, and 11 samples from the 1000 Genomes
Project, respectively (Table 2). Among 1000 Genomes
samples, the only incorrectly assembled allele (sup-
posed to be B*38:01:01) had a 1-bp difference from
the correct sequence. When the 59 correctly assem-
bled allele sequences are aligned to the newly con-
structed reference panel, many alleles were aligned
equally well to a large number of known alleles. For
example, C*05:01:01 alleles aligned to 122 other alle-
les with just 1-bp substitution. Among them, a sig-
nificant portion contained base differences that result
in protein-coding changes in typing exons. This shows
that the database-matching methods such as PHLAT
and HLA*PRG cannot be relied upon to select a closely
related allele sequence in the presence of novel alle-
les. The database-matching methods often provide qual-
ity metrics for inferred alleles. Whether such quality
metrics are effective when novel alleles are involved
is still an open question. Recently, this was explored
by the authors of HLA*PRG, and it was shown that
their metrics were not effective in distinguishing novel
alleles [11].

Illumina Platinum Genomes
Platinum trio with validated results
Among the Illumina Platinum Genomes, we first ran
Kourami, PHLAT, and HLA*PRG on the trio (NA12891,
NA12878, and NA12892) with the previously validated
four-digit HLA types for six HLA genes (HLA-A, -B,
-C, -DQA1, -DQB1, and -DRB1) [11, 12]. Kourami

Table 1 HLA typing performance on simulated data

Class I Class II

A B C DQA1 DQB1 DRB1

PHLAT (four-digit P) 0.85 (147/172) 0.91 (135/149) 0.95 (122/129) 0.93 (178/191) 0.98 (169/173) 0.99 (195/197)

HLA*PRG (six-digit G) 1.00 (174/174) 0.99 (143/144) 0.99 (115/116) 1.00 (197/197) 1.00 (159/159) 1.00 (200/200)

Kourami (type) 1.00 (199/200) 1.00 (200/200) 0.99 (198/200) 1.00 (200/200) 1.00 (200/200) 1.00 (200/200)

Kourami (sequence) 0.99 (198/200) 1.00 (200/200) 0.98 (195/200) 1.00 (200/200) 1.00 (199/200) 1.00 (200/200)

Accuracy is shown as a fraction. The fraction of the number of correctly typed alleles and the total number of alleles tested are shown in parentheses



Lee and Kingsford Genome Biology  (2018) 19:16 Page 6 of 16

Table 2 Novel allele recovery

Simulation Platinum trio 1000 Genomes

Number of removed alleles 596 15 60

Number of recovered alleles 586 15 59

Percentage of recovered alleles 98.3 100 98.3

and HLA*PRG perfectly called the correct types whereas
PHLAT missed a call in the HLA-C gene in NA12891.
In a previously published article [11], PHLAT called all
12 alleles correctly and the difference may be because
in our evaluation, all software was run on the set of
reads that aligned to the extended MHC (xMHC)/HLA
region of chromosome 6 and unmapped reads. Extracting
a subset of reads by read mapping location and including
unmapped reads are common for reducing the computa-
tional time, and a similar technique was used in [10].

Trio consistency and inferred haplotypes
The pedigree of Illumina Platinum Genomes includes
many third-generation offspring and only the top right-
hand trio in Fig. 3 has previously validated HLA typing
results. Since this trio includes the mother (NA12878) of
all third-generation offspring, if HLA typing results are
trio-consistent across all trios and all second-generation
haplotypes are present in one of the children, we can
theoretically infer the HLA haplotypes of the second-
generation male (NA12877) as well as the half of HLA
haplotypes in the first-generation individuals (NA12889
and NA12890).
We tested all three methods to determine whether

predictions are trio-consistent across all trios (trio con-
sistency is shown in Table 3). Kourami and HLA*PRG
agreed on all 204 alleles at six-digit G resolution and the
predicted alleles were trio-consistent. The inferred haplo-
types across HLA genes (intra-gene phased) are shown in
Fig. 4. PHLAT’s predictions were trio-consistent only for
HLA-C and HLA-DQB1 when evaluated at four-digit P
resolution, and additionally for HLA-A when evaluated at
two-digit resolution. Although, we do not know the true
HLA types for the rest of the 14 individuals, it is very likely
that the predicted HLA types are correct given that all

Fig. 3 CEPH/Utah pedigree 1463. The family pedigree of Illumina
Platinum Genomes is shown

typing results are consistent. Low trio-consistency ratios
for PHLAT in Table 3 are mainly due to mistyped alle-
les in HLA-A, HLA-B, and HLA-DRB1 for the NA12877
individual (which affects all 12 trios being evaluated).
Trio-consistency measures the level of consistency rather
than accuracy. PHLAT’s overall typing accuracy (four-
digit) on all of the Platinum individuals (17 members) is
0.907, assuming the HLA types inferred by Kourami and
HLA*PRG are true. Assuming the predicted HLA types for
the pedigree are correct, no recombination seems to have
occurred, leaving no disruption in ancestral haplotypes. In
Fig. 4, we labeled the haplotypes that originated from the
first-generation members as paternal grandfather 1 or 2
(PGF1 or PGF2), paternal grandmother 1 or 2 (PGM1 or
PGM2), maternal grandfather 1 or 2 (MGF1 or, MGF2),
and maternal grandmother 1 or 2 (MGM1 or MGM2).
The haplotypes that are passed to second-generation indi-
viduals are numbered 1 to keep the numbering consistent
in the third generation. Among 11 third-generation off-
spring, all four possible pairs of haplotypes were observed
(two PGF+MGF, two PGF+MGM, four PGM+MGF, and
three PGM+MGM).

1000 Genomes
We tested all three methods on this data set and the result
is summarized in Table 4. PHLAT called 93 out of 122 alle-
les correctly, resulting in 76% accuracy when evaluated at
four-digit P resolution, and 89% when evaluated at two-
digit resolution. The results for HLA*PRG were consistent
with what has previously been reported [11], resulting in
one error (99.2% accuracy). Our method correctly called
all of the alleles without any differences in bases. Note
that the total number of alleles tested for DQA1 is 12
instead of 22 (2 alleles × 11 individuals) because the
validation data for 1000 Genomes [32] does not report
DQA1 types. DQA1 type validation is only available for
six individuals [12].

