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Abstract

genetics literature (2011-2017).

Background: The American College of Medical Genetics and American College of Pathologists (ACMG/AMP) variant
classification guidelines for clinical reporting are widely used in diagnostic laboratories for variant interpretation. The
ACMG/AMP guidelines recommend complete concordance of predictions among all in silico algorithms used
without specifying the number or types of algorithms. The subjective nature of this recommendation contributes to
discordance of variant classification among clinical laboratories and prevents definitive classification of variants.

Results: Using 14,819 benign or pathogenic missense variants from the ClinVar database, we compared performance
of 25 algorithms across datasets differing in distinct biological and technical variables. There was wide variability in
concordance among different combinations of algorithms with particularly low concordance for benign variants. We
also identify a previously unreported source of error in variant interpretation (false concordance) where concordant in
silico predictions are opposite to the evidence provided by other sources. We identified recently developed algorithms
with high predictive power and robust to variables such as disease mechanism, gene constraint, and mode of
inheritance, although poorer performing algorithms are more frequently used based on review of the clinical

Conclusions: Our analyses identify algorithms with high performance characteristics independent of underlying
disease mechanisms. We describe combinations of algorithms with increased concordance that should improve
in silico algorithm usage during assessment of clinically relevant variants using the ACMG/AMP guidelines.

Keywords: Variant interpretation, /n silico algorithm, ROC, ClinVar, ACMG, Clinical genetics, Diagnostics

Background

Many in silico methods have been developed to predict
whether amino acid substitutions result in disease. Use
of this type of evidence has become a routine part of as-
sessment of novel variants identified through gene-
focused projects or as a part of whole exome or genome
annotation pipelines. In a clinical setting, predictions
from in silico algorithms are included as one of the eight
evidence criteria recommended for variant interpretation
by the American College of Medical Genetics and Genom-
ics (ACMG) and Association of Molecular Pathologists
(AMP) [1]. The ACMG/AMP guideline for use of in silico
algorithms specifically states: “If all of the in silico
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programs tested agree on the prediction, then this evi-
dence can be counted as supporting. If in silico predictions
disagree, however, then this evidence should not be used
in classifying a variant.” For a given missense variant, pre-
dictions by numerous algorithms are publicly available,
e.g. via dbNSFP [2] or Variant Effect Predictor [3] from
which a few algorithms are typically chosen for variant
interpretation and are often used without additional
calibration. Different testing laboratories use distinct
combinations of in silico algorithms for variant interpret-
ation and this can lead to discordant interpretations. For
example, in a recent assessment of the ACMG/AMP
guidelines by the Clinical Sequence Exploratory Research
consortium (CSER), the frequency of use of in silico algo-
rithm evidence for pathogenic and benign variant asser-
tion were 39% and 18%, respectively [4]. The CSER study
noted that use of in silico algorithms were one major

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-017-1353-5&domain=pdf
mailto:splon@bcm.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Ghosh et al. Genome Biology (2017) 18:225

source of discordance among different clinical laboratories
and that the ACMG/AMP guideline for in silico algorithm
usage may be aided by further recommendations [4].

Missense variants constitute a major set of variants of
uncertain significance (VUS) in ClinVar [5]. An im-
proved recommendation for use of in silico algorithms is
important for reducing the VUS burden in clinical
medicine and increasing concordance of variant interpret-
ation. Currently, there is little consensus among clinical
labs on how many and which algorithms to use for mis-
sense variant interpretation. For example, a recent exome
sequencing study classified variants in 180 medically
relevant genes for hereditary cancer according to
ACMG/AMP guidelines. The authors found that the
VUS rate was higher when requiring full concordance
vs majority agreement among the 13 in silico algo-
rithms used in their pipeline [6]. Other examples from
the literature demonstrate requiring full concordance
among three [7] to seven [8] different algorithms for
variant interpretation. However, to our knowledge, no
analysis has been conducted to assess the applicability
of the current ACMG/AMP guideline for in silico al-
gorithm usage. Here, using predictions from 25 in
silico algorithms for 14,819 clinically relevant missense
variants in the ClinVar database, we highlight several
limitations of implementing the ACMG/AMP guideline
for in silico algorithm usage. We find highly variable
degree of concordance among different combinations of
algorithms with particularly low concordance of the pre-
dictions of variants reported in ClinVar as benign. Using
the ClinVar dataset, we identify algorithms with higher
predictive power whose performances are robust to vari-
ables such as disease mechanism, level of constraint, and
mode of inheritance.

Results

Concordance among in silico algorithms

To identify the extent of concordance among in silico al-
gorithms for known pathogenic and benign variants, we
obtained 14,819 missense variants from ClinVar for
which the rationale for pathogenic or benign assertion
has been provided by at least one submitter (one-star
status in ClinVar), primarily clinical laboratories, and an-
notated these variants with scores and predictions from
25 algorithms using dbNSFP (v3.2) [9] or the respective
authors’ websites. We generated a matrix of binary pre-
dictions (pathogenic or benign) for these variants with
scores from the 18 algorithms, for which thresholds of
pathogenicity were publicly available (Fig. 1a, Additional
file 1: Table S1, see “Methods”). We found that when
using this large number of algorithms only 5.2% of the
benign and 39.2% of pathogenic variants had concordant
assertions across all algorithms (Fig. 1a, Table 1). Some
algorithms did not produce a prediction for all 14,819
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Fig. 1 Concordance among predictions of 18 algorithms for variants
in ClinVar. Binary predictions made by 18 algorithms for each
pathogenic or benign variants in ClinVar are shown in the upper and
lower panels. Each variant is along a row and an orange, green, or
white tile depicts a pathogenic, benign, or missing data call,
respectively, by the corresponding algorithm. A total of 14,819
variants with ClinVar review status one star or above (a) and 2966
variants with ClinVar review status two stars or above (b) are shown

