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Abstract

A major goal of metagenomics is to identify and study the entire collection of microbial species in a set of targeted
samples. We describe a statistical metagenomic algorithm that simultaneously identifies microbial species and
estimates their abundances without using reference genomes. As a trade-off, we require multiple metagenomic
samples, usually >10 samples, to get highly accurate binning results. Compared to reference-free methods based
primarily on k-mer distributions or coverage information, the proposed approach achieves a higher species binning
accuracy and is particularly powerful when sequencing coverage is low. We demonstrated the performance of this
new method through both simulation and real metagenomic studies. The MetaGen software is available at https://

github.com/BioAlgs/MetaGen.
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Background

Due to the rapid advances of high-throughput sequenc-
ing technologies, metagenomics, which investigates the
genetic contents of the entire collection of microbial
species in a set of environmental samples, is becoming
a major tool for studying microbial ecology, evolution,
and diversity, as well as linking microbial features to the
surrounding environment or human health [1-3].

In the past decade, many methods have been proposed
for estimating microbial compositions from metagenomic
sequencing data, with a majority focused on targeted
sequencing data that provide information only on a few
selected genes, such as the 16S rRNA gene [4]. Because
the targeted approach requires the sequencing of only a
limited number of genes instead of hundreds of microbial
genomes, it is cheap and computationally efficient. The
trade-offs are that it can reach only a fairly high taxonomic
rank, i.e, it has a relatively low resolution in differentiating
distinct species, and that it cannot provide information
regarding other important genomic components. More-
over, statistical estimation based on targeted sequencing
data can be biased because the polymerase chain reaction
primers used for amplifying the targeted genes, such as
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the 16S rRNA gene, have different levels of sensitivity in
different species [5].

Because of the drastic cost reduction in next-generation
sequencing technologies and the disadvantages of
targeted-gene-based approaches, genome-wide shotgun
sequencing has become the dominant technique in
metagenomic studies. The genomic fragments obtained
from metagenomic samples are binned into different
species or taxonomical bins either according to the frag-
ments’ similarities to some known reference genomes
or according to the sequence composition similarities
(e.g., similarities between k-mer distributions [6] or
oligonucleotide frequencies [7]). This class of approaches
is referred to as binning methods. Reference-based
binning methods such as MEGAN [8], MetaPhyler [9],
Kraken [10], and CLARK [11] require us to know the
reference genomes of the interested microbial species,
which can be a serious limitation. In contrast, the k-
mer or the oligonucleotide-frequency-based methods
are reference-free. However, the binning accuracy of
k-mer-based method can be significantly compromised
because the k-mer distributions estimated from short
contigs (e.g., <10kb) can be far from their corresponding
whole-genome k-mer distributions. Meanwhile, the effec-
tiveness of k-mer-based methods is also diminished when
the microbial community under consideration contains
organisms with moderate to high sequence similarities.
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To improve the k-mer-based approaches, coverage-
based methods such as CONCOCT [12], MaxBin [13],
MetaBAT [14], Groopm [15], and VizBin [16], have been
developed to integrate the coverage information (i.e., the
average number of short reads covering each base pair of
a contig after alignment) with the sequence composition
information. Although integrating coverage information
can significantly improve the binning accuracy, how
to balance the k-mer information with the coverage
information is by no means a banal development. Our
simulation studies suggest that most of the existing
coverage-based methods still fail in distinguishing genet-
ically similar species. Moreover, the coverage estimate is
biased when a species does not have adequate coverage or
when the sequencing bias is high.

In this article, we propose a reference-free and
distribution-free binning method, MetaGen, which makes
use of the relative abundance information from multi-
ple samples to cluster contigs into different species bins
and relies on the Bayesian information criterion (BIC) to
determine the number of species in the samples. Since
MetaGen uses solely the cross-sample abundance patterns
for binning, we recommend that the number of samples
in consideration should be larger than ten. Compared
to existing unsupervised binning methods, MetaGen not
only clusters short contigs accurately for samples with low
coverage but also has the ability to distinguish species
with high sequence similarities. In addition, MetaGen can
estimate the relative abundance of cultured and uncul-
tured species simultaneously, which provides a way to
study distributional changes in microbial colonies dynam-
ically and spatially. Moreover, MetaGen is not susceptible
to sequencing biases, which is an important advantage
compared with many existing methods. MetaGen is com-
putationally efficient and can easily handle large data sets
with more than 500, 000 contigs.