CPU andmemory usage
Kourami is able to assemble and type HLA alleles given
WGS data in a fraction of the time compared to the
state-of-art methods such as PHLAT and HLA*PRG with
a moderate use of memory. We compared the CPU and
memory usage using the WGS of NA12878 from Plat-
inum Genomes data (2 × 101 bp, 55×). All tests were
run on the input of the reads aligning to the xMHC
region and unmapped reads. HLA*PRG was the slowest,
taking 54.62 CPU hours, while PHLAT took 10.73 CPU
hours and Kourami took only 0.09 CPU hours (611×
speedup compared to HLA*PRG). HLA*PRG required the
most amount of memory, consuming peak memory of
78.9 Gbytes, while PHLAT and Kourami used 3.6 Gbytes
and 4.3 Gbytes, respectively. HLA*PRG requires many
more CPU hours and a larger amount of memory because
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Table 3 Trio consistency over 12 trios in Platinum Genomes

Class I Class II

A B C DQA1 DQB1 DRB1

PHLAT (two-digit) 1.00 (24/24) 0.71 (17/24) 1.00 (24/24) 0.79 (19/24) 1.00 (24/24) 0.96 (23/24)

PHLAT (four-digit P) 0.67 (16/24) 0.42 (10/24) 1.00 (24/24) 0.79 (19/24) 1.00 (24/24) 0.46 (11/24)

HLA*PRG (six-digit G) 1.00 (24/24) 1.00 (24/24) 1.00 (24/24) 1.00 (24/24) 1.00 (24/24) 1.00 (24/24)

Kourami 1.00 (24/24) 1.00 (24/24) 1.00 (24/24) 1.00 (24/24) 1.00 (24/24) 1.00 (24/24)

Trio consistency is shown as a fraction. The number of consistent alleles is shown as a fraction in parentheses

of the expensive dynamic-programming-based alignment
to the graph. Kourami relies on fast NGS aligners to
align reads against known alleles first and projects the
alignment obtained to the HLA graph to reduce the com-
putational time significantly without sacrificing assembly
or typing accuracy.

Discussion
We have shown that our HLA assembly method can
accurately reconstruct both haplotypes that span the typ-
ing exons of HLA genes using a graph representation of
known alleles as a guide. The haplotype sequences pro-
duced can be used successfully for HLA typing given high
coverage (>30-fold) paired-end WGS data. WGS carried
out for another analysis can be used to type an individual’s
HLA types without requiring another experiment (SBT or
other molecular assays).

Notably, the ability to discover novel alleles from the
highly accurate HLA assembly is achieved by using a
flexible graph structure to represent all known alleles
and allowing systematic modification to encode variants
present in reads. This unique ability is instrumental in
both research and clinical settings. Importantly, previ-
ously available computational methods using untargeted
sequencing data cannot discover novel alleles because
they are designed to find the best-matching allele among
the known alleles.
The ability to discover novel alleles is especially benefi-

cial when studying an understudied group of individuals
harboringmany novel alleles, such as African populations,
which are known to exhibit a higher level of genetic diver-
sity [33] compared to other ethnic populations. Disease
pressure in a population causes a positive and balancing
selection of HLA alleles, producing high diversity [34].

Fig. 4 HLA haplotypes in the Illumina Platinum pedigree. Shown is the Illumina Platinum pedigree with the predicted HLA haplotype information.
Four haplotypes (PGF1, PGM1, MGF1, and MGM1) of the second generation are intermixed in third-generation offspring. Only the haplotypes that
are passed down to the second and third generations are colored. A haplotype drawn on the left is always inherited from the father. For the first
generation, this information is missing and the haplotypes that are passed to the next generation are arbitrarily drawn on the left
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Table 4 HLA typing performance on 11 individuals from the 1000 Genomes Project

Class I Class II

A B C DQA1 DQB1 DRB1

PHLAT (two-digit) 0.82 (18/22) 0.82 (18/22) 0.91 (20/22) 0.83 (10/12) 1.00 (22/22) 0.95 (21/22)

PHLAT (four-digit P) 0.68 (15/22) 0.55 (12/22) 0.77 (17/22) 0.83 (10/12) 0.95 (21/22) 0.82 (18/22)

HLA*PRG (six-digit G) 1.00 (22/22) 1.00 (22/22) 1.00 (22/22) 1.00 (12/12) 1.00 (22/22) 0.95 (21/22)

Kourami (six-digit G) 1.00 (22/22) 1.00 (22/22) 1.00 (22/22) 1.00 (12/12) 1.00 (22/22) 1.00 (22/22)

Accuracy is shown as a fraction. The fraction of the number of correctly typed alleles and the total number of alleles tested are shown in parentheses

Especially with the continuously decreasing cost of
obtaining a personal genome, personal WGS data will
only become more widely available, and our method can
deliver accurate HLA typing without additional experi-
ments and cost. Also, Kourami is able to assemble and
type at six-digit G resolution in a fraction of the time
compared to other methods with a moderate amount of
memory usage.
One limitation of our method is that it primarily sup-

ports high-coverage WGS as it needs enough reads to
cover both haplotypes for each typing locus, and may not
work as well on other NGS assays, such as WES or RNA-
seq data. Since WES is being used widely, as the cost for
WES is lower compared to WGS, it is useful to be able
to type HLA genes using WES. To assess Kourami’s abil-
ity to work with WES data, we tested Kourami on 29
HapMap individuals [35] (Additional file 1: Table S4). It
was able to assemble and type 284 alleles out of 345 alleles
with previously confirmed types. Kourami did not out-
put an assembled sequence or typing results for the other
61 alleles as some regions of these alleles were not covered
by reads, causing the graph to be disconnected within the
typing exons. Among the 284 alleles that were assembled,
Kourami was able to assemble and type 269 alleles cor-
rectly, achieving 94.7% accuracy. Among the 15 erroneous
calls, seven were called as homozygous alleles instead of
heterozygous. Reference allele bias due to capture bias
may be the direct cause for erroneous homozygous calls.
It is a known bias in WES along with other biases, such
as GC bias. Moreover, coverage fluctuations have been
reported [36, 37]. Collectively, these can cause a decrease
in effectiveness in detecting variants when using WES
compared to WGS [37, 38].
Additionally, Kourami requires high-coverage WGS

data to ensure accurate HLA assembly or typing. We
randomly sampled coverages of 20×, 25×, 30×, 35×,
and 40× for five replicates from each of the Platinum
Genomes and the 1000 Genomes, and tested Kourami
on these samples. Its accuracy is shown in Additional
file 1: Table S5. The accuracy was high at 35× and 40×
coverages, being above 0.97 for both data sets. The accu-
racy stayed respectable down to 25× coverage (0.94) for
Platinum Genomes and down to 30× for 1000 Genomes