variants (indicated by white spaces in Fig. 1). To ensure
that missing data did not introduce a bias in our results,
we analyzed concordance with a smaller dataset of 8386
variants (Additional file 2: Figure S1), where there were
no missing data. Similarly, we found that for the dataset
without missing values only 3.2% of the benign and
41.5% of pathogenic variants had concordant assertions
across all of them (Additional file 1: Table S2, Additional
file 2: Figure S1). We also obtained similar results when
we restricted our analysis to benign and pathogenic var-
iants in ClinVar that had identical assertions from at
least two independent laboratories (two stars — Fig. 1b,
Table 1, Additional file 1: Table S1, Additional file 2: Figure
S1B), suggesting that errors in ClinVar assertions by a
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Table 1 Concordance rate of different combination of algorithms
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Variant assertion in ClinVar ~ Variant source  Algorithms Variants (n)  Concordance (n (%)) False concordance (n (%))

Benign ClinVar* All 18 7346 382 (5.2) 57 (0.8)

Pathogenic ClinVar* All 18 7473 2930 (39.2) 2 (0.03)

Benign ClinVar** All 18 1914 86 (4.5) 12 (0.6)

Pathogenic ClinVar** All 18 1052 492 (46.8) 0 (0)

Benign ClinVar* Polyphen, SIFT, CADD, PROVEAN, 7346 2464 (33.5) 815 (11.1)
MutationTaster

Pathogenic ClinVar* Polyphen, SIFT, CADD, PROVEAN, 7473 5904 (79.0) 68 (0.9)
MutationTaster

Benign ClinVar* Polyphen, SIFT, CADD 7346 3392 (46.2) 1340 (18.2)

Pathogenic ClinVar* Polyphen, SIFT, CADD 7473 6342 (84.9) 156 (2.1)

ClinVar *: ClinVar variants with one star or above review status
ClinVar **: ClinVar variants with two stars or above review status

single submitter or missing data contributes little to the
low level of concordance among algorithms.

We then computed the pairwise differences among all
the algorithms separately for 7346 benign and 7473
pathogenic variants in our dataset (see “Methods”). We
found that, on average, two algorithms tend to differ
from each other significantly more in the interpretation
of benign as opposed to pathogenic variants (p < 0.0001,
Welch’s two-sample t-test) (Fig. 2a). Our data suggest
that while interpreting large number of variants, full
concordance, as suggested by the ACMG/AMP guide-
lines, is less likely to be achieved even when using only
two algorithms, particularly for benign variants, consist-
ent with earlier observation of poor correlations among
predictors by Thusberg et al. [10].

To assess the level of concordance among the most
commonly used algorithms, we reviewed algorithm use
in the medical genetics literature between January 2011
and January 2017 (see “Methods”). We found that Poly-
phen [11] and SIFT [12] are cited most frequently,
followed by MutationTaster [13], CADD [14], PROVEAN
[15], Mutpred [16], and Condel [17]. We did not detect
any consistent pattern of combinations among these algo-
rithms. In general, there was more frequent usage of some
algorithms while others, especially the more recently de-
veloped algorithms, are used less frequently. Predictions
from five commonly used algorithms (Polyphen, SIFT,
CADD, PROVEAN and MutationTaster) resulted in
higher concordance relative to all 18 algorithms, with 79%
concordance for pathogenic variants and only 33% for be-
nign variants (Table 1) with no significant departure in
concordance when using the dataset without missing data
(Additional file 1: Table S2).

In addition to lack of full concordance in prediction, we
also identified “false concordance” across algorithms as a
potential problem for variant classification. We identified
773 of 7346 (10.5%) variants classified as benign in ClinVar,
for which all five commonly used algorithms predicted the

variant to be pathogenic and conversely 64 of 7473 (0.8%)
pathogenic variants in ClinVar were predicted benign by all
five algorithms. These numbers grow to 815 and 68 vari-
ants, respectively, when we included concordance among
algorithms for variants with some missing predic-
tions (Table 1). Evaluating only three commonly used algo-
rithms (Polyphen, SIFT, and CADD) resulted in higher
concordance for pathogenic (84%) and benign (46%) vari-
ants, however, coupled with an increase in false concor-
dances (Table 1, Additional file 1: Table S2). In fact, 22.5%
(1653/7346) of benign ClinVar variants were assessed as
pathogenic by > 50% of the 18 algorithms including 87 var-
iants where the benign classification of the variant had
been reviewed by a ClinVar recognized expert panel
(three-star review status) suggesting that these variants are
benign and not misclassified in ClinVar (Additional file 1:
Table S3). There were 57 benign variants spread among 42
genes, for which all 18 algorithms predicted the variant as
pathogenic. In comparison, 5.2% (389/7473) of ClinVar
pathogenic variants were deemed to be benign by > 50% of
algorithms (Additional file 1: Table S3). It is possible that
some of these variants may result in splicing defects that
may not be captured by these 18 algorithms. However we
note, for example, that the variant NP_000234.1:p.Va-
1726Ala in the MEFV gene interpreted as pathogenic by
four independent clinical laboratories was predicted to be
tolerant by 16 of 18 algorithms. The ClinVar record for this
variant suggests a decrease in catalytic activity rather than a
splicing defect as part of the reason why the clinical labora-
tories interpreted this variant as pathogenic. Conversely,
the MSH2 variant, NP_000242.1:p.Glu198Gly, was classi-
fied as benign by an expert panel due to lack of an effect in
functional assays including splicing but was predicted to be
damaging by all 18 algorithms.

