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Abstract

Single-cell sequencing enables the inference of tumor phylogenies that provide insights on intra-tumor
heterogeneity and evolutionary trajectories. Recently introduced methods perform this task under the infinite-sites
assumption, violations of which, due to chromosomal deletions and loss of heterozygosity, necessitate the
development of inferencemethods that utilize finite-sites models. We propose a statistical inferencemethod for tumor
phylogenies from noisy single-cell sequencing data under a finite-sites model. The performance of our method on
synthetic and experimental data sets from two colorectal cancer patients to trace evolutionary lineages in primary and
metastatic tumors suggests that employing a finite-sites model leads to improved inference of tumor phylogenies.
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Background
Intra-tumor heterogeneity, which is caused by a combi-
nation of mutation and selection [1–4], poses significant
challenges to the diagnosis and clinical therapy of can-
cer [5–8]. This heterogeneity can be readily eluci-
dated and understood if the evolutionary history of
the tumor cells is known. This knowledge, alas, is
not available, since genomic data is most often col-
lected from one snapshot during the evolution of the
tumor’s constituent cells. Consequently, using compu-
tational methods that reconstruct the tumor phylogeny
from sequence data is the approach of choice. However,
while intra-tumor heterogeneity has been widely studied,
the inference of a tumor’s evolutionary history remains a
daunting task.
Most studies to date have relied on bulk high-

throughput sequencing data, which represents DNA
extracted from a tissue consisting of millions of cells
[9–13]. As a result, the admixture signal obtained from
such data represents an average of all the distinct sub-
populations present in the tumor [14]. This ambiguity
makes it difficult to identify the lineage of the tumor
from the mixture. In such cases, phylogenetic reconstruc-
tion requires a deconvolution of the admixture signal to
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identify the taxa of the tree [15–17]. This type of data
is low resolution and cannot depict the cell-to-cell vari-
ability that is needed for inference of tumor evolution
[14, 18]. Another approach for resolving intra-tumor het-
erogeneity and reconstructing tumor phylogeny is multi-
region sequencing, in which DNA sampled from multiple
spatially separated regions of the tumor are sequenced
[19, 20]. However, this approach is restricted to when
the subpopulations are geographically segregated and it
cannot resolve spatially intermixed heterogeneity [21].

Single-cell DNA sequencing: promises and challenges
With the advent of single-cell DNA sequencing (SCS)
technologies, high-resolution data are becoming available,
which promises to resolve intra-tumor heterogeneity to a
single-cell level [14, 18, 22–25]. These technologies pro-
vide sequencing data from single cells, thus allowing for
the reconstruction of the cell lineage tree. However, the
high error rates associated with SCS data significantly
complicate this task.
The whole-genome amplification (WGA) process, a

crucial step in producing SCS data, introduces differ-
ent types of noise that result in erroneous genotype
inferences. The prominent WGA errors include: allelic
dropout (ADO) errors, false positive errors (FPs), non-
uniform-coverage distribution, and low-coverage regions
[14]. ADO is a prominent error in SCS data and it con-
tributes a considerable number of false negatives (FNs) in
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point mutation data sets. ADO is responsible for falsely
representing the heterozygous genotypes as homozy-
gous ones and the extent of such errors varies from
0.0972 to 0.43 as reported in different SCS-based studies
[22–26]. Even though variant callers have been proposed
for reducing ADO errors [27], the extent of such errors
is still large. Different SCS studies have reported FP rates
varying from 1.2 × 10−6 to 6.7 × 10−5 [22–26], the num-
ber of occurrences of which can essentially exceed the
number of true somatic mutations. Often a consensus-
based approach is taken to reduce the number of FP errors
[26–28], in which, only variants observed in more than
one single cell are considered. The variants observed
in only one single cell are treated as errors and
removed. In doing so, this approach also removes the
true biological variants unique to a cell, whereas sites
of recurrent errors persist. Both ADO and coverage
non-uniformity result in unobserved sites. Often more
than 50% of the genotypes are reported as missing due
to the low quality of SCS data and, thus, no infor-
mation regarding the mutation status of that site is
conveyed [22].
Another source of error in SCS data is cell doublets in