(0.94). At 20× coverage, the accuracy for both data sets
dropped below 0.90 (0.87 for Platinum and 0.83 for 1000
Genomes across the HLA genes). This should not be
a surprise, as haplotype-resolved assemblies of human
genomes used≈ 100× coverage of NGS data [39, 40]. The
database-matching state-of-the-art HLA*PRG was shown
to be more stable, even at 20× coverage [11], indicat-
ing that database-matching techniques are more sensitive
when high-coverage sequencing data are not available. It
is known that accurate assembly or genotyping using NGS
data with short read lengths requires high sequencing cov-
erage, especially for human genome resequencing [41, 42].
Overall, the 1000 Genomes samples had lower accuracy
compared to the Platinum Genomes samples, resulting
in the largest difference in accuracy at the lowest cover-
age setting of 20× (Additional file 1: Table S5). Sample-
specific accuracies across different coverage settings are
shown in Additional file 1: Figure S1 (Platinum Genomes)
and Additional file 2: Figure S2 (1000 Genomes). The
larger dips in accuracy for 30× and below coverage set-
tings observed in the 1000 Genomes samples are largely
contributed by the HG01112, NA19625, and NA20502
samples. The longer Illumina reads (2 × 250 bp) used in
1000Genomes samples are known to bemore error prone,
exhibiting increasingly higher error rates towards the 3′
end of the reads [43, 44] and this may be why the accuracy
is more sensitive to the changes in coverage for the 1000
Genomes data set.
One of the main reasons for the requirement of high-

coverage WGS data by Kourami is because the lower the
coverage, the higher the chance for an allele-specific path
to have a region with a local drop in coverage, resulting in
a prohibitively low number of reads covering the region.
This can be difficult for assembly methods. To investigate
the effect of a local drop in coverage on the accuracy of
Kourami, we extracted the minimum depth across the
entire allele path for each allele call and investigated the
fraction of incorrect calls that occur at various minimum
depths (Additional file 2: Figure S3 for Platinum Genomes
and Additional file 2: Figure S4 for 1000 Genomes). As
expected, a higher fraction of calls made at smaller min-
imum depth were incorrect. Minimum depths of 1 and 2
caused Kourami to make mistakes. With a coverage of



Lee and Kingsford Genome Biology  (2018) 19:16 Page 9 of 16

30× or higher, the minimum depth rarely plunged to
1 or 2, allowing Kourami to assemble alleles accurately.
In a typical HLA typing experiment, only a few clas-

sical HLA genes are typed, even though there are other
classical HLA genes as well as non-classical HLA genes,
which have also been shown to be disease-associated
[45, 46]. There may be clinical and research importance
in typing other HLA genes in addition to the six classical
genes that Kourami mainly assembles. Since Kourami’s
framework is sufficiently general to run on the additional
HLA loci, we tested Kourami on 11 additional HLA
genes by looking at trio-consistency for the Platinum trio
and the Yoruban trio from 1000 Genomes (Additional
file 1: Table S6). For the Platinum trio, we found all of the
typing results to be trio-consistent. However, there were
four loci where the assembled sequences were not identi-
cal to the typed allele at the sequence level. For HLA-H,
HLA-J, and HLA-L genes, the mismatches to the typed
database alleles were consistent across the trio, indicat-
ing that there may be novel allele sequences for these
loci. For HLA-F, the child (NA12878) had a 1-bp mis-
match to the corresponding allele of her parents. For the
Yoruban trio, we also found all of the typed alleles to be
trio-consistent. Like the Platinum trio, HLA-J and HLA-L
alleles across the trio had consistent sequences but there
were mismatches to the closest alleles in the database.
HLA-F had a discrepancy of a 1-bpmismatch between the
child (NA19240) and the parental alleles.
To validate Kourami further, we typed three addi-

tional individuals from the 1000 Genomes Project that
were not benchmarked in [11] and a Korean individual,
AK1 [40]. We tested Kourami, HLA*PRG, and PHLAT
on these additional data. For these 1000 Genomes sam-
ples, we tested five validated loci (HLA-A, -B, -C, -DQB1,
and -DRB1). For AK1, we tested six loci (by adding locus
HLA-DQA1). Out of 42 alleles tested, PHLAT did not give
a typing result for HLA-C on AK1 data and achieved an
accuracy of 0.88 (35/40). All 42 calls were correct for both
Kourami and HLA*PRG. One of the HLA-B alleles of
the HG00268 individual that Kourami assembled had a
single-nucleotide difference, although the typing was cor-
rect. For the AK1 genome, Kourami and HLA*PRG typed
all six alleles correctly for the three additional validated
loci (HLA-DRB3, -DPA1, and -DPB1).

Conclusion
The highly accurate results from Kourami signify the
recent advances in handling genetic variation using graph
structures to encode variations found in multiple refer-
ence genomes [23, 27–29]. Specifically, in Kourami, the
minimal representation of a POG allows the consistent
graph modification via alignment projection and this in
turn enables the capture of novel alleles as paths through
the graph. At the same time, this reduces computational

time greatly without sacrificing accuracy. Such improve-
ments are necessary when used in high-demand clinical
settings, although it may take some time for WGS-based
typing to be widely used. Our approach can also be
extended as a general method of using graph structures to
guide the reference-based assembly of high-diversity gene
families.

Methods
Input alignment and extraction of HLA reads
Kourami takes alignment of WGS to the human genome
as an input in BAM format. For many experiments
used here, we used pre-computed alignments down-
loaded from the European Bioinformatics Institute and
Google Cloud Platform. If there were missing alignment
files, we followed the 1000 Genomes procedures (see the
GRCh38DH alignment “readme” file available from the
1000 Genome FTP server) to align reads using BWA-kit
v0.7.15 [47] and further processed the BAM files using
other tools, such as BioBamBam [48] and GATK [13].
From the alignments, we extracted paired-end reads

aligned to all known HLA loci in chromosome 6, alter-
nate sequences of xMHC regions, and HLA sequences
(the complete set of coordinates used is in Additional
file 1: Table S7) included in the human reference genome
(hs38DH packaged in BWA-kit v0.7.15). In the GRCh38
assembly, regions that exhibit sufficient variability are rep-
resented in the primary chromosomal sequence as well as
the alternate sequence loci scaffolds.

Known HLA alleles and construction of a comprehensive
reference panel
Immuno Polymorphism Database (IPD) periodically
updates known HLA alleles in the IPD-IMGT/HLA
database [8]. IPD-IMGT/HLA Release 3.24.0 (April 2016)
was used for all experiments here. A detailed breakdown
of the numbers of alleles included in this release is shown
in Table 5. The other methods compared here use ear-
lier versions of the database because the content of the

Table 5 Number of known HLA alleles used

Genes Full-length Total

(exonic + full-length)

Class I

A 218 3399

B 337 4242

C 301 2950

Class II

DQA1 45 69

DQB1 27 911

DRB1 40 1883

Release 3.24.0
Full-length denotes the total of number full-length alleles in the release and total
number includes the full-length alleles and the alleles with only exon sequences
reported
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database is built into their software, and there is no way
to update or swap their databases at the user level. Using
a later version of the database does not give advantages as
long as the earlier version also contains the true alleles of
the individual tested.
Many alleles in the database have only partial sequences,

often just covering the few exons responsible for the
peptide-binding domain of HLA genes (Table 5). For this
reason, the IPD provides a set of pre-computed MSAs of
full-length alleles (Mgene) and the coding regions (Mcoding)
separately for each HLA gene. Like HLA*PRG [11], for
each HLA gene, we combine these two MSAs by aligning
them at corresponding columns to obtain a comprehen-
sive reference panel of known alleles. This can help in
recruiting reads that span intron–exon junctions. The
combined MSA (Mpanel) has the same number of rows
as Mcoding. The number of columns in Mpanel is equal to
the sum of the number of columns in Mcoding and the
number of intronic columns in Mgene. For each row in
Mcoding, if the allele for the row has a corresponding row
in Mgene, intronic columns are inserted into Mcoding, oth-
erwise, intronic columns of the reference allele in Mgene
are inserted.
Non-polymorphic HLA genes DQA2 and DQB2 are

paralogous copies of DQA1 and DQB1. They are often
regarded as being poorly polymorphic. In addition to
the HLA genes that are included in the IPD-IMGT/HLA
database, DQA2 and DQB2 were added to the reference
panel as decoys to filter out reads that originated from
them and aligned incorrectly to other class II genes. In
our analysis, we noticed that reads from DQA2 or DQB2
can make the assembly of typing exons of class II genes
difficult, as previously reported [16].