Not surprisingly, we failed to identify any combina-
tions of algorithms that resulted in false concordance of
zero and true concordance of 100% among the 18 algo-
rithms whose default predictions are publicly available.
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Fig. 2 Concordance among algorithms. a Distribution of proportion
of variants that had concordant calls by any given pair of algorithms
(among 18 algorithms) for benign (green) and pathogenic (orange)
variants in ClinVar. b Scatterplots of true concordance (variant assertion
matches ClinVar assertion) vs false concordance (variant assertion does
not match ClinVar assertion) for combinations of three, four, or five
algorithms at a time. An orange and a green point depict the true and
false concordance of a combination for benign and pathogenic
variants, respectively, in ClinVar. The rugs on top and bottom, left and
right represent the distribution of false and true concordances,
respectively. ¢ Hierarchical clustering of 25 algorithms with scores for
14,819 variants in ClinVar. Red rectangles indicate robust clusters with
an AU p value of > 0.99 (see "Methods")

We generated all possible combinations of three (1 = 816),
four (n =3060), or five (n = 8568) algorithms and obtained
their true and false concordance rates across the 14,819
variants. As before, there was a lower false concordance
rate and a higher true concordance rate for pathogenic
variants relative to the benign variants (Fig. 2b). Overall,
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the concordance among combinations was in the range of
83.4-64.5% for two to five algorithms, respectively (Table 2,
Additional data 2-5, see Availability of data and materials
section). We found that the best performing combina-
tions of algorithms were different for benign and
pathogenic variants (Additional file 2: Table S4, Add-
itional data 2-5, see Availability of data and materials
section). For example, for benign variants the best
performing combinations of three algorithms con-
sisted of VEST3 [18], REVEL [19], and MetaSVM [20]
with a true concordance rate of 81.3% and a false
concordance rate of 2.8%, whereas for pathogenic var-
iants the same combination resulted in a 70% true
concordance and a 5.4% false concordance. For
pathogenic variants, the best performing trio combin-
ation consisted of MutationTaster, Mcap [21], and
CADD (Additional file 1: Table S4), with a fairly high
false concordance for benign variants (18.2% and
25.8% false concordance, Additional data 3, see Avail-
ability of data and materials section). We obtained
similar results for combinations of four or five algo-
rithms (Additional file 1: Table S4, Additional data 4
and 5, see Availability of data and materials section).
Note that these best performing combinations are
relevant only in the context of the particular dataset
we used and may not be optimal across other designs
(such as whole-genome analysis). In general, many
different combinations performed better for patho-
genic than benign variants (Fig. 2b).

Taken together, our results suggest that a given com-
bination of algorithms (using the publicly available
threshold scores) will perform quite differently across
benign and pathogenic variants with a significant chance
of erroneous assertion due to false concordance among
algorithms. These false concordances could potentially
bias the variant interpretation towards a VUS classifica-
tion if all the other available variant data suggests the
opposite assertion.

Further analysis of algorithm prediction and concordance
For some algorithms such as Eigen [22], hEAt [23],
GERP [24], etc., cut-offs defining pathogenic or benign
assertion are either not recommended or inferred arbi-
trarily. We therefore used the actual output scores pro-
vided by all 25 algorithms as a continuous variable to
identify algorithms whose predictions are likely to be
concordant independent of the algorithms internal cut-
offs. A hierarchical clustering of the normalized output
scores of 14,819 missense variants for each of the algo-
rithms revealed seven clusters (Fig. 2c). All the largely
evolutionary conservation algorithms such as phyloP
[25], phastCons [26], GERP [27], and Siphy [28] belong
to different clusters from the metapredictors REVEL,
MetaSVM, and MetaLR (Fig. 2c).
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Table 2 Concordance among combinations of algorithms across all variants using publicly available thresholds.

Overall true concordance (%) Overall false concordance (%)

Algorithms (n) Algorithms

2 REVEL, MetaSVM 834 7.8
3 VEST3, REVEL, MetaSVYM* 756 4.1
4 Polyphen2, REVEL, MetaSVM, Eigen* 69.3 4.1
5 Provean, Polyphen2, REVEL, MetaSVM, Eigen 64.5 32

Asterisks indicate that there were combinations with higher concordance but they included MetaSVM and MetalLR (see text)

Comparison of performance of in silico algorithms
To identify well-performing algorithms when tested
against variants in ClinVar disease genes with prediction
abilities that are robust to the nature of a variant, gene
constraint and underlying disease mechanism, we quan-
tified performance of the in silico algorithms on multiple
test datasets by determining the area under the receiver
operator characteristic curve (AUC) (see “Methods”).
We analyzed two overlapping datasets differing in the
confidence of variant assertions. These were 14,819
ClinVar variants that are assigned at least one-star

review status and 2966 ClinVar variants with concordant
scores from at least two laboratories (two stars, see
“Methods”). For both datasets, we observed wide vari-
ation in performance of the algorithms with AUCs in
the range of 0.5-0.96 (Fig. 3a). We identified several al-
gorithms with AUC = 0.9 in these datasets that did not
differ significantly in their performance between > 1-
or > -2-star datasets (Fig. 3a). In the above analyses, we
collapsed the “likely” and “definite” categories into one
category for the benign and pathogenic variants. To
identify if there was a confound introduced by this
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approach, we took a subset of 7766 variants excluding
variants with “likely” assertions (resulting in patho-
genic: 3293 variants and benign: 4473 variants) and
conducted the performance analysis. There was a simi-
lar overall rank order of the algorithm performance
with this dataset (Fig. 3a).