which two or more cells are accidentally isolated instead
of single cells. Cell-doublet error rates vary considerably
depending on the isolation technology. Methods such
as fluorescence-activated cell sorting have reported less
than 1% cell-doublet error rates [29–31], while doublet
rates for methods such as mouth pipetting and micro-
droplet encapsulation technologies range from 1 to 10%
[22, 23, 32].

Existing work
Single-cell-based studies for delineating tumor phylogeny
rely on single-cell somatic single-nucleotide variation
(SNV) profiles, which are confounded by the techni-
cal errors in SCS. Even though such errors prohibit
the use of classic phylogenetic approaches, many studies
have used them. Distance-based methods like UPGMA
and neighbor joining have been used by Yu et al.
[33] and Xu et al.[23], respectively. Eirew et al. [34]
used a popular Bayesian phylogenetic inference tool,
MrBayes [35], for inferring evolutionary history. How-
ever, none of these methods account for the SCS-specific
errors.
BitPhylogeny [36] is a non-parametric Bayesian

approach that uses a tree-structured mixture model
to infer intra-tumor phylogeny. Even though such an
approach is valuable for identifying subclones from
bulk sequencing data, it is not suitable in the context of
present-day single-cell data sets [24, 26, 33, 37], which
do not provide sufficient data for the mixture model to
converge to the target distribution [38]. Furthermore,
BitPhylogeny is a flexible framework that can fit different

data types but does not specifically model single-cell
errors.
SCITE [39] and OncoNEM [38] are two computational

tools that were specifically designed for inferring tumor
evolution from SCS data. SCITE is a Markov chain Monte
Carlo (MCMC) algorithm that allows one to infer a max-
imum likelihood (ML) tree from the imperfect genotype
matrix of SCS. It infers the evolutionary history as a
mutation tree, as proposed by Kim and Simon [40]. A
mutation tree shows the chronological order of the muta-
tions that occur during tumor development. OncoNEM is
a likelihood-basedmethod that employs a heuristic search
algorithm to find the ML clonal tree, a condensed tree
that represents the evolutionary relationship between the
subpopulations in the data. OncoNEM clusters the cells
together into clones and also infers unobserved popu-
lations that can improve the likelihood. Both methods
probabilistically account for technical errors in SCS data
and can also estimate the error rates of SCS data. How-
ever, both SCITE and OncoNEM suffer by making infer-
ences under the infinite-sites assumption, which posits
that each site in the data set mutates at most once dur-
ing the evolutionary history [41] and the taxa form a
perfect phylogeny [42]. This assumption is often violated
in human tumors due to different events such as chro-
mosomal deletions, loss of heterozygosity (LOH), and
convergent evolution [43]. Furthermore, OncoNEM infers
clonal trees where cell-to-cell evolution is not displayed,
and SCITE is concerned with the order of mutation in
the tree but not the lineage of single cells. To the best
of our knowledge, there is no method that infers a phy-
logenetic tree from SCS data under a finite-sites model
of evolution while accounting for the technical errors
in SCS.

SiFit
Here we propose SiFit, a likelihood-based approach for
inferring tumor trees from imperfect SCS genotype data
with potentially missing entries, under a finite-sites model
of evolution. To account for the errors in SCS, SiFit
extends the error model of SCITE and OncoNEM. This
extension accommodates for the possible genotypes that
are excluded by the infinite-sites model. SiFit employs a
finite-sites model of evolution that accounts for the effects
of deletion, LOH, and point mutations on the genomic
sites via transition probabilities between genotype states.
SiFit employs a heuristic search algorithm to find the phy-
logenetic tree that is most likely to produce the observed
SCS data. We evaluate SiFit on a comprehensive set of
simulated data, where it performs superior to the existing
methods in terms of tree reconstruction. The applica-
tion of SiFit to experimental data sets shows how the
infinite-sites assumption is violated in real SCS data and
how SiFit’s reconstructed tumor phylogenies are more
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comprehensive compared to phylogenies reconstructed
under the infinite-sites assumption. SiFit achieves a major
advance in understanding tumor phylogenies from single
cells and is applicable to a wide variety of available SCS
data sets.