Results

Multi-sample reference-free binning: an overview

We consider metagenomic sequencing data consisting of
short reads from the genomes of the organisms in the
samples. The first step in almost all analysis methods
is to connect overlapping short reads from the pooled
sample into longer sequences, termed contigs. The k-mer-
based reference-free methods proceed to bin (i.e., cluster)
these contigs, regarding them as coming from the same
or similar species, according to similarities among the k-
mer distributions of these contigs. Our proposed method,
MetaGen, however, uses the relative abundance informa-
tion of the contigs across multiple samples to cluster them.
Thus, whereas the k-mer-based methods need to assume
that contigs derived from the same species have similar k-
mer distributions, MetaGen assumes that abundances of
different species vary across multiple samples.
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Since each contig is composed of many short reads from
all samples, we define each contig’s sample profile as the
vector of percentages of short reads mapped from differ-
ent samples. As the genome of a species can be thought
of as the longest possible contig, we refer to the similarly
defined short-read percentage vector as the species’ sam-
ple profile. In theory, a contig’s sample profile should be
the same as the sample profile of the species that contains
the contig (if we assume that the contig is long enough
for a unique mapping). Thus, if two contigs have simi-
lar sample profiles, they are likely derived from the same
genome. MetaGen models the mapped short-read counts
of each contig by a mixture of multinomial distributions,
with each of its mixture components representing a dis-
tinct species. The limitation of MetaGen is that if two
species have nearly proportional abundances in all the
samples, their corresponding contigs will tend to have
highly correlated sample profiles, which makes it difficult
for MetaGen to differentiate the two species. As shown
by our simulation studies, however, this difficulty can be
alleviated by increasing the sequencing depth.

Statistical deconvolution of metagenomic samples

As explained previously, if two contigs have very sim-
ilar sample profiles, they are likely part of the same
species’ genome. Let us assume that N contigs were
obtained from P metagenomic samples, with a total of
K species involved. The extracted read counts mapping
matrix (RCMM) has N rows and P columns, with its
(i, ))th entry recording the read count from the jth sam-
ple mapped on to the ith contig, as shown in step C
of Fig. 1. Thus, each row of RCMM is proportional
to the sample profile of a contig. A direct cluster-
ing of the rows of RCMM provides information about
the number of species and their distributions in the

samples.

Let X;, i = 1,...,N, denote the row vectors of
the RCMM, each of length P, and let Z; take values
in {1,...,K}, indicating from which species contig i is

derived. We assume that the Z;’s are independent, and
P(Z; = k) = my, with the probability vector 1 =
(1,...,7k). Furthermore, we assume that given the
species label Z;, X; follows a multinomial distribution:

i xil xip (1)

Pr(X,':xi|Z,'=k)= ) 'dkl "'ﬂkP’

xi1!. .. Xip

where a = (agy,...,arp), Zle axi = 1, is the sample
profile of the kth species, and n; = Zle x; is the total
number of mapped reads on the ith contig. Let A denote
the K x P sample profile matrix constructed by stacking
up the ai’s, and let & = (xr, A). Treating Z; as missing data,
we have the complete-data likelihood function as
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Fig. 1 MetaGen pipeline. a Sequencing the DNA of P metagenomic samples. b Pooled assembly for multiple samples. € Constructing the RCMM.
d Clustering the contigs and estimating the sample profile by the EM algorithm. EM expectation-maximization, RCMM read counts mapping matrix
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where
where 1(-) is an indicator function. The maximum like- © o -
lihood estimate of 6 can be obtained by the expectation- A Ay - Ap
maximization (EM) algorithm [17], which iterates the Tk = [ K (0 (% a(t)xip]'
following two steps: =7 % e Tip

E-step: Calculate Q(0|0®), the expectation of the
complete-data log-likelihood function based on the M-step: Find 6 that maximizes the function Q (9|9(t)).
parameter fixed at 6®: This leads to
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Initialization and final clustering

Although each EM iteration increases the observed-data
likelihood function, the algorithm is not guaranteed to
converge to the global maximum. We, thus, employed
the following initialization strategy. We first select the
10-30% contigs with the largest number of mapped
reads and cluster the selected contigs into K species
using hierarchical clustering with their pairwise distance
defined by

p
Zj:1xlix2j

P 2P .2
21 %y

j=1%1j
The class mean of species k is then used as the starting

values a](;)), j = 1,...,P. With the maximum likelihood

d(x1,xp) =1—

estimate 6 obtained by the EM algorithm, we assign each
X; to the species with the highest posterior probability, i.e.,
we set z; = argming gy, i =1,...,N.

Determining the number of species in the samples

Since the number of species is generally unknown in most
applications, we employed BIC [18, 19] to select the num-
ber of species. The BIC score for our model with K species
is defined as

BIC(K) = —210gL(é; X1,...,XN) + (KP + K) log(N).