HLA graph construction
To capture all information contained in Mpanel in a mini-
mal manner as well as to allow flexibility to enable novel
sequence discovery, we use POGs, a compact graphical
representation for MSA [24]. From each Mpanel, we can
directly construct a gene-specific POG similar to those
typically used in MSA [24, 49]. An example of a MSA of
three known sequences (Mpanel) is shown in Fig. 5a. Each
sequence is first drawn as a chain of vertices connected by
directed edges (Fig. 5b), where each vertex vi represents a
base symbol bvi (bvi ∈ {A,C,G,T,N,-}) and is positioned at
column i in the graph. For each column, vertices with an
identical base symbol at a column are merged as a single
vertex and duplicate edges are removed (Fig. 5c,d). The
gap symbol (-) is used to restrict edges to connect ver-
tices only from consecutive columns in the input MSA.
An edge between two vertices (evi,vi+1 ) exists if Mpanel has
a row with consecutive bases bvi and bvi+1 at columns i
and i + 1. Note that this graph contains at least the same
number of paths as the number of rows in Mpanel used

a

b

c

d

Fig. 5MSA to construction of a partial-order graph for HLA assembly.
Given a pre-computed MSA (a), each sequence is constructed as a
chain of vertices connected by directed edges. Corresponding
positional vertices are aligned vertically (b). For each column,
redundant vertices are grouped together, drawn within dotted boxes
in (c). When they are merged, the corresponding partial-order
graph (d) is obtained. HLA human leukocyte antigen, MSA multiple
sequence alignment

to construct the graph. The graph often encodes a larger
number of paths and this flexibility is the foundation that
allows us to model this family of sequences and cap-
ture novel alleles. For example, a simple graph shown in
Fig. 5d encodes all sequences in the given MSA as well as
AGGT-A, ACGTCA, and ACCTCA. Each path through
the constructed graph encodes a possible allele.

Modification of the HLA graph via alignment projection
Consider an example novel allele sequence, AGCTCA. It
is easy to see that there is no path encoding such an allele
in the HLA graph shown in Fig. 5d. In this example, sim-
ply adding an edge from the vertex G at column 2 to the
vertex C at column 3 is the only modification needed for
the graph to include the path that encodes the novel allele.
If a novel allele exists in the data, there must be sequenc-
ing reads that contain the differences the novel allele has
compared to known alleles. Assuming the sequence diver-
gence is small enough for pairwise alignment of the read
and a known allele to capture the differences, we can
obtain the novel variants. For this reason, we further mod-
ify the HLA graph to include additional paths that encode
for novel alleles in a test individual. We achieve this by
modifying the previously constructed HLA graph by pro-
jecting the alignments of the reads likely coming from
HLA region to known HLA genes.
We first align the extracted reads to the set of refer-

ence panel sequences obtained from Mpanel using BWA
(v0.7.15-r1140) [47]. The linear alignments obtained are
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then projected onto gene-specific POGs. For example, if a
read is mapped to the HLA-A gene, then the alignment is
projected onto the HLA graph of the gene. Given a read r,
a subsequence h of a known alleleH , and a pairwise align-
ment of r and h, by projection of the alignment to the HLA
graph, our goals are: (1) to modify the graph to encode the
exact sequence of r within the range of columns h encoded
in the graph, (2) to increment the weight of each edge of
the path by 1, and (3) to preserve preexisting paths at the
same time. When r and h are identical, the graph must
already contain a path that exactly encodes r because H is
in the MSA used to construct the graph. When there are
few differences identified by the pairwise alignment of r
and h, such as mismatches, deletions, or insertions, there
are two cases: (1) r is already encoded in the graph or (2)
r is not, thereby the graph must be modified to encode r.
For example, ACGTCA does not align perfectly to any of
the sequences in Fig. 6a but it is encoded in the graph
as a path. On the other hand, there is no path encoding
ACCTGA.
Examples of graph modification by alignment projec-

tion are shown in Fig. 6. Panel (a) shows a MSA with
three known alleles and the corresponding POG. Modifi-
cations for mismatches and deletions are simple because
they require only the addition of a vertex for the mis-
matched base or a gap (-) symbol. Figure 6b illustrates an
example where r has a deletion of T at position 4. A gap
vertex is added to the corresponding column and edges
are added to connect the newly added vertex to the pre-
vious and next base in r to obtain a path encoding r.
Normally, an insertion requires a shifting of columns in
the MSA and graph because extra columns are required
for the inserted bases to be encoded. However, some align-
ments with insertions do not require a column shift. An

example of an alignment with insertion not requiring a
column shifting is shown in Fig. 6c. The read is aligned to
H3 with an insertion at position 5 instead of aligning to an
alleleH1 with amismatch at the same position because the
alignment score with one insertion is higher than the score
with three mismatches (positions 2, 3, and 5 if aligned to
H1). Because H1 is in the MSA, the graph already has the
column for handling an insertion at this particular col-
umn. In this case, we simply insert a vertex of G into the
corresponding column and connect the edges to complete
the path for r.
Finally, an insertion requiring a shift of columns is

depicted as an example in Fig. 6d. The read is aligned to
allele H1 with an insertion of A at position 4. To insert a
new column between the third and fourth columns (also
denoted as the left and right columns), we first insert
a new vertex with a - symbol and need to reroute all
edges between the left and right columns through the
newly inserted gap symbol and redistribute edge weights
to preserve the preexisting paths. Adjusted weights are
shown on the edges in the example. To describe this for-
mally, let L and R be sets of vertices for the left and right
columns respectively and E be the set of directed edges
from vl ∈ L to vr ∈ R with the weight of each edge as
w({vl, vr}). Additionally, let Eoutvl ⊆ E be the set of all out-
going edges of vl and Einvr ⊆ E be the set of all incoming
edges of vr . Note that there are always one or more outgo-
ing edges from vl and one or more incoming edges to vr .
After disconnecting all {vl, vr} ∈ E, we make a new vertex
vgap with the - symbol and add an edge {vl, vgap} for each
vl and assign a weight of

∑
e∈Eoutvl

w(e). Similarly, we add
an edge {vgap, vr} for each vr with a weight of

∑
e∈Einvr w(e).