We next sought to identify algorithms whose perform-
ance did not differ whether a given variant resulted in
gain-of-function (GOF) or loss-of-function (LOF) of a
gene product by analyzing datasets enriched in activating/
GOF mutations in oncogenes and LOF mutations in
tumor suppressor genes (TSG) which are both pathogenic
in cancer development [29] (see “Methods”). We also sep-
arately evaluated 1169 benign and 1427 pathogenic vari-
ants in genes linked to diseases with primarily recessive
mode of inheritance as another proxy for a dataset
enriched in LOF variants. These datasets were a subset of
the larger ClinVar 1 star or above data (see “Methods”).
We did not observe significant differences in performance
of algorithms in the GOF and LOF datasets including
across the high-performing algorithms (Fig. 3a). Addition-
ally, we analyzed variants in genes that are primarily linked
to diseases with dominant mode of inheritance. The latter
dataset is likely a mixture of LOF and GOF variants.
Again, there was no major departure from the rank-order
of the top five performing algorithms that we observed in
the other datasets (Fig. 3a).

Finally, we explored whether the performance of al-
gorithms was affected by the level of constraint on a
gene, as defined by comparing the expected and ob-
served missense variants in ExAC [30] (missense Z
scores). We obtained variants in genes with high, inter-
mediate, or low levels of constraint by a missense Z
score threshold of > 2.5, 0-2.49, or < 0, respectively. We
did not observe any major changes in the rank order of
the algorithms (Fig. 3a).

Taken together, our analyses suggest that the perform-
ance of the majority of algorithms in current use are un-
likely to be affected significantly as a function of the
nature of a variant or the level of constraint on the gene.
The high-performing algorithms are robust to these
variables and are more likely to give rise to consistent
interpretation across different variant datasets in a variety
of disease mechanism settings.

Evaluation of potential circularity in algorithm analysis

There is significant concern that the result of analyses
such as that described here may arise from circularity in
data used. For example, REVEL, a meta-predictor whose
features include 13 out of the 25 algorithms that we ana-
lyzed [19] performed well in all nine datasets described
above with high sensitivity and specificity (Fig. 3, Additional
file 1: Table S6 and Additional file 2: Figure S2 and S3). It
was possible that the variants we used to assess the
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performance of REVEL and other algorithms described
here were also included in its training sets, which for
REVEL included some of the ClinVar and HGMD variants
available until October 2015. This type of circularity inflates
the performance measures of some algorithms and is re-
ferred to as type I circularity [31]. To examine the possibil-
ity of type 1 circularity inflating the performance of
algorithms that were trained on HGMD and ClinVar vari-
ants, we compared performance of all the algorithms in six
additional datasets:

(A) ClinVar Oct 2015 to Dec2016: this dataset consists
of ClinVar missense variants with one-star or more
review status that were released between October
2015 and December 2016;

(B) ClinVar Sept 2016 to March 2017: this even more
recent set of missense ClinVar variants with one star
or more and absent in ClinVar data releases before
September 2016. The A and B datasets consists of
newer variants that are likely to be absent in the
training sets of algorithms that were developed
earlier. In addition, the newer ClinVar variants are
also more likely to have been classified using
ACMG/AMP 2015 guidelines, which recommends
only “supporting” weight for in silico evidence
towards pathogenicity classification. Thus, it is likely
that the clinical laboratory primarily relied on
independent clinical and genetic data to come to the
final variant assertion;

(C) predictSNPselected [31] is a benchmark dataset that
does not contain the CADD training data;

(D)REVEL test set excludes the variants in HGMD and
ClinVar that were used for training REVEL [19];

(E)and (F) Minus MetaSVMLR trainset: we removed all
the variants that were used in training the
metapredictors MetaSVM and MetaLR [20] from
our ClinVar variant set. These datasets consisted of
variants designated > 1-star (E) or > 2-star (F) review
status in ClinVar.

The resulting predictions of these datasets which re-
moved variants used in training different algorithms did
not demonstrate a major change in the rank order of the
top five algorithms that exhibited an AUC>0.9 with
REVEL performing the best in these datasets (Fig. 3b,
Additional file 2: Figure S2). We next tested if the top
performing algorithms suffered from type 2 circularity
[31], which has been described as a caveat introduced
due to the reliance of an algorithm’s performance on the
distribution of pathogenic or benign variants in a pro-
tein. Thus, in a variant dataset where there are proteins
with only pathogenic variants or only benign variants
(unbalanced dataset) some algorithms tend to perform
better than in a dataset that have equal number of
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pathogenic and benign variants per gene (perfectly bal-
anced), even if this is not what is biologically present. To
this end, we compared performance on an unbalanced
dataset (Varibenchselected [31]) and a balanced dataset
which includes equal number of pathogenic and benign
variants per protein in ClinVar (see “Methods”). Consist-
ent with earlier results [31], we found that FATHMM
[32] is particularly sensitive to this type of circularity. In
other words, there is a drop in performance of
FATHMM in analysis of a dataset that is perfectly bal-
anced (balanced dataset * in Additional file 2: Figure
S3). We also detected evidence for potential type 2 cir-
cularity for algorithms such as MetaSVM/LR and
MCAP (balanced vs varibench for MetaSVM, MetaLR,
and MCAP, bootstrap p value < 0.0001; Additional file 2:
Figure S3). Thus, caution should be used in interpreting
scores using algorithms such as FATHMM as the predic-
tion efficacy is partly dependent on pathogenic and benign
variant distributions in any given gene.