(5)

We determine the number of species K by minimizing
this score, i.e.,

K= argmin BIC(K). (6)

In practice, we gradually increase the number of species
and stop when the BIC score begins to increase. Our
simulation studies showed that the criterion worked satis-
factorily in accurately determining the number of species
in the studies.

Comparison with coverage-based metagenomic binning
methods

There are two types of information contained in metage-
nomic data: the sequence content information and the
sequence quantity information (i.e., the numbers of
mapped reads of constructed contigs). The sequence con-
tent information has been extensively used in existing
metagenomic binning methods, whereas the sequence
quantity information is much less used. A few exceptions
(such as CONCOCT, MaxBin, and MetaBAT) bin con-
tigs together if their sequencing coverages (the average
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number of reads that can be aligned to a reference base)
are similar. These methods intrinsically assume that no
fragment of any involved genome in the sample has posi-
tional bias. They work well for GC-neutral or GC-rich
species, in which the regional GC bias is not a seri-
ous issue. As shown in [20-22], however, the sequencing
coverage can be highly variable along the genome, espe-
cially for species with a low GC content. For example,
it was shown in [21] that Beta vulgaris BAC ZR-47B15
has nearly 7 times more coverage in GC-rich regions
than in GC-poor regions. Consequently, binning contigs
based on their coverage similarities is highly susceptible
to sequencing bias. In contrast, MetaGen is less suscep-
tible to sequencing bias since it bins contigs based on
the ratio of the mapped-read counts (i.e., the sample pro-
file). Sequencing biases do not affect the sample profile
because these biases are the same across samples and,
thus, can be canceled out. In other words, two contigs
from the same species can still be binned together even if
their observed coverage is very different due to positional
biases.

Another unique feature of MetaGen is that it does
not use the sequence (content) information in binning,
because the information gain is offset by undesirable
sequencing biases and high computational costs, espe-
cially when there are short contigs produced from data
with relatively low sequencing coverages. As reviewed
previously, short contigs are more susceptible to posi-
tional and sequencing biases. As shown in our simulation
studies, for contigs shorter than 5000 bps, including the
sequence information did not increase the binning accu-
racy, but greatly increased the computational complexity.
Another reason for not using the sequence informa-
tion in MetaGen is that features summarized from the
sequence information and those from sequencing cov-
erages are usually at different scales. An ad hoc com-
bination of the two types of information can make the
computation unstable, since one type may completely
dominate the other. A potential remedy is to weigh
the sequence features and sequencing coverage informa-
tion properly so that the contribution from each source
is on the same scale [14]. However, choosing a data-
driven weight significantly increases the computational
burden without bringing much improvement, most of
the time.

Finally, MetaGen directly models short-read counts
rather than their transformations as proposed in some
recent papers. Thus, it does not need to add deliber-
ately a small pseudo-count to zero coverage values when
calculating their logarithmic transformations as sug-
gested in CONCOCT. Moreover, MetaGen avoids using
inappropriate Gaussian distributions for non-negative
zero-inflated observations as in MetaBAT, which can be
important especially for low-coverage data.
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Simulation studies

To investigate how the binning accuracy was affected
by other parameters, such as the sequencing depth, the
sample size (the number of samples), and the number
of species, we conducted extensive simulations to com-
pare MetaGen with three state-of-the-art reference-free
binning methods: CONCOCT [12], MaxBin [13], and
MetaBAT [14], and one reference-based method, CLARK
[11]. The names of the species (or strains) used for all
the setups are given in Additional file 1: Tables S1-S3.
All the algorithms compared here were implemented on a
computer configured with 2x Intel Xeon E5-2670 and 8 x
32 GB RAM. Under all the simulation setups, MetaGen is
at least 10 times faster than other reference-free binning
methods (Additional file 1: Figure S1).

How binning accuracy is affected by sequencing depth

First, we examined three sequencing depths for the pooled
sample: 80x (1x per sample), 120x (1.5x per sam-
ple), and 160x (2x per sample). Short reads from 100
species mixed in a randomly generated proportional dis-
tribution were independently simulated for each of the
80 samples. Because all the methods except MetaGen
can be significantly impaired for contigs shorter than
1000 bps, we used only the subset of contigs with a length
longer than 1000 bps for CONCOCT, MetaGen, MaxBin,
and CLARK. For MetaBAT, we used contigs longer than
1500 bps, which is the default minimum length for con-
tigs that can be used in MetaBAT. As shown in Fig. 2,
MetaGen performed well at all sequence depths by all
three measures: precision, recall, and the adjusted rand
index (ARI; a combination of the precision and recall mea-
surements), especially for data with very low sequencing
depth. For example, for 1x per sample, MetaGen achieved
ARI of 0.88, whereas CONCOCT, MaxBin, and MetaBat
had ARI of only 0.59, 0.14, and 0.66, respectively.
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It is clear that CLARK outperformed almost all the
reference-free methods, especially when the sequence
depth is low, because we give a significant advantage to
CLARK by assuming that all the reference genomes are
known (unrealistic, though). It is also shown in Fig. 2
that the benefit of knowing the reference genome is not
so significant when the sequence depth is high enough
(say, 1.5x per sample). In fact, the binning accuracy for
CLARK is worse than for MetaGen by a tiny margin at
2x per sample due to the alignment error generated by
quickly approximating the similarities between contigs
and the reference genomes using CLARK. The accuracy
of reference-based binning methods can be improved by
using BLAST, but the computational cost would be intol-
erably high.

