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Abstract

The recent shift of computational biologists from
biocinformatics service providers to leaders of cutting-edge
programs highlights the accompanying cultural and
conceptual changes that should be implemented by
funding bodies and academic institutions.

Introduction

Computational approaches began to revolutionize the life
sciences a generation ago, when DNA sequences became
more widely available [1]. Sequence analysis methods—most
notably BLAST—were crucial in uncovering the molecular
basis for deep homology across distant organisms, as well as
rampant, and previously unappreciated, horizontal transfer
across organisms [2]. Currently, the volume of data gener-
ated and processed in the course of modern scientific
research is growing exponentially [3]. Large databases are
proliferating with myriad types of biological data, such as
the Genomic Data Commons platform, which provides
researchers access to genomic and clinical data from
patients with cancer [4]. More recently, insights into cancer
biology have emerged from single-cell surveys of tumors [5].
Such computational analyses have altered the current think-
ing about tumor architecture, and the tools used—most
notably sequence and gene expression analysis—have
permeated the life sciences.

As a consequence of these changes, computational biol-
ogists must invent analytical algorithms and deploy them
to make scientific breakthroughs. Here, we describe five
specific areas in which the role of computational biologists
has shifted over the past 20 years (Table 1). Within each
of these areas, we present examples of what has changed,
and how computational biologists can work with more
traditional life scientists to increase the probability of
groundbreaking discoveries across biomedicine.
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Role in research

Computational biology originated as a tool rather than as
its own discipline as it did not embody a set of core ques-
tions. Thus, bioinformaticians have historically had a
supportive role in research programs led by other scientists
who decided on the tractability and value of the scientific
questions to be pursued. Bioinformatics, therefore,
belonged more as a subheading in the Methods section
than as a title of a manuscript. Yet those who are able to
make sense of the richness of data in the modern life
sciences have now been put in the driver’s seat. As a result,
computational biologists are now often principal investiga-
tors on grants, rather than co-investigators, and they are
also last authors on groundbreaking publications.

This change occurred because many fields now present
opportunities for computational explorations of patterns
and integration across diverse and rich data sets. An
example is the development of RNA-sequencing (RNA-
seq). Bioinformaticians were involved in setting up the
statistical framework for analyzing the data and producing
a gene expression matrix [6]. However, beyond the
technical details of the method, computational biologists
have been instrumental in exploring single-cell RNA-seq
data sets and revealing important new insights, as
evidenced by the proliferation of single-cell RNA-seq
papers in top journals and at conferences worldwide. The
number of single-cell RNA-seq papers in the literature has
increased fivefold in the past 5 years, with many of these
papers being led or co-led by computational biologists.

Much of the power of computational biology follows
from its use in collaboration with experts in other fields.
How then are computational biologists to collaborate as
equals with more experimental biologists? We have
found that a key aspect in starting a collaboration is
finding a “win-win” situation to working together. Often
this comes from establishing not one but two parallel
projects; with each lab leading one project. Thus, neither
lab is second to the other in the collaboration and both
projects gain from the interaction.
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Table 1 Shifting roles of computational biologists

Past Current

Role in research Supportive Driver of research

A feeling for the Computer Biology- and computer

biology science-centered science-centered
Environment Isolated Integrated
Data generation Constrained Resourceful

Data exploration Largely limited to

hypothesis testing

Both exploratory and
hypothesis testing

A feeling for the biology

PhD training programs now enable the development of
leading scientists who are not only interested in algorithm
creation and data analysis but who are also keenly aware of
the most pressing questions in biomedical research. With
the “feeling for the biology” gained by such training comes
a drive to address the central problems of the field in ques-
tion. For example, to have a feeling for cancer one must
understand that cancer has a somatic evolution, and to
have a feeling for a host—pathogen interaction one must
understand that the interaction unfolds over time. Without
these insights, an analysis of the data cannot be connected
to the biology in a way that elicits discoveries. Similar to
the experimental biologist, in order for the computational
biologist to make the most groundbreaking discoveries in
a particular field, they must be tormented by the most
pressing biological problems in that field of study.

In order for computational biologists who are cur-
rently in training to obtain such a feel for the biology,
they must have ample opportunities to discuss key bio-
logical concepts with life scientists who focus on the
same field, such as cancer or immunology. Moreover, fu-
ture training programs will need to teach computational
biology approaches to all students, not only those with a
more computational biology bent, such that computa-
tional approaches increasingly become part of the
general language of science.

Environment

By virtue of the classical university departmental structure,
when computational researchers began launching inde-
pendent labs they would often be surrounded by trad-
itional life science researchers who could not speak the
language of quantitative biology. This isolated structure
did not allow for computational biologists to learn from
each other or provide a critical mass for computational
thinking. Examples of an analogous shift can be seen when
looking at stem cell researchers, who were previously
isolated within separate departments: a skin stem cell
researcher would have been in a dermatology department,
and a neural stem cell researcher would have been in a
neuroscience department. But with the launch of many
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stem cell institutes in the 1990s, these investigators had
more opportunities to stimulate and inspire each other.