Discussion

The ACMG/AMP guideline for use of in silico algo-
rithms in a clinical setting suggests full concordance
among multiple algorithms for this type of evidence to
be used in missense variant classification without further
clarification of the number or choice of algorithms. As
we have shown, such usage leads to discrepancies arising
mainly because of the lack of specification of the guide-
line. Our review of the literature reveals that the metric
for concordance is not consistent across different labora-
tories. While some studies have adhered to the ACMG/
AMP guidelines for strict concordance, others have used
a majority vote rule and the number of algorithms used
by laboratories also varies widely. It has been reported
that use of the strict ACMG criteria gave rise to a higher
rate of VUS [6] and increased discrepancies among
laboratory classifications [4]. The lack of a standard
guidance for incorporating in silico algorithms could
potentially lead to increased VUS burden and inter-lab
discrepancies. As discussed in the following section, we
identified certain limitations of using the ACMG/AMP
guideline for in silico evidence and provide suggestions
that may help optimize this guideline (Box 1).

In addition, based on review of abstracts in the med-
ical literature, we find that frequently used algorithms
are older and vary in performance. Our analyses identified
several high-performance relatively newer algorithms
which do not appear to have been incorporated into clin-
ical laboratory pipelines such as REVEL, VEST3, etc. Many
of these algorithms are ensemble predictors (e.g. REVEL,
VEST3, MetalLR, MetaSVM, Condel, Mcap, Eigen, and
CADD) incorporating many older algorithms as features.
When tested across 1821 disease genes with variants in
ClinVar, the performances of these algorithms are robust
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Box 1 Suggestions for use of in silico algorithms for
variant interpretation based on the analyses provided
here

® |ncreasing the strength of the ACMG/AMP PP3 evidence code
(currently denoted as supporting) should be considered with
caution unless there is additional gene-specific calibration
data, particularly given the possibility of false concordance.

® Given the availability of many new, higher-performing
algorithms and metapredictors, clinical laboratories should
review and potentially update the algorithms currently in use
in classification pipelines.

® The performance of many algorithms is comparable when
used for disease genes where the underlying mechanism is
LOF or GOF.

e Combinations of metapredictors and algorithms based on
conservation are more likely to yield discordant predictions
and thus not useful in the ACMG/AMP classification of variants
which requires concordance.

e (linicians reviewing diagnostic reports that provide algorithm
results should be aware of the range of algorithm
performance and the problem of false concordance,

particularly for variants otherwise classified as benign.

to technical artifacts, levels of constraint on genes, the
underlying nature of variants, and Mendelian inheritance
pattern. Moreover, we find that performance does not
seem to be affected by restriction to definite pathogenic
and benign categories. Thus, laboratories will potentially
benefit from modifying pre-existing variant interpretation
pipelines that currently use older algorithms.

The ACMG/AMP guideline encourages use of mul-
tiple algorithms. However, as expected, we observed an
increase in the discordant calls as more algorithms are
used to infer variant pathogenicity thus hindering the
use of in silico evidence. An alternative is to use meta-
predictors that in effect combine multiple individual pre-
dictors to generate a score. These metapredictors satisfy
the concept underlying the multiple algorithm criteria.
However, combining metapredictors with their constitu-
ent predictors for variant interpretation may not be ideal
given the duplication of analyses.

In general, we show, using author recommended
thresholds for variant assertion, a substantial likelihood
of discordance, particularly for benign variants. Many of
the algorithms analyzed here were not necessarily de-
signed for clinical classification purposes. They are often
designed to predict whether a missense variant disrupts
a protein domain, inferring that this is damaging to pro-
tein function, and were not intended to be a classifier of
disease causality. However, as demonstrated in our
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review of the medical literature, clinical classification
pipelines often use these damaging or deleterious predic-
tions as a proxy for pathogenicity.

We also found several algorithms exhibit a bias to-
wards calling a variant pathogenic (Additional file 1:
Table S5) leading to incorrect inferences that may lead
to relatively higher concordance for pathogenic vari-
ants. Consistent with this, we identified more false
concordance (in which multiple algorithms made con-
cordant assertions that were opposite to what is re-
ported in ClinVar) for benign variants than pathogenic
variants. Although this could be a result of misclassifi-
cation in ClinVar, we found that a ClinVar designated
expert panel has interpreted some of these benign var-
iants. These false concordances by in silico prediction
are another important source of error for variant in-
terpretation. The problem of false concordance both
increases the VUS rate and highlights why it may be
inappropriate to increase the ACMG/AMP evidence
strength for computational algorithms from “supporting”
to “moderate” or “strong” without some further calibration
of thresholds for the genes under consideration. We inde-
pendently identified combinations of algorithms that tend
to be more concordant via a hierarchical clustering of the
output scores of all algorithms. The clustering pattern
suggested that it is probably best to make inferences separ-
ately for evolutionary conservation algorithms, e.g. GERP
and for metapredictors. Combining them is likely to result
in discordant calls.

Our results analyzing variant data from a large number
of disease genes are not designed to identify a single al-
gorithm for use across all genes or for disease gene dis-
covery. However, the data provided here suggests that
high performing algorithms perform well across many
different gene and mutation mechanism type. In addition,
gene-specific algorithms or gene-specific calibration of
algorithms using well-characterized sets of benign and
pathogenic variants may perform better than the general
approach described here. Several algorithms are very sen-
sitive to the multiple sequence alignment being used [33].
The performance of SIFT and other algorithms within our
analyses and others such as Align-GVGD [34] could po-
tentially be improved if gene-specific curated alignments
are provided to the classification pipeline.