How binning accuracy is affected by sample size

In this experiment, we let the sample size vary from 5 to
80 for 100 species with the pooled sequencing depth at
120x. We followed the same rule as used in the first exper-
iment to generate each metagenomic sample and select
subsets of contigs. Note that the per sample sequenc-
ing depth in this experiment decreased as we increased
the sample size. Since the pooled sequencing depth was
fixed, a contig’s coverage in a single sample decreased with
the increase in the sample size. As shown in Fig. 3, the
binning accuracy decreased for all the existing coverage-
based binning methods because the approximate dis-
tribution of the log-transformation of the sequencing
coverage, which was used to bin contigs, performs
badly if the per sample coverage is low (near zero, for
example).

However, increasing the sample size is a blessing for
MetaGen, as the larger the sample size, the higher the
discrimination power of the ratio and the higher the bin-
ning specificity. As shown in our simulation studies, the
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precision increased from 0.93 to 0.99 as we increased the
sample size, which in turn led to the increases in ARI.

How binning accuracy is affected by number of species
Here we increased the number of species from 50 to 100
and 150, with the pooled sequencing depth fixed at 120x
and the sample size fixed at 80. Again, due to the fixed
pooled sequencing depth, contigs tend to be shorter for a
larger number of species. Thus, increasing the number of
species can lead to a higher binning error rate for all meth-
ods except MetaGen, because all other methods use k-mer
distribution similarities for binning and consequently suf-
fer from high binning errors, especially for contigs from
genetically similar species.

Compared to all the methods that use sequencing
information, MetaGen uses only the abundance variation
across samples and is consequently less susceptible to the

lengths of contigs and more robust for data with a large
number of species. As illustrated in Fig. 4, the binning
accuracy of MetaGen did not change significantly as we
increased the number of species.

How binning accuracy is affected by sequence similarity
Because MetaGen does not use the sequence infor-
mation, the binning accuracy is not significantly
affected when some of the species have highly sim-
ilar sequences. However, MetaGen requires that the
distribution of species in different samples be distin-
guishable. For example, as shown in Fig. 5, Cupriavidus
metallidurans CH34 (green) and Ralstonia eutropha
JMP134 (white), two species with highly similar
sequences, are successfully separated by MetaGen but
mistakenly binned together in MaxBin, CONCOCT, and
MetaBAT.
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Fig. 4 a Adjusted rand index, b recall, and ¢ precision of CLARK, MetaGen, MaxBin, CONCOCT, and MetaBAT evaluated under different numbers of
species for 120x sequencing depth and 80 samples
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Strain-level profiling

We studied the performance of MetaGen in distinguish-
ing microbial strains using a mock data set with 57
Escherichia coli strains and 91 plasmids. The data set
we generated using MetaSim contains 40 metagenomic
samples, each with 2 million paired-end reads. Meta-
Gen outperformed other reference-free binning meth-
ods we considered including CONCOCT, MetaBat, and
MaxBin, as well as the reference-based method, CLARK,
in strain-level discrimination. More specifically, the ARI
for MetaGen was 0.50, which is significantly higher than
that for CONCOCT (0.16). CLARK assigned all the con-
tigs to one bin because the lowest taxonomy rank that
CLARK can reach is at the species level. MetaBat and
MaxBin also failed in strain-level profiling by binning
all 57 E. coli strains into one bin (MetaBat) or two
bins (MaxBin). The comparison results are summarized
in Table 1.