Once the column shift is done, we can actually process the

a

b c d
Fig. 6Modification by alignment projection. The multiple sequence alignment and its corresponding POG from Fig. 5 are shown (a). Three
examples of graph modification operations (deletion or mismatch (b), insertion into a gap column (c), and insertion into a new column (d)) are
shown with respect to the initial POG constructed. For each operation, an alignment of read r to one of the known alleles Hi is used to modify the
graph. Each operation is applied to the POG and the resulting graph is shown. The nodes and edges that are newly added or changed during the
operation are shown in red. The nodes that the read path maps are shown as bold circles. For an insertion into a new column, the newly assigned
edge weights are explicitly drawn in using x and y variables. POG partial-ordered graph
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insertion of the base exactly as we handled the insertion
into a gap column.

Finding paths through the HLA graph
Given an HLA graph with weights, assembling HLA alle-
les can be formulated as the problem of finding two
(diploid) paths (they can be identical) that explain the read
mapping data (weights and phasing) best. When consid-
ering only the weights (number of reads), we can find two
paths where the sum of their minimum weights is maxi-
mized. However, this formulation does not handle phasing
information embedded by reads or read pairs. There-
fore, it can possibly select erroneous paths that are not
consistent with the phasing information. For this reason,
we want our objective to take both weights as well as
phasing information into account. Since read information
is embedded in the HLA graph, we can check if two neigh-
boring variant sites can be phased directly by a read or
read pair. For example, given two heterozygous sites with
A/T and G/C, a read or a read pair carrying A followed by
G at these sites indicates the chromosomal phase of AG
since the sequencing read is assumed to come from a con-
tiguous segment in a chromosome. In ourmethod, we first
investigate variant regions individually to select locally
phased paths with strong read support and construct a set
of full-length paths through the HLA graph by connect-
ing the locally phased paths that can be further phased
by a read or read pair. Each of these full-length paths is
considered as a candidate allele and the best pair among
the candidates with maximum read and phasing support
is selected as the output. To consider only nonzero-weight
full-length paths, we remove all zero-weight edges and
disconnected vertices prior to finding paths.

HLA graph to bubble graph
We first focus on the parts of the HLA graph where varia-
tions are captured, which are often referred to as bubbles

in sequence assembly graphs [50–53]. In a HLA graph,
we define a bubble as a region (three or more consec-
utive columns) where there is only one vertex each in
the leftmost and rightmost columns and the rest of the
columns must have two or more vertices. Let s and t be
the vertices in the leftmost and the rightmost columns of
the bubble, respectively. Any vertex in the bubble is reach-
able from s and one or more paths exists from any vertex
in the bubble to t. Any two distinct paths that go through
a bubble must go through s and t. Bubbles naturally cap-
ture the variation of sites between two alleles in the graph.
The regions that are enclosed by the dotted line in Fig. 7a
are examples of bubbles. On the other hand, a region that
is completely shared by all paths through the HLA graph
represents a conserved region. Without any loss of gen-
erality, the HLA graph can then be thought of as a chain
of bubbles, where two neighboring bubbles are connected
by a linear path of length 0 or longer (Fig. 7). For simplic-
ity, we can connect the bubbles without the linear paths
as they do not play any role in determining the phase of a
haplotype. We call this a bubble graph. Bubbles can easily
be recognized in a HLA graph because of its structure.

Finding the best set of paths in a bubble
Ideally, we want to find exactly two paths per bubble since
the ploidy number is two for humans. The paths can be
identical for homozygous alleles. However, bubbles may
containmore than two paths because of sequencing errors
or misalignment. Therefore, we first identify all paths that
are phased by a read or read pair. For each bubble, we can
use a modified breadth-first search technique to obtain all
paths that go through the bubble. To avoid enumerating
over all paths through a bubble, we prune any path with-
out a read backing the sequence encoded by the path at
each iteration of the breadth-first search. For a path in the
bubble to be retained, it must be supported by at least one
read phasing the entire path. We can simply compute the

a

b

Fig. 7 HLA graph to bubble graph. Show is an example of an HLA graph with three bubbles (in dotted boxes) (a) and its corresponding bubble
graph (b). The best paths through the bubbles can be thought of as a pair of distinct colored paths (shown in red and blue). HLA human leukocyte
antigen
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set of phased reads for a path by taking a series of inter-
sections of read sets maintained by each edge in the path.
Each phased path through a bubble is a called a bubble
path.
Given multiple bubble paths from a bubble, our goal is

to select the best pair of paths. We iterate over all possible
pairs of bubble paths to calculate the posterior probability
of each pair given all reads aligned to the bubble to find
the pair that gives the maximum probability. We write the
posterior probability of a given genotype as

P(Gb | D) = P(Gb)P(D | Gb)

P(D)
,

where Gb is a genotype and D is the alignments of all
reads aligned over the bubble. The genotype is a pair of
bubble paths Gb = (Hb1,Hb2). Each d ∈ D is an align-
ment string of a segment of a read and di is the ith symbol
in segment d. Similarly, Hi

b1 is the ith symbol in Hb1.
P(D) is constant, and we assume that the prior probability
P(Gb = (Hb1,Hb2)) is uniformly distributed over all geno-
types. We can then compute the conditional probability
P(D | Gb) by adopting widely used formulations [13, 54]
with small variations to allow multiple positions and the
base N case that can be present from sequence data. We
iterate over each read and compute P(D | Gb) as a product
of the conditional probability of each read d.
Since a read must come from one of the two chromo-

somes, and we assume that d is equally likely to come
from either one of them, we can rewrite it as a sum of the
average of two cases where d is from Hb1 and Hb2:

P(D | Gb) =
∏

d∈D

[
1
2
P(d | Hb1) + 1

2
P(d | Hb2)

]

.

To compute the conditional probability of each d given a
bubble pathHb, we iterate over each pair of corresponding
positions di andHi

b jointly, assuming each di is condition-
ally independent of each other given Hi

b. Therefore, the
probability of each base di given a pair of corresponding
genotype bases Hi

b1 and Hi
b2 is

1
2
P

(
di | Hi

b1
) + 1

2
P

(
di | Hi

b2
)
.

The probability of seeing a base given an allele is defined
as

P
(
di | Hi

b
) =

{
1 − ε, if di = Hi

b (match)
ε/3, if di �= Hi

b (mismatch) ,

where ε of base symbol di is the error probability obtained
from the phred score of the base. For di = N, we sim-
ply estimate the probability as 1/4. Instead of selecting
Hb from all possible |d|-mers, we limit to only the bubble
paths found in the bubble and iterate over all pairs to select

a pair of bubble paths Pb that jointly gives the maximum
probability:

Pb = argmaxGb

∏

d∈D

|d|∏

i

[
P

(
di | Hi

b1
)

2
+ P

(
di | Hi

b2
)

2

]

.

Phasing paths
We now have an ordered list of bubbles, and a list of the
best read-backed phased bubble paths for each bubble.
The goal here is to find a set of candidate paths through
all the bubbles by merging one bubble at a time itera-
tively from left to right, connecting bubble paths that are
phased by a read or read pair. Two paths are said to be
phase-consistent if there is a read or read pair spanning
both paths. This can be checked easily by taking an inter-
section, since each bubble path maintains a set of phasing
reads. Given a set of alreadymerged bubble pathsPm from
the first i−1 bubbles and a set of bubble pathsPbi from the
ith bubble, we look at all pairs of paths Pm ×Pbi and keep
only pairs that are phase-consistent and connect each of
such pairs as one path. We also update the phasing-read
set for each merged path.