The specific topics of a microbiome computational
biologist and a cancer computational biologist, for
example, will vary, but by increasing their interactions
they will inspire and cross-fertilize each other’s fields.
This is because of a common set of tools from which all
computational biologists draw, such as modeling
methods for systems-level analyses, statistical methods
for assaying significance of specific hypotheses, and
visualization for reducing the high-dimensionality of
data sets.

Data generation

In the past, by virtue of their focus on computational
approaches and lack of expertise at the bench, computa-
tional biologists would focus on data sets that were
available in the public domain or from collaborators.
This constrained computational researchers from creating
their own data sets, and from being able to validate any
hypotheses arising from their computational approaches.

However, computational biology is now more integra-
tive both in how it generates and in how it interprets
data. From this perspective, the typical computational
biology lab may look very similar to a molecular biology
lab in that its members have both bench space and
private computer workspace. Moreover, novel data sets
generated in the lab are often best studied with respect
to other data sets. This requires the computational
biologist to be a “Renaissance scientist”, with multiple
experimental and computational tools, as well as to have
the ability to take advantage of theoretical models and
data described in the literature.

The quality of the findings derived from a complex
data set likely requires both a deep understanding of
biological questions and algorithm innovation. There-
fore, we may be witnessing a change in what “owner-
ship” means for data. A de facto rule in the culture of
life sciences has been that data is “owned” by those who
generated it. Thus, an RNA-seq data set is owned by the
person who generated it using commonly available
methods and only requiring a short period of work. The
data set may have been subsequently intensely analyzed
for a considerably longer period by another person, who
used specialized computational tools and biological
insight to make a discovery. However, as we have
witnessed many times, the person who generated the
data has an inherent advantage in becoming the first
author on the subsequent paper. This often unfair
assignment of credit is now changing, however, as the
role of computational biologists is gaining recognition.
Funding bodies and institutional tenure committees
should also create new credit structures to ensure that
those who make important discoveries are promoted
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and funded regardless of whether they generated the
data themselves.

Data exploration

The ability to generate and test a hypothesis has always
been the cornerstone of science. Bioinformaticians have
classically used complex statistical methods to contrib-
ute to the experimental design of a study and to data
analysis for hypothesis testing. However, hypotheses
were often generated by the biological experts. Now,
with the emergence of large data sets across biomedi-
cine, computational biologists can contribute not only to
testing hypotheses, but also to exploring the data in such
a way as to generate novel, unexpected, groundbreaking
hypotheses that can subsequently be tested and validated
in independent data sets, as well as at the bench. Indeed,
the recognition that crucial hypotheses arise from data-
driven “fishing” expeditions must be communicated to
funding bodies and other scientific institutions.

A current stumbling block with computational biology,
which we hope to see overcome soon, is the validation
of hypotheses inferred from complex data sets. Compu-
tational biologists tend to lack extensive validations in
their papers, which may indicate a more theoretical bent
or a lack of expertise in the required experimental
methods. Efforts by computational biologists, however,
to improve this aspect of their science are likely to
improve their grant applications and to increase their
publications in top journals.

Concluding remarks

In spite of the transformation that we describe here in
how computational biologists now contribute to the
scientific enterprise, one aspect that has not changed is
the need for computational biologists to collaborate
closely with experimentalists and clinicians across the
biomedical spectrum. The testing of a hypothesis gener-
ated by the analysis of a data set needs to be validated in
complex experimental systems, such as mice and orga-
noids, or by using interventional in vivo approaches that
require a lifetime of expertise in a particular method of
drug administration. In addition, the initial hypothesis
may need to be validated by collecting new data from an
independent human population. This necessitates close
interaction with patients, to whom the computational
biologist may not have ready access.

The importance of collaborative relationships between
wet and dry researchers blurs the lines that define
research, and is also reflected in recent changes in how
research is funded and organized at the institutional and
governmental levels. For example, large collaborative
federal grant funding requires clinicians, experimentalists,
and computational biologists to come together to interact
with data and ideas in ways that are not possible in grants
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that are awarded to a single principal investigator. Many
institutions around the world have launched computa-
tional centers and departments, particularly in the field of
cancer, and have designed cutting-edge lab spaces where
computational and experimental researchers work closely
together in collaborative groupings, with many opportun-
ities for frequent daily interactions.

World-class computational biologists must innovate in
both the computational and the biological realms so that
the secrets hidden in biomedical data can be unlocked.
Some cultural changes by funding bodies and academic
institutions may be necessary, but when these parame-
ters are met, computational biologists will be able to
make the most groundbreaking discoveries.
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