More importantly, we found that MetaGen can also
be applied to strain-level profiling, a promising and bur-
geoning area that is attracting a significant amount of
attention. Unlike the reference-based strain-level profil-
ing tools [23-25], which classify strains based on their
sequence similarity to a strain-level reference genome,
MetaGen can provide a fairly accurate strain-level pro-
file without using reference genomes. Meanwhile, com-
pared to the recent reference-free strain-profiling tools,
ConStrains [26] and WG-FAST [27], which depend on
single-nucleotide polymorphism to recover the strain
profiles, MetaGen uses the sample profile to profile
different strains and it requires a lower sequencing
depth. In the data simulated under the same settings
as [26], we found that MetaGen outperformed Con-
Strains in modified Jenson—Shannon divergence, a mea-
sure proposed in [26] to justify the profiling error.
The modified Jenson-Shannon divergence was 0.04 for
MetaGen and 0.26 for ConStrains. We did not com-
pare MetaGen with ConStrains in distinguishing the
57 E. coli strains and 91 plasmids because ConStrains
requires 10x coverage in at least one sample. This
requirement was not satisfied by the 57 E. coli strains
mock data set, which had only about 1.5x average
coverage.

Table 1 Adjusted rand index, precision, and recall of CLARK,

MetaGen, MaxBin, CONCOCT, and MetaBAT evaluated on the
simulated metagenomic community with 57 Escherichia coli

strains
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Binning results for a complex community

To investigate the effectiveness of MetaGen in analyz-
ing complex metagenomic communities with a limited
number of samples, we simulated ten metagenomic sam-
ples, each with 545 genomes and 439 plasmids based on
the most abundant species identified by CLARK in the
269 gut metagenomic samples from [28, 29]. The relative
abundance of each species in the ten samples was gen-
erated by the CLARK-estimated relative abundance from
ten randomly selected samples in [28, 29] to mimic the
real relative abundance. Summarized in Table 2 are the
ARIs for MetaGen, CONCOCT, MaxBin, MetaBat, and
CLARK. MetaGen achieved a higher binning accuracy
compared to all the reference-free binning methods in
comparison, but it had a lower accuracy compared to the
reference-based method, CLARK.

Reference-free estimation of relative abundances

MetaGen provided an estimate of the relative abundance
of the microbial species in each sample without utilizing
any reference information. Compared to the reference-
based methods, which estimate the relative abundance
of each species using the proportion of reads from its
genome showing up in each sample [30, 31], MetaGen
estimates the relative abundance using the estimated sam-
ple profile for each bin (see Eq. 7 in ‘Methods’). To com-
pare the relative abundance estimated by each tool, we
used Pearson correlation coefficients [32] to character-
ize the overall relationship between the estimated relative
abundance (across different species within one sample)
and the underlying truth. We did the comparisons for all
nine simulated data sets with varying sequencing depths,
numbers of samples, and numbers of species. As shown in
Fig. 6, the accuracy of the relative abundances estimated
by MetaGen is significantly higher than those estimated
by CLARK. Even for data with a very low sequencing
depth (1x per sample), MetaGen demonstrated a high
accuracy with an average correlation of 0.908 between the
estimated relative abundance and the truth.

Some other factors relevant for estimation accuracy
Some minor but essential issues were also considered in
our simulation. We first compared the binning accuracy of

Table 2 Adjusted rand index, precision, and recall of CLARK,
MetaGen, MaxBin, CONCOCT, and MetaBAT evaluated on the
complex metagenomic community with 545 genomes and 439
plasmids

MetaGen MaxBin CONCOCT MetaBAT CLARK

MetaGen MaxBin CONCOCT MetaBAT CLARK

Adjusted rand index 0.50 0.01 0.16 0.00 0.00
Recall 0.65 0.86 0.80 1.00 1.00
Precision 0.81 0.16 048 0.13 0.12

Adjusted rand index 0.67 0.51 042 0.07 0.86
Recall 0.89 0.73 0.86 0.79 0.96
Precision 0.76 0.65 0.53 040 0.90
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MetaGen to other candidate methods when some species
were missing in certain samples. In this simulation, only
50 or 75 out of 100 species were randomly selected
for each sample. The binning accuracy is plotted in
Additional file 1: Figure S11, indicating that MetaGen was
not affected by missing species.

We then tested how the binning accuracy is affected by
using different genome assemblers, such as MegaHIT [33]
and Ray [34]. Additional file 1: Figure S14 plots the ARI,
recall, and precision of all five binning methods under
consideration for Ray and MegaHIT, respectively. Clearly,
CLARK, MetaGen, and MetaBAT performed marginally
better using Ray while CONCOCT performs marginally
better using MegaHIT. The binning accuracy of MaxBin
was significantly better for MegaHIT compared to Ray.
Compared to the other methods, MetaGen was least
affected by the use of different assemblers.

Metagenomic analysis of inflammatory bowel disease
Inflammatory bowel disease (IBD) is an idiopathic dis-
ease caused by humans’ dysregulated immune responses
to their intestinal microbiota. IBD can cause abdominal
cramps, bloody diarrhea, fever, and weight loss, and may
also increase the risk of colon cancer. Each year, about
600000 Americans suffer from one of the two IBD sub-
types: ulcerative colitis (UC) and Crohn’s disease (CD). It
was recently shown in [35] that IBD is closely related to
aberrant interactions between gut microbial species and
the host’s immune system.