Selecting the best pair of candidate alleles
Once the assembly by bubble merging is finished, we have
a set of merged bubble paths through all bubbles. By plac-
ing the linear chains that were ignored during bubble
merging back to their original positions (between bub-
bles), we have a full-length candidate allele Hi for each
merged bubble path. Let C be the set of all candidate alle-
les and B be a set of all bubbles. Our goal is to select a pair
of alleles (H1,H2) ∈ C × C that has the most consistent
phasing support over all bubbles. We first define a scor-
ing metric that checks for the strength of phasing support
jointly for a pair of alleles H1 and H2 between a pair of
consecutive bubbles bi and bi+1. It is defined as

Fi(H1,H2) =
⎧
⎨

⎩

fi(H1) × fi(H2), if H1 �= H2
fi(H1)

2 × fi(H2)

2
, if H1 = H2

,

where fi(H) is the inter-bubble phasing fraction. This frac-
tion fi(H) is the ratio of the number of phasing reads for
alleleH between bi and bi+1 and the number of total phas-
ing reads. When considering two paths at the same time,
there can be regions where the paths overlap (homozy-
gous; shown as purple edges in Fig. 2e) and separate
(heterozygous; shown as blue or red edges in Fig. 2e). For
homozygous sections of the paths, that is H1 = H2, fi(H)

is halved to keep the balance between calling homozygous
and heterozygous alleles. We can calculate the product of
Fi over all pairs of neighboring bubbles to check the con-
sistency of phasing support for the pair. Finally, we select
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the pair of alleles P that maximizes the product over all
pairs of alleles:

P = argmax{H1,H2}∈C×C

⎡

⎣
|B|−1∏

i
Fi(H1,H2)

⎤

⎦ .

Description of data used for evaluation
Simulated data
For each of the six HLA genes tested (HLA-A, -B, -
C, -DQA1, -DQB1, and -DRB1), we randomly selected
two full-length alleles from the IPD-IMGT/HLA database
(v3.24.0) and repeated this for 100 replicates, resulting in
a total of 200 alleles to simulate. The exact number of
full-length alleles in the database is reported in Table 5.
For each replicate, we simulated 25× coverage of paired-
end WGS data for each allele, giving 50× coverage for
each locus. For the simulation of paired-end reads, we
used an Illumina read simulator, pIRS [55], which simu-
lates using empirical base-calling and GC%-depth profiles
trained from Illumina re-sequencing of known samples.
We used 2 × 100 bp for the read length and 500 ±
50 bp for the mean and the standard deviation of the
insert size.

Illumina PlatinumGenomes
Illumina has sequenced 17 individuals (CEPH/Utah pedi-
gree 1463) in a three-generation family using their high-
coverage PCR-free paired-end WGS assay (2 × 101 bp).
These genomes are often referred to as the Illumina Plat-
inum Genomes [56]. The family pedigree is shown in
Fig. 3. Many individuals in this family have been exten-
sively investigated by the genomics community, especially
the NA12891–NA12892–NA12878 trio as well as the
NA12889–NA12890–NA12877 trio. The validated HLA
types for the two trios were obtained from [11, 32]. The
read alignments to the GRCh37 version of the human
genome for all 17 individuals were downloaded from
the Illumina Platinum Genomes page hosted on Google
Cloud Platform (Additional file 1: Table S8) and they were
realigned to the GRCh38 version of the human genome.

1000 Genomes
The 1000Genomes Project [57] has produced various per-
sonal genomic data. Among these, there are 11 individuals
used in [11] whose high-coverage WGS data along with
validated HLA typing results [11, 32] are available. This
data set covers a wide ethnic diversity (one Colombian
from Medellín, three Utah residents with Northern and
Western European ancestry in a trio, one Japanese from
Tokyo, Japan, three Yoruban from Ibadan, Nigeria in a
trio, one person of African ancestry from the southwest-
ern United States, one person of Mexican ancestry from
Los Angeles, and one Toscani from Italy) covering vari-
ous different HLA types, making it an ideal data set to

test on. The BAM files aligned to the GRCh38 version
of the human genome were downloaded from the 1000
Genomes data portal (http://www.internationalgenome.
org/data-portal). For the Utah resident trio and the
Yoruban trio, we downloaded fastq files and realigned to
the GRCh38 version because GRCh38 BAM files were not
available. There are three additional individuals with vali-
dated HLA typing results [32] whose high-coverage WGS
data are available. Pre-aligned BAM files of the additional
individuals were downloaded.

Whole-exome sequencing of 29 HapMap individuals
Altogether, 29 HapMap [35] samples (WES) that were
used as a benchmarking data set for HLA*PRG [11] were
selected to test Kourami’s ability to assemble and type
WES data. The 1000 Genomes data portal provides the
BAM/CRAM files aligned to the GRCh38 version of the
human genome for this set of WES data. The complete
list of individual identifiers and the sources where the
data were downloaded from are given in Additional file 1:
Table S8.

AK1 Korean genome
De novo assembly of the Korean individual AK1 has been
published [40]. Both the validated HLA types (Supple-
mentary Table 20 in [40]) and high-coverage WGS data
(2 × 150 bp) are publicly available. We downloaded fastq
files and realigned to the GRCh38 version of the human
genome. There is a link to the downloaded data in Addi-
tional file 1: Table S8.

Additional files

Additional file 1: Supplementary tables with descriptions. (XLSX 70 kb)

Additional file 2: Supplementary figures with descriptions. (PDF 84 kb)

Acknowledgments
We thank S. Kim of Illumina for helping us in the early stage of this research.
We would also like to thank D. DeBlasio, C. Ma, G. Marçais, N. Sauerwald, M.
Shao, B. Solomon, T. Wall, H. Wang, and H. Xin for valuable discussions and
comments on the manuscript.

Funding
This research was funded in part by the Gordon and Betty Moore Foundation’s
Data-Driven Discovery Initiative through grant GBMF4554 to CK, by the U.S.
National Science Foundation (CCF-1256087 and CCF-1319998) and by the U.S.
National Institutes of Health (R01HG007104). This work was partially funded by
The Shurl and Kay Curci Foundation.

Availability of data andmaterials
The WGS data for Illumina Platinum Genomes (17 individuals from CEPH/Utah
pedigree 1463) are available from the European Nucleotide Archive under
accession PRJEB3381 [58]. The WGS data for 14 individuals from the 1000
Genomes Project [57] and the WES data of 29 HapMap samples [35] are
available through the data portal of the International Genome Sample
Resource website [59]. The WGS data for AK1 [40] are available from the Short
Read Archive of the National Center for Biotechnology Information under
accession number SRP068953 [60]. The complete list of direct links used to
download the data is in Additional file 1: Table S8. Kourami (version
0.9.6 [61]) is open source under the 3-Clause BSD license (OSI-compliant) and

http://www.internationalgenome.org/data-portal
http://www.internationalgenome.org/data-portal
http://dx.doi.org/10.1186/s13059-018-1388-2
http://dx.doi.org/10.1186/s13059-018-1388-2


Lee and Kingsford Genome Biology  (2018) 19:16 Page 15 of 16

freely available at https://github.com/Kingsford-Group/kourami. It is
implemented in Java and supported on Linux and Mac OS X.