Results and discussion
Overview of SiFit
We start with a brief explanation of how SiFit infers a
tumor phylogeny from noisy genotype data obtained from
SCS. The input data consist of the following:

1. An n × m genotype matrix, which contains the
observed genotypes for m single cells at n different
loci. The genotype matrix can be binary or ternary
depending on the data.

2. The FP rate (α) and FN rate (β). These error
parameters can be learned from the data.

SiFit includes (1) a finite-sites model of tumor evolution
and an error model for SCS, based on which the likelihood
score of a candidate phylogenetic tree and error rate can
be quantified and (2) a heuristic algorithm for exploring
the joint space of trees and error rates in search of optimal
parameters.
SiFit outputs a phylogenetic tree describing the evo-

lutionary relationship between the single cells and the
estimated error rates. The single cells are placed at the
leaves of the phylogenetic tree. A more detailed technical
description of SiFit can be found in “Methods” section.

Phylogenetic trees andmodel of tumor evolution
We assume that the observed single cells evolved accord-
ing to an underlying phylogenetic tree. A phylogeny or
phylogenetic tree represents the genealogical relationship
among genes, species, populations, etc. [44]. In the con-
text of a tumor, it is a rooted binary tree that represents
the genealogical relationship among a set of cells. The
sequenced single cells are placed at the leaves of the
phylogenetic tree. We also assume that the cells evolve
according to a finite-sites model along the branches of
the tree.
The n × m true genotype matrix G contains the true

genotypes of m single cells at n different loci. If the data
contain information only about the presence or absence
of a mutation at a locus, the matrix is binary, where
the absence or presence of a mutation is represented
by a 0 or 1 at the entry G(i, j), respectively. Assuming
the cells to be diploid, if the data differentiates between
heterozygous and homozygous mutations, the genotype
matrix is ternary, where a 0, 1, or 2 at entry G(i, j) denotes
a homozygous reference or a heterozygous or homozy-
gous non-reference genotype, respectively. Heterozygous
or homozygous non-reference genotypes represent
mutations. This ternary representation facilitates the use

of a mutation profile from modern variant-calling algo-
rithms (e.g., Monovar [27] and GATK [45]), which report
the mutation status of a sample in terms of genotypes.
To accommodate SCS data, we develop a finite-sites

model of evolution (M) that accounts for the effects
of point mutations, deletions, and LOH on genomic
sites. The finite-sites model of evolution encompasses a
continuous-time Markov chain that assigns a transition
probability for one genotype state changing to another
along a branch of length t. The value of the transi-
tion probabilities depends on the branch length (t) and
the parameters (Mλ) of the model of evolution (see
“Methods” section for details). By assigning a finite proba-
bility for all possible genotype transitions, this finite-sites
model of evolution enables us to account for convergent
evolution or reversal of genotypes that are excluded by
methods that make the infinite-sites assumption (SCITE
and OncoNEM). OncoNEM also assumes only binary
data and does not differentiate between heterozygous
and homozygous mutations. This binarization of data
might result in loss of information for a data set with
ternary genotypes, since heterozygous and homozygous
non-reference genotypes cannot be distinguished when
data is binarized. On the other hand, SCITE assumes that
the observation of a homozygous non-reference genotype
is due to technical errors only. These assumptions follow
from using the infinite-sites model and are not made
by SiFit.
SCITE also removes the mutations that are present in all

cells or in one cell as non-informative in tree reconstruc-
tion. SiFit does not remove such mutations as these can be
informative in the computation of the likelihood under a
finite-sites model of evolution.