Qin et al. [28] collected gut microbial DNA sam-
ples from 124 European individuals, including 25 IBD
patients. The DNA samples were sequenced using Illu-
mina Genome Analyzer with 576.7 Gb paired-end reads
generated. Using MetaGen, we inferred that at least

2150 clusters/species (see Additional file 1: Figure S24)
were presented in the samples, much more than the
155 species identified in [28] using a reference-based
method. The significant difference between the two
results is mainly caused by the limited availability of ref-
erence bacterial species. In fact, only 6.54% of the total
contigs can find a closely matched reference genome
in the National Center for Biotechnology Information
(NCBI) nucleotide database. The scale of the number
of species predicted by MetaGen is also consistent with
the conjecture made in [28]. For the contigs that can be
mapped to reference genomes, we found that MetaGen
achieved a high binning accuracy with precision 0.937
and recall 0.753. We did not compare our method
to other reference-free binning methods for this study
because the data set was too large for other methods
to obtain results using the computing resources we had
access to.

Figure 7a shows box plots of the number of significant
microbial species (see ‘Methods’ for a definition) found
in each individual in the IBD and control groups, respec-
tively, indicating that the biodiversity of microbiota in IBD
patients is significantly lower than that in individuals in
the control group (p-value = 0.03). This was also observed
in [29] and [36]. By testing the 561 microbial species that
were shared by at least ten individuals, we found that five
species were significantly less common and eight species
were significantly more common in IBD patients with the
false discovery rate controlled at under 5% [37]. Among
the eight species that are more commonly seen in IBD
patients, we found that 13 of 25 contigs in one bin (high-
lighted by the black box in the lower panel of Fig. 7b) could
be mapped to a bacterial strain Bacteroides fragilis HMW
615 with more than 99% identity. Among the 13 contigs,
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six were mapped to Bacteroides fragilis HMW 615 with
100% identity.

Based on large-scale metagenomic data sets, predic-
tive models using machine-learning tools have revealed
good predictive capabilities for different phenotypes,
such as disease state [38], plant productivity [39], and
environmental factors [40]. To investigate whether the
microbial composition estimated by MetaGen can be
used for disease prediction, we built a logistic regres-
sion model with LASSO penalty [41] to classify the IBD
and control subjects using the relative abundance (see
Eq. 7 in ‘Methods’) of the clusters inferred by Meta-
Gen as features. The cross-validation (CV) procedure
was used to assess the classification accuracy. The over-
all prediction power of the logistic regression model is
quite significant, with a tenfold CV misclassification rate
of 0.089 (precision 0.938, recall 0.600, and area under
the curve (AUC) 0.967). The number of misclassifica-
tions for the IBD group was one and for the control
group it was ten. We further zoomed in to investigate
the difference in gut microbiota between two types of

patients, CD and UC, which are not readily separable
using existing medical techniques [42]. Figure 7c shows
the projection of the 25 IBD subjects onto the space
formed by their first and second principal components,
which shows a clear separation between the two IBD
subtypes.

Metagenomic analysis of type 2 diabetes

Type 2 diabetes (T2D) is the most prevalent endocrine
disease. It involves a long-term metabolic disorder influ-
enced by both genetic and environmental factors [43].
Qin et al. [29] sequenced gut microbial DNA samples
from 71 Chinese T2D patients and 74 Chinese individu-
als unaffected by T2D using Illumina Genome Analyzer
and obtained 3.3 million genes based on 378.4 Gb paired-
end reads. They could not obtain taxonomy assignments
and the corresponding microbial distribution estimations
using a reference-based binning method because only
8.89% of the contigs can be mapped to reference genomes.
We re-analyzed this data set using MetaGen and identified
2450 species clusters (see Additional file 1: Figure S25).
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Using Fisher’s exact test with the false discovery rate
controlled at 5%, we found that two clusters were more
abundant in the control group than in the T2D group
(see Additional file 1: Figure $26). The majority of contigs
in one of the clusters can be mapped to the butyrate-
producing bacteria, Roseburia intestinalis, which has been
shown in [44] to have an immuno-metabolic effect and
is, thus, significantly less abundant in T2D patients. This
finding also validates the conjecture made in [29] that
beneficial bacteria are universally lost in the T2D gut.
We also tested to differentiate T2D patients from the
control group by building a classifier using the subjects’
microbial distributions and the LASSO-logistic regression
method used in the previous section. We observed that
the tenfold CV classification error rate was 0.317 (pre-
cision 0.687, recall 0.648, and AUC 0.754). We further
validated the classification accuracy using an independent
data set from [29] with 98 T2D patients and 99 controls,
and obtained a misclassification error of 0.350 (preci-
sion 0.653, recall 0.646, and AUC 0.699), which is highly
significant. Although the prediction accuracy is not yet
ideal, our study of the T2D metagenomic data showed
that an individual’s microbial composition estimated in a
reference-free way can be significantly predictive of the
individual’s disease status.