Authors’ contributions
CK and HL designed the method and wrote the manuscript. HL wrote the
software and carried out the experiments. Both authors read and approved
the final manuscript.

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 17 May 2017 Accepted: 8 January 2018

References
1. Sollid LM, Pos W, Wucherpfennig KW. Molecular mechanisms for

contribution of MHC molecules to autoimmune diseases. Curr Opin
Immunol. 2014;31:24–30.

2. Miyadera H, Tokunaga K. Associations of human leukocyte antigens with
autoimmune diseases: challenges in identifying the mechanism. J Hum
Genet. 2015;60(11):697–702.

3. Simmonds M, Gough S. The HLA region and autoimmune disease:
associations and mechanisms of action. Curr Genom. 2007;8(7):453–65.

4. Matzaraki V, Kumar V, Wijmenga C, Zhernakova A. The MHC locus and
genetic susceptibility to autoimmune and infectious diseases. Genome
Biol. 2017;18(1):76.

5. Hedrick PW, Thomson G. Evidence for balancing selection at HLA.
Genetics. 1983;104(3):449–56.

6. Black FL, Hedrick PW. Strong balancing selection at HLA loci: evidence
from segregation in South Amerindian families. Proc Natl Acad Sci USA.
1997;94(23):12452–6.

7. Ferrer A, Fernández ME, Nazabal M. Overview on HLA and DNA typing
methods. Biotecnología Aplicada. 2005;22(2):91–101.

8. Robinson J, Halliwell JA, Hayhurst JD, Flicek P, Parham P, Marsh SGE.
The IPD and IMGT/HLA database: allele variant databases. Nucleic Acids
Res. 2015;43:D423–31.

9. Major E, Rigó K, Hague T, Bérces A, Juhos S. HLA typing from 1000
Genomes whole genome and whole exome Illumina data. PLoS ONE.
2013;8(11):e78410.

10. Bauer DC, Zadoorian A, Wilson LO, Thorne NP, et al. Evaluation of
computational programs to predict HLA genotypes from genomic
sequencing data. Brief Bioinform. 2016. https://doi.org/10.1093/bib/
bbw097.

11. Dilthey AT, Gourraud PA, Mentzer AJ, Cereb N, Iqbal Z, McVean G.
High-accuracy HLA type inference from whole-genome sequencing data
using population reference graphs. PLoS Comput Biol. 2016;12(10):
e1005151.

12. Erlich RL, Jia X, Anderson S, Banks E, Gao X, Carrington M, et al.
Next-generation sequencing for HLA typing of class I loci. BMC Genomics.
2011;12:42.

13. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A,
et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing
next-generation DNA sequencing data. Genome Res. 2010;20(9):
1297–303.

14. Boegel S, Löwer M, Schäfer M, Bukur T, De Graaf J, Boisguérin V, et al.
HLA typing from RNA-seq sequence reads. Genome Med. 2012;4(12):102.

15. Kim HJ, Pourmand N. HLA haplotyping from RNA-seq data using
hierarchical read weighting. PLoS ONE. 2013;8(6):e67885.

16. Bai Y, Ni M, Cooper B, Wei Y, Fury W. Inference of high resolution HLA
types using genome-wide RNA or DNA sequencing reads. BMC
Genomics. 2014;15:325.

17. Nariai N, Kojima K, Saito S, Mimori T, Sato Y, Kawai Y, et al. HLA-VBSeq:
accurate HLA typing at full resolution from whole-genome sequencing
data. BMC Genomics. 2015;16(Suppl 2):S7.

18. Nariai N, Hirose O, Kojima K, Nagasaki M. TIGAR: transcript isoform
abundance estimation method with gapped alignment of RNA-seq data
by variational Bayesian inference. Bioinformatics. 2013;29(18):2292–9.

19. Szolek A, Schubert B, Mohr C, Sturm M, Feldhahn M, Kohlbacher O.
OptiType: precision HLA typing from next-generation sequencing data.
Bioinformatics. 2014;30(23):3310–16.

20. Xie C, Yeo ZX, Wong M, Piper J, Long T, Kirkness EF, et al. Fast and
accurate HLA typing from short-read next-generation sequence data
with xHLA. Proc Natl Acad Sci USA. 2017;114(30):8059–64.

21. Warren RL, Choe G, Freeman DJ, Castellarin M, Munro S, Moore R, et al.
Derivation of HLA types from shotgun sequence datasets. Genome Med.
2012;4(12):95.

22. Huang Y, Yang J, Ying D, Zhang Y, Shotelersuk V, Hirankarn N, et al.
HLAreporter: a tool for HLA typing from next generation sequencing
data. Genome Med. 2015;7(1):25.

23. Dilthey A, Cox C, Iqbal Z, Nelson MR, McVean G. Improved genome
inference in the MHC using a population reference graph. Nat Genet.
2015;47(6):682–8.

24. Lee C, Grasso C, Sharlow MF. Multiple sequence alignment using partial
order graphs. Bioinformatics. 2002;18(3):452–64.

25. Pevzner PA, Tang H, Waterman MS. An Eulerian path approach to DNA
fragment assembly. Proc Natl Acad Sci USA. 2001;98(17):9748–53.

26. Myers EW. The fragment assembly string graph. Bioinformatics.
2005;21(suppl_2):ii79–85.

27. Paten B, Novak A, Haussler D. Mapping to a reference genome structure.
arXiv.2014;1404.5010v1.

28. Nguyen N, Hickey G, Zerbino DR, Raney B, Earl D, Armstrong J, et al.
Building a pan-genome reference for a population. J Comput Biol.
2015;22(5):387–401.

29. Church DM, Schneider VA, Steinberg KM, Schatz MC, Quinlan AR,
Chin CS, et al. Extending reference assembly models. Genome Biol.
2015;16(1):13.

30. Paten B, Novak AM, Eizenga JM, Garrison E. Genome graphs and the
evolution of genome inference. Genome Res. 2017;27(5):665–76.

31. Marsh SGE, Albert ED, Bodmer WF, Bontrop RE, Dupont B, Erlich HA,
et al. Nomenclature for factors of the HLA system, 2010. Tissue Antigens.
2010;75(4):291–455.

32. Gourraud PA, Khankhanian P, Cereb N, Yang SY, Feolo M, Maiers M, et al.
HLA diversity in the 1000 Genomes dataset. PLoS ONE. 2014;9(7):e97282.

33. Campbell MC, Tishkoff SA. African genetic diversity: implications for
human demographic history, modern human origins, and complex
disease mapping. Annu Rev Genomics Hum Genet. 2008;9:403–33.

34. Prugnolle F, Manica A, Charpentier M, Guégan JF, Guernier V, Balloux F.
Pathogen-driven selection and worldwide HLA class I diversity. Curr Biol.
2005;15(11):1022–7.