Conclusions

The analyses and the data presented in this article high-
lights problems associated with the strict use of ACMG/
AMP guidelines for in silico algorithm usage. In particular,
our results identify poor concordance among algorithms,
particularly for variants classified as benign by clinical la-
boratories. We highlight the problem that the concordance
rate varies substantially depending on the combination of
algorithms utilized, which contributes to inter-clinical
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laboratory discrepancy in variant assertion. We also iden-
tify a previously unreported source of error in variant inter-
pretation where in silico predictions are opposite to the
evidence provided by other sources (false concordance). Fi-
nally, we identify high-performing algorithm combinations,
many of which are based on recently developed algorithms
and metapredictors that perform well independent of
the underlying disease mechanism. Taken together, this
analysis provides the necessary data and framework for
optimization of the ACMG guidelines and offers methods
to potentially reduce the burden of variants of uncertain
significance in clinical variant interpretation.

Methods

Variant data and annotation

We downloaded the variant_summary.txt files from the
ClinVar ftp site for variants used in the analysis. In this
manuscript, we used the files ftp://ftp.ncbi.nlm.nih.gov/
pub/clinvar//tab_delimited/archive/2016/variant_sum-
mary_2016-09.txtgz and ftp://ftp.ncbinlm.nih.gov/pub/
clinvar//tab_delimited/archive/2016/variant_sum-
mary_2016-12.txt.gz along with their corresponding.xml
files. We removed all variants whose review status were “no
assertion criteria provided.” We also excluded any variants
of uncertain significance from our analysis. We next con-
sidered only the missense variants and filtered out all the
other classes of variants such as frameshift, termination, si-
lent, non-coding, etc. Finally, we collapsed the Likely patho-
genic and Pathogenic variants in one group and Likely
Benign and Benign variants in another group. Thus,
our final data of 14,819 variants had two levels of clin-
ical significance: pathogenic and benign (Additional
data 1, see Availability of data and materials section).

Algorithms and scores

We annotated these variants with 25 algorithm scores
using dbNSFP and authors’ publicly available websites
(Additional file 1: Table S1). To generate binary predic-
tions, we wused the threshold recommended by
dbNSFP3.2 or by the algorithms’ authors. Certain algo-
rithms such as MutationTaster, Mutation Assessor, and
Polyphen have thresholds such that it generates more
than two classes. We collapsed the “probably damaging”
and “possibly damaging” classes variants of Polyphen
into a single “damaging” class. For MutationTaster, we
collapsed the “A” (disease causing automatic) and “D”
(disease causing) classes into a single “damaging” class,
while the “N” (“polymorphism”) or “P” (“polymorphis-
m_automatic”) were collapsed into a single “Tolerated”
class. For MutationAssessor that generates four predic-
tions, the high (“H”) or medium (“M”) categories were
treated as “Damaging” whereas the low (“L”) or neutral
(“N”) categories were treated as “Tolerant.” LRT predic-
tions in dbNSFP gives three classes, namely “Damaging,”
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“Neutral,” and “Unknown”. We treated the “Unknown”
labels as no data available or NA in our analysis. For cer-
tain algorithms such as SIFT, MutationTaster, PROVEAN,
and FATHMM, multiple scores for a given variant corre-
sponding to different transcripts are provided by dbNSFP.
We used the most damaging score predicted by the corre-
sponding algorithm for a given variant in our analyses.
MutationTaster p values were converted as per dbNSFP3.2
for performance analysis. Note that not all algorithms pro-
duced a score for all the variants. These were treated as
NAs in our analyses and are shown by the white color (in-
stead of orange and green) in Fig. 1a and b. The number
of variants included in our analyses are provided in
Additional file 1: Table S1, columns G and H. We did
the concordance analysis presented in Additional file 1:
Table S2 and Additional file 2: Figure S1 with a smaller
subset of the data (n = 8386) without any missing data
(see “Datasets” section for additional information).

Literature search

To identify the frequency of usage of algorithm during
the years 2011-2017, we conducted a literature search
in PubMed (search date 19 January 2017) using Pubme-
dReminer (http://hgserver2.amc.nl/cgi-bin/miner/miner2.-
cgi) using the following search string:

“humans”’[MeSH Terms] AND Medical Genetics|filter]
AND (“SOMATIC’[ALL FIELDS] OR MISSENSE[ALL
FIELDS] OR GERMLINE[ALL FIELDS] OR (“muta-
tion”[MeSH Terms] OR “mutation”[All Fields]) OR
VARIANTI[AIl Fields] OR (“polymorphism, genetic”[-
MeSH Terms] OR (“polymorphism”[All Fields] AND
“genetic’[All Fields]) OR “genetic polymorphism”[All
Fields] OR “polymorphism”[All Fields]) AND (dbnsfp[all
fields] OR POLYPHEN[ALL FIELDS] OR SIFT[ALL
FIELDS] OR VEST3[All Fieldsy OR METASVMI[ALL
FIELDS] OR METALR[ALL FIELDS] OR CONDEL[ALL
FIELDS] OR CADD[ALL FIELDS] OR MUTATIONAS-
SESSOR[ALL FIELDS] OR PROVEAN[ALL FIELDS]
OR FATHMMI[ALL FIELDS] OR EIGEN[ALL FIELDS]
OR MUTPRED[ALL FIELDS] OR “REVEL’[ALL
FIELDS] OR DANNTJAII Fields] OR LRT[All Fields] OR
MUTATIONTASTER[All Fields] OR GERP[AIl Fields]
OR VEST3[AIl Fields] OR Genocanyon[All Fields] OR
fitcons[All Fields] OR phastcons[All Fields] OR phylop[All
Fields]) AND (“2011/01/01”[PDAT] : “2017/12/31”[PDAT])
NOT (18570327[UID] OR 19734154[UID] OR 2005
2762[UID] OR 20642364[UID] OR 23990819[UID] OR
22077404[UID] OR 21763417[UID] OR 21457909[UID]
OR 21480434[UID] OR 21412949[UID] OR 2303
3316[UID] OR 22949387[UID] OR 22689647[UID] OR
22539353[UID] OR 27577208[uid] OR 27468419[uid] OR
27357839[uid] OR 27224906[uid] OR 27148939[uid] OR
27147307[uid] OR 27128317[uid] OR 23620363[UID] OR
23315928[UID] OR 27841654[uid] OR 27721395[uid] OR
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27760515[uid] OR 27564391[uid] OR 27995669[uid] OR
24487276[UID] OR 24205039[UID] OR 25073475[UID]
OR 25684150[UID] OR 26555599[uid] OR 27776117[UID]
OR 26426897[uid] OR 26332131[uid] OR 27666373[UID]
OR 26982818[uid] OR 26892727[uid] OR 26885647 [uid]