Metagenomic analysis of obesity

Obesity is a growing epidemic worldwide and has a sig-
nificant negative impact on human health. Obese people
have significantly higher risks for various diseases, such
as high blood pressure, stroke, heart disease, diabetes,
cancer, gallstones, etc. Despite its clinical importance,
the causes of obesity and possible therapeutic options
for curing it remain poorly understood. Recent studies
have found that some bacteria in the human gut can
disrupt the metabolic/energy homeostasis [2, 45], and
the bacteria’s interactions with the host’s genes [46] are
closely associated with the host’s obesity level. It is, thus,
expected that understanding the bacterial compositions
of metagenomic samples from human guts may be key to
understanding obesity.

In [1], DNA samples were extracted from the feces
of 18 human subjects belonging to six families, each of
which includes a pair of twins and their maternal parent.
After pre-processing (see Additional file 1: SI Note), we
obtained 25 383 contigs. For each contig, we searched the
NCBI nucleotide database and used TAXAassign (https://
github.com/umerijaz/TAXAassign) to assign it to a taxo-
nomic group. Only 29% of the contigs could be assigned
at the species level and 54% could be assigned at the phy-
lum level. Roughly 46% of contigs could not be mapped
to any reference genomes even at the phylum level. Thus,
reference-free binning methods are highly desirable for
this data.
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Using MetaGen, we identified 56 bins/species
(Additional file 1: Figure S27) and estimated their relative
abundances across samples. For the contigs that have
species-level reference genomes, we compared MetaGen
with CONCOCT using the reference-based binning
results as a gold standard. We observed that the results
of MetaGen were closer to the reference-based binning
results (with ARI of 0.746) than those of CONCOCT
(with ARI of 0.592). In Fig. 8a, we compared the esti-
mated relative abundances to those published in [2] at
the phylum level. MetaGen can accurately estimate the
relative abundances of the four most enriched phyla:
Firmicutes, Bacteroidetes, Actinobacteria, and Verru-
comicrobia. Figure 8b provides a more detailed relative
abundance estimate at species level, an estimate that
could not be obtained in [2] due to the limitations of the
reference-based binning methods.

Figure 8c shows all pairwise Pearson correlations of the
relative abundance for the 18 individuals. Using hierar-
chical clustering, we obtained two major clusters. Group
I includes three families, in which all the mothers were
obese although the children were either obese or lean. In
contrast, all mothers in group II were overweight. Mem-
bers of one family only were split into the two clusters. The
correlation analysis suggests that the microbial distribu-
tion of the mother is associated with her body mass index
(BMI) status and also plays a key role in shaping up the
microbial distribution of her children. To test the predic-
tive power of the microbial distribution of the identified
species for an individual’s BMI status, we fitted a LASSO-
logistic regression model using the relative abundances as
predictors and the individual’s BMI status as the response.
The leave-one-out CV error rate of the resulting model
was 0.33.

Discussion
We proposed a new method, MetaGen, for estimating
species compositions in multiple metagenomic samples
without any prior knowledge of either reference micro-
bial genomes or the actual microbial distributions of the
samples. MetaGen is, thus, a completely reference-free
metagenomic procedure and is especially useful for ana-
lyzing new and foreign microbial samples. As demon-
strated by our simulation studies, MetaGen can handle
data with fairly low sequencing coverage, which can be
extremely challenging with the currently available meth-
ods for metagenomic analysis. When a reference genome
is available for some of the microbial species, we recom-
mend the use of MetaGen together with reference-based
methods as a safeguard against possible false positives.
As a trade-off for having no reference genomes, Meta-
Gen requires multiple samples (preferably >10) and
imposes a key differential abundance assumption, i.e., the
abundance patterns of microbial species across multiple
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samples should vary appreciably. This assumption is compared to the huge amounts of medical research on
clearly confounded with sequencing depth in the study: human cells, our understanding of the microbial ecosys-
by increasing the sequencing depth, one can recognize tems is very limited: the biodiversity of them is not
more species, as is true for all other available methods.  completely understood, not to mention their interac-
The differential abundance assumption can be satisfied in  tions with the human host. In this paper, we proposed a
most metagenomic studies related to human health, such  reference-free metagenomic binning method, MetaGen,
as the study of microbial distributions in the human gut  which not only identifies bacteria species but also quan-
and the study of human pathogens in a biothreat attack. tifies their distributions. With the growing number of the
When the number of bacterial species is extremely large, metagenomic samples being sequenced, we believe that
many low-abundance species will have low coverage and  our effort can benefit both the computational biologist
cannot be detected. This limitation can be overcome by and the experimental biologist in studying the changes
performing a screening step to trim the contigs with very  of the microbial ecosystems, detecting pathogens and

low coverage. reducing the diagnostic error in microbial-related human
diseases.
Conclusions The MetaGen pipeline is open-source software, and is