35. International HapMap Consortium, et al. A haplotype map of the human
genome. Nature. 2005;437(7063):1299.

36. Asan, Xu Y, Jiang H, Tyler-Smith C, Xue Y, Jiang T, et al. Comprehensive
comparison of three commercial human whole-exome capture
platforms. Genome Biol. 2011;12(9):R95.

37. Meienberg J, Bruggmann R, Oexle K, Matyas G. Clinical sequencing: is
WGS the better WES? Hum Genet. 2016;135(3):359–62.

38. Belkadi A, Bolze A, Itan Y, Cobat A, Vincent QB, Antipenko A, et al. Whole-
genome sequencing is more powerful than whole-exome sequencing for
detecting exome variants. Proc Natl Acad Sci USA. 2015;112(17):5473–8.

39. Cao H, Wu H, Luo R, Huang S, Sun Y, Tong X, et al. De novo assembly of
a haplotype-resolved human genome. Nat Biotechnol. 2015;33(6):617–22.

40. Seo JS, Rhie A, Kim J, Lee S, Sohn MH, Kim CU, et al. De novo assembly
and phasing of a Korean human genome. Nature. 2016;538:243–7.

41. Ajay SS, Parker SC, Abaan HO, Fajardo KVF, Margulies EH. Accurate and
comprehensive sequencing of personal genomes. Genome Res.
2011;21(9):1498–505.

42. Ekblom R, Wolf JB. A field guide to whole-genome sequencing, assembly
and annotation. Evol Appl. 2014;7(9):1026–42.

43. Sameith K, Roscito JG, Hiller M. Iterative error correction of long
sequencing reads maximizes accuracy and improves contig assembly.
Brief Bioinform. 2017;18(1):1–8.

44. Schirmer M, DAmore R, Ijaz UZ, Hall N, Quince C. Illumina error profiles:
resolving fine-scale variation in metagenomic sequencing data. BMC
Bioinform. 2016;17(1):125.

45. Lefebvre S, Antoine M, Uzan S, McMaster M, Dausset J, Carosella ED,
et al. Specific activation of the non-classical class I histocompatibility

https://github.com/Kingsford-Group/kourami
https://doi.org/10.1093/bib/bbw097
https://doi.org/10.1093/bib/bbw097


Lee and Kingsford Genome Biology  (2018) 19:16 Page 16 of 16

HLA-G antigen and expression of the ILT2 inhibitory receptor in human
breast cancer. J Pathol. 2002;196(3):266–74.

46. Bukur J, Jasinski S, Seliger B. The role of classical and non-classical HLA
class I antigens in human tumors. Semin Cancer Biol. 2012;22(4):350–8.

47. Li H, Durbin R. Fast and accurate short read alignment with
Burrows–Wheeler transform. Bioinformatics. 2009;25(14):1754–60.

48. Tischler G, Leonard S. biobambam: Tools for read pair collation based
algorithms on BAM files. Source Code Biol Med. 2014;9:13.

49. Löytynoja A, Vilella AJ, Goldman N. Accurate extension of multiple
sequence alignments using a phylogeny-aware graph algorithm.
Bioinformatics. 2012;28(13):1684–91.

50. Fasulo D, Halpern A, Dew I, Mobarry C. Efficiently detecting
polymorphisms during the fragment assembly process. Bioinformatics.
2002;18(suppl 1):S294—302.

51. Iqbal Z, Caccamo M, Turner I, Flicek P, McVean G. De novo assembly
and genotyping of variants using colored de Bruijn graphs. Nat Genet.
2012;44(2):226–32.

52. Sacomoto GA, Kielbassa J, Chikhi R, Uricaru R, Antoniou P, Sagot MF,
et al. KISSPLICE: de-novo calling alternative splicing events from RNA-seq
data. BMC Bioinform. 2012;13(Suppl 6):S5.

53. Nijkamp JF, Pop M, Reinders MJ, de Ridder D. Exploring variation-aware
contig graphs for (comparative) metagenomics using MaryGold.
Bioinformatics. 2013;29(22):2826–34.

54. Li H. A statistical framework for SNP calling, mutation discovery,
association mapping and population genetical parameter estimation
from sequencing data. Bioinformatics. 2011;27(21):2987–93.

55. Hu X, Yuan J, Shi Y, Lu J, Liu B, Li Z, et al. pIRS: Profile-based Illumina
pair-end reads simulator. Bioinformatics. 2012;28(11):1533–5.

56. Eberle MA, Fritzilas E, Krusche P, Källberg M, Moore BL, Bekritsky MA,
et al. A reference data set of 5.4 million phased human variants validated
by genetic inheritance from sequencing a three-generation 17-member
pedigree. Genome Res. 2017;27(1):157–64.

57. The 1000 Genomes Project Consortium. A global reference for human
genetic variation. Nature. 2015;526(7571):68–74.

58. Illumina Cambridge Ltd. Whole genome sequencing and variant calls for
the Coriell CEPH/UTAH 1463 family. The European Nucleotide Archive.
2012. https://www.ebi.ac.uk/ena/data/view/PRJEB3381.

59. IGSR: The International Genome Sample Resource data portal. http://
www.internationalgenome.org/data-portal.

60. Seo JS, Rhie A, Kim J, Lee S, Sohn MH, Kim CU, et al. Homo sapiens, AK1
genome sequencing and de novo assembly of an Asian individual. NCBI
Short Read Archive. 2016. https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.
cgi?study=SRP068953.

61. Lee H. Kourami: graph-guided HLA assembler. 2017. https://doi.org/10.
5281/zenodo.1122533.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

https://www.ebi.ac.uk/ena/data/view/PRJEB3381
http://www.internationalgenome.org/data-portal
http://www.internationalgenome.org/data-portal
https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?study=SRP068953
https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?study=SRP068953
https://doi.org/10.5281/zenodo.1122533
https://doi.org/10.5281/zenodo.1122533

	Abstract
	Background
	Results
	HLA typing nomenclature
	Overview of method
	Simulation
	Novel allele detection
	Illumina Platinum Genomes
	Platinum trio with validated results
	Trio consistency and inferred haplotypes

	1000 Genomes
	CPU and memory usage

	Discussion
	Conclusion
	Methods
	Input alignment and extraction of HLA reads
	Known HLA alleles and construction of a comprehensive reference panel
	HLA graph construction
	Modification of the HLA graph via alignment projection
	Finding paths through the HLA graph
	HLA graph to bubble graph
	Finding the best set of paths in a bubble
	Phasing paths
	Selecting the best pair of candidate alleles

	Description of data used for evaluation
	Simulated data
	Illumina Platinum Genomes
	1000 Genomes
	Whole-exome sequencing of 29 HapMap individuals
	AK1 Korean genome


	Additional files
	Additional file 1
	Additional file 2

	Acknowledgments
	Funding
	Availability of data and materials
	Authors' contributions
	Ethics approval and consent to participate
	Competing interests
	Publisher's Note
	References