OR 26866982[uid] OR 26727659[uid] OR 26681807 [uid]
OR 26633127[uid] OR 26677587[uid] OR 26504140[uid]
OR 26269570[uid] OR 26015273[uid] OR 24675868[uid]
OR 24648498[uid] OR 24651380[uid] OR 24453961 [uid]
OR 24451234[uid] OR 24338390[uid] OR 24332798[uid]
OR 25979475[uid] OR 25967940[uid] OR 25851949[uid]
OR 25599402[uid] OR 25587040[uid] OR 25557438[uid]
OR 25552646[uid] OR 25535243[uid] OR 25519157[uid]
OR 25393880[uid] OR 23020801[uid] OR 22937107[uid]
OR 22747632[uid] OR 22322200[uid] OR 22261837[uid]
OR 22110703[uid] OR 22192860[uid] OR 21925936[uid]
OR 21919745[uid] OR 21814563[uid] OR 25117149[uid]
OR 24980617[uid] OR 24718290[uid] OR 24194902[uid]
OR 23954162[uid] OR 23935863[uid] OR 23819846[uid]
OR 23843252[uid] OR 23836555[uid] OR 23462317[uid]
OR 23424143[uid] OR 23357174[uid] OR 21685056[uid]
OR 21520341[uid] OR 20866645[uid] OR 20689580[uid]
OR 20625116[uid] OR 20084173[uid] OR 19602639[uid]
OR 19105187[uid] OR 18990770[uid] OR 18654622[uid]
OR 18325082[uid] OR 18384978[uid] OR 18195713[uid]
OR 18186470[uid] OR 18179889[uid] OR 18005451 [uid]
OR 17989069[uid] OR 17537827[uid] OR 27058395[uid]
OR 26567478[uid] OR 26095143[uid] OR 22997091 [uid]
OR 22038522[uid] OR 20660939[uid] OR 20224765[uid]

OR 19217021[uid] OR 18361419[uid] OR 18210157 [uid]
OR 17349045[uid] OR “REVIEW”[PUBLICATION TYPE]
OR “REVIEW LITERATURE AS TOPIC’[MESH TERMS)]
OR REVEL[AU] OR DANNJ[AU] OR 26566084[uid] OR
26328548[uid] OR 26054510[uid] OR 24369116[uid] OR
23824587[uid] OR 22974711[uid] OR 20717976[uid] OR
20613780[uid] OR 18797516[uid 23223146[uid] OR
26025364[uid] OR 26961892[uid 26098940[uid] OR
25878120[uid] OR 25340732[uid 24740809[uid] OR
24442417[uid] OR 24266904 uid 24065196[uid] OR
id 23148107[uid] OR
d 21107268[uid] OR
d 18615156[uid] OR

[

[

[

[

[

24037343[uid] OR 23571404[ui [

[

[
18161052[uid] OR

[

[

[

[

[

[

[

[

[uid] O
[ [uid] O
[ [uid]
( [uid]
[ [uid]
[ [uid]
[ [uid]
21827660[uid] OR 21536091 [uid]
19648217[uid] OR 19116934[uid]
18463975[uid] OR 18252211 [uid]
24482837[uid] OR 23274505[uid]
22912676[uid] OR 21575667 [uid]
19562469[uid] OR 19444471[uid]
19142206[uid] OR 19138047[uid]
18602337[uid] OR 18552399[uid]
18357615[uid] OR 18203168[uid]
17456336[uid] OR 17431481 [uid]
17375033[uid] OR 17375033[uid]
28093075[uid])

Briefly, we restricted our analysis to the medical genet-
ics literature and excluded reviews and technical papers

19786005[uid] OR
19255159[uid] OR
18991109[uid] OR
18541031[uid] OR
17722232[uid] OR
17375033[uid] OR

OR
OR
OR
OR
OR
OR
OR
OR
OR 22940547[uid] OR
OR
OR
OR
OR
OR
OR
OR 17375033[uid] OR
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reporting discovery and comparative analysis of algo-
rithms as defined by the above search term. We obtained
507 of articles that mentioned an algorithm in the title
or abstract. The number of articles per algorithm term
was used as a proxy for the usage of algorithms used in
our analysis. Note that there could be a bias towards
groups that use the algorithms names in the title or ab-
stract, likely due to the importance of reaching the conclu-
sion in a paper, and may not necessarily reflect routine use.