Accumulating evidence suggests that the microbial freely available at the URL https://github.com/BioAlgs/
ecosystems play a crucial role in human health. However, = MetaGen.
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Methods

Connection with non-negative matrix factorization

The sample-profile-based binning problem can also be
solved by a non-negative matrix factorization (NMF)
algorithm, of which the EM algorithm can be viewed as
a principled generalization. If the information is strong
enough so that random errors and fluctuations can be
ignored, the (i,j)th entry of RCMM, xy, is just the
theoretical number of reads that are mapped to contig i in
sample j, which should be equal to the number of short
reads that one copy of contig i can produce multiplied by
the number of copies of contig i in the jth sample.

If we assume that the contig is long enough so that it
belongs only to one species, we can rewrite the RCMM
X as the product of a signature matrix M and the total
abundance matrix E, where the (i, k)th entry of M is the
number of reads that a single copy of contig i in species
k can produce (it is zero if the kth species does not con-
tain contig i), and the (k,j)th entry of E represents the
number of species k in sample j. Thus, we can obtain an
estimate of both M and E simultaneously by minimizing
||1X — ME||r, where || - || denotes the Frobenius matrix
norm. Note that if we normalize each row of E to sum
to one, we get the sample profile matrix A4, i.e., E = DA,
where D is a diagonal matrix with d;; indicating the total
number of counts for contig i in the pooled sample. Based
on extensive simulations, we observed that the NMF algo-
rithm and the EM algorithm lead to very similar results
empirically for given K. However, this NMF approach can-
not account for the estimation uncertainty and also does
not provide a principled way to determine the number of
species K.

Normalization to compare microbial distributions across
samples

To compare microbial distributions across samples, we
need to normalize the sample profiles of different species
to control the between-sample library size (sequencing
depth) variation and the genome length variation. Moti-
vated by the definition of RPKM, which has been com-
monly used to normalize RNAseq data across samples and
across genes, we first rescale the number of mapped reads
for species k in sample j, i.e., d; Y (;5,—k) 1i» where n; is
the total number of mapped reads on contig i, by a factor
reflecting sample /s library size, i.e., the total number of
reads 7} in sample j, and by another factor estimating the
genome length of each species, i.e., the sum of the lengths
of all contigs for species k, say L. To set the number in a
comfortable range, we multiply the rescaled number by a
constant 10° and denote it by l;kj:

Ak D (isz—k) Mi

b = 10° x
J L](T}

, 7)
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where a;; and z; are obtained using our algorithm. We

refer to l;kj as the relative abundance of species k in sample
j. To compare the relative abundance in each sample, we
recommend adding an additional step to correct the GC
bias by using GCcorrect (R package) [47]. When a species
has relative abundance l;k;’ >0.1% Zi(:l l;/q, we define the
species to be a significant microbial species for sample ;.
Here, we use 0.1% as a convenient cutoff because the rela-
tive abundances that are lower than 0.1% may suffer from
a much higher estimation error and, thus, be unreliable.

Evaluating the binning results

To evaluate the estimated bins with true taxonomic
groups, we define two groupings, x = (x1,...,%,) and
Yy = (1, - .,¥s), where r and s are the number of clusters
for groupings x and vy, respectively. Then we denote 7;; as
the number of members that belong to both the x; and y;
clusters (overlap). ARI is defined as

£, (7) -
00

where r; = ZJS.ZI n;j is the number of members in x; clus-
ter, ¢; = Z?Zl n;j is the number of members in y; cluster,
and

=)= ()]
E=
N
(2)
is the expected index.
Precision is defined as the clustering accuracy under the
most favorable species label assignment for each cluster.

That is, assuming that grouping y is the true species label,
the precision can be expressed as

ARI = (8)

Yo max(m, - -

N )

On the other hand, recall is defined as how well the best

cluster for each species regroups all the cluster’s contigs.

That is, assuming that grouping y is the true species label,
recall is

.. i) ”is)
Precision = .

Z]S:I max(nyj, . . ., 1)

N

Recall = (10)
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Additional file 1: Supporting Information. Contains all supplementary
figures and supplementary tables. (PDF 1782 kb)
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