Concordance analysis

To determine concordance among algorithms, we ob-
tained the publicly available thresholds (Additional file 1:
Table S1) to define a dataset of pathogenic and benign
prediction for each variant. We next generated all pos-
sible pairwise combinations of algorithms and deter-
mined the proportion of variants for which they agree
with each other with a dataset with as well as without
any missing values. Next, we also generated all possible
combinations of algorithms with three, four, or five
members and determined the concordance with ClinVar
assertions for each of these pairs. We also determined
the fraction of variants for which algorithms in each
combination was concordant but the assertion was op-
posite to that designated in ClinVar. We refer to these
instances as false concordances. A list of such combina-
tions and their true and false concordances are provided
in Additional data 2-6.

Clustering

The scores for 25 algorithms for each of the 14,819 vari-
ants were used to cluster the algorithms using the
pvclust package in the R programming environment. We
identified the most confident clusters by using 50,000
bootstrap replicates of the data, Euclidean distance as a
measure of similarity, and ward’s D2 method of hierarch-
ical clustering as implemented in the pvclust function
[35]. We called clusters as stable if they had a 0.99 or
above probability of having the same members in the
bootstrap replications. The final rendering of the plot was
done using the dendextend [36] package in R.

Performance analysis

We compared the performance of each of the algorithms
on all datasets separately by estimating the AUC of a re-
ceiver operator characteristic (ROC) curve and its 99%
confidence interval using the OptimalCutpoints library
in R. We estimated significant differences between any
two AUCs by using 10,000 stratified bootstrap replicates
of the datasets in question (where each replicate con-
tained the same number of benign and controls than in
the original sample), calculating AUC for each replicate
for each and then testing for the statistical significance
as implemented in the library pROC in R. We also
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estimated the sensitivity, specificity, positive and nega-
tive predictive values using cut-offs estimated from the
ROC curve for the three datasets using the caret library
in R (as indicated in Additional file 1: Table S6).

Datasets

All the data are available as additional data files or are
available from the respective authors. We provide brief
descriptions of the datasets that we used below.

ClinVar one star: 14,819 ClinVar variants (7346 benign
and 7473 pathogenic variants) that are assigned one star
or above (meaning at least one laboratory [primarily
clinical laboratories] have provided their rationale for
variant assertion).

ClinVar 2 star: 2966 (1914 benign and 1052 patho-
genic) ClinVar variants with two-star status or above.
These variants have concordant assertions from at least
two independent laboratories.

ClinVar Oct 2015 to December 2016: this dataset con-
tains 6949 (4093 benign and 2856 pathogenic) variants in
ClinVar that were obtained from the variant_summary.txt
file released in December 2016 after removing the variants
that were present in the October 2015 data release.

ClinVar Sept 2016 to March 2017: this is a set of 3792
benign and 1310 pathogenic missense variants with one
star or above ClinVar review status. These were obtained
by filtering out the variants in the variant_summary.txt
file in ClinVar from September 2016 from the variant_-
summary.txt files from March 2017 in ClinVar.

Oncogene variants: this dataset consists of 87 benign
and 321 pathogenic variants in oncogenes as defined by
genes having a high oncogene score and a low TSG
score as described in [29].

TSG variants: this dataset consists of 502 benign and
532 pathogenic variants in TSGs as defined by genes
having a high TSG score and a low oncogene score as
described in [29].

Dominant: this dataset contains variants in genes that
were associated with dominant mode of inheritance as
determined by both [37] and [38]. There were 480 be-
nign and 1591 pathogenic variants in this dataset.

Recessive: this dataset contains variants in genes that
were associated with recessive mode of inheritance as
determined by both [37] and [38]. There were 1169 be-
nign and 1429 pathogenic variants in this dataset.

REVEL testset: this is the test dataset that contained
ClinVar variants (Test Data 2) as described in [19].

MetaSVM/LR testset: this dataset consisted of 12,496
(6275 benign and 6221 pathogenic) ClinVar variants (with
one or more review status in ClinVar) which did not include
the variants used in the training sets of MetaSVM/LR.

predictSNPdsel: this is a benchmark dataset as de-
scribed in [31]. It does not contain CADD training data.
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Varibenchselected: this is a highly unbalanced dataset
as described in [31]. According to the authors, more
than 98% of all proteins in this dataset contain variants
that are either “pathogenic” or “neutral.”

Balanced dataset: this dataset contained 4192 variants
in ClinVar (one star or above status) with each gene hav-
ing the same number of benign and pathogenic variants.

ClinVar complete: a set of 8386 variants (2555 benign
and 5831 pathogenic) for which 18 algorithms (as shown
in Fig. 1) produced a prediction for all the variants.

Exclude LP and LB: a set of 7766 variants (4473 be-
nign and 3293 pathogenic) which were asserted “Patho-
genic” and “Benign” in the ClinVar September 2016 data
release.

Additional files

Additional file 1: Table S1. Description of algorithms used in the
analyses. Table S2. Concordance rate of different combination of
algorithms with dataset without missing data. Table S3. Number of
variants and their review statuses for which majority of algorithm
assertion was opposite to that in ClinVar. Table S4. Concordance among
different combination of algorithms. Note that as MetaSYM and MetalR
are very similar and uses the same training set we omitted combinations
that included both of these algorithms. Table S5. Percentage of
damaging/tolerant call by each algorithm. Table S6. Sensitivity,
specificity, positive predictive value (PPV), negative predictive value (NPV),
and a cutoff estimated from the ROC curve of the indicated datasets.
(XLSX 1124 kb)

Additional file 2: Figure S1. Concordance among predictions of 18
algorithms for 8386 variants in ClinVar for which predictions were
available from all 18 algorithms. Figure S2. Variability in performance of
algorithms shown in each panel across all analyzed datasets. Figure S3.

Performance analysis of algorithms for the indicated datasets. (PPTX 87 kb)
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