Model of single-cell errors
The observed genotype matrix, denoted byD, is an imper-
fect noisy version of the true genotype matrix G. The FP
errors and the FN errors are responsible for adding noise
in the observed genotype matrix. Considering binary
genotype data, FP errors result in observing a 1 with prob-
ability α when the true genotype is 0. Similarly, due to FN
errors, with probability β , we will observe a 0, instead of
a 1. These relationships between the true and observed
genotype matrices are given by

Pr(Di,j|Gi,j) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 − α, if Di,j = 0,Gi,j = 0,
β , if Di,j = 0,Gi,j = 1,
α, if Di,j = 1,Gi,j = 0,
1 − β , if Di,j = 1,Gi,j = 1.

(1)

The error model for ternary data is described in detail
in “Methods” section. The observed genotype matrix can
also have missing data because of the uneven coverage
of SCS. SiFit handles missing data by marginalizing over
possible genotypes (see “Methods” section for details).
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Tree likelihood
A phylogenetic tree, T = (T , t), consists of a tree topology
T and a vector of the branch lengths, t. Assuming the tech-
nical errors to be independent of each other and that sites
evolve independently, the likelihood of a phylogenetic tree
(T ), the error rates (θ = (α,β)), and the parameters of the
model of evolution (Mλ) are given by

L(T , θ ,Mλ) = Pr(D|T , θ ,Mλ) =
n∏

i=1
Pr(Di|T , θ ,Mλ),

(2)

where Di is the observed data at site i. It is a vector with
m values corresponding to m single cells. The likelihood
calculation for a particular site is described in detail in
“Methods” section. The ML estimate is obtained from

(T , θ ,Mλ)ML = argmax
(T ,θ ,Mλ)

Pr(D|T , θ ,Mλ). (3)

Heuristic search algorithm
Our model has three main components: the phylogenetic
tree (T ), the error rates of single-cell data (θ ), and the
parameters of the model of evolution (Mλ). The tree
search space has (2m − 3)!/2m−2(m − 2)! discrete bifur-
cating tree topologies for m cells, and each topology has
a continuous component for branch lengths. The overall
search space also has a continuous component for error
rates and model parameters along with the tree space.
We designed a heuristic search algorithm to explore the
joint search space to infer the ML configuration of phy-
logeny, error rates and evolution model parameters. In the
joint (T , θ ,Mλ) space, we consider three types of moves
to propose a new configuration. In each type of move,
one component is changed. Thus, from a current config-
uration (T , θ ,Mλ), a new configuration of (T ′, θ ,Mλ),
(T , θ ′,Mλ), or (T , θ ,Mλ′) is proposed. The new con-
figuration is heuristically accepted according to a ratio
of likelihood. The search procedure terminates when the
likelihood does not improve or the maximum number of
iterations has been reached.

Performance on simulated data
First, we evaluated the performance of SiFit on exten-
sive simulated data sets. The simulation studies were
aimed at analyzing SiFit’s accuracy in phylogeny inference
under different experimental conditions. We also assessed
SiFit’s ability to estimate the error rates and its robust-
ness against increased error rates. We compared SiFit’s
performance to three other methods. To analyze how the
tree inference process degrades if the inference algorithm
fails to account for the SCS errors, we chose a representa-
tive of the classic phylogeny inference methods as used by
Eirew et al. [34]. Eirew et al. usedMrBayes [35], a Bayesian
phylogenetic inference method, which reports a set of

trees drawn from the posterior distribution. Even though
it was applied on SCS data, this method does not account
for the errors in that data. The trees inferred from this
method can be directly compared against the true trees.
For MrBayes, we compute the average tree reconstruction
error by averaging over all inferred trees. We also com-
pared against SCITE [39] and OncoNEM [38], methods
that infer tumor trees under the infinite-sites assumption.
SCITE was designed to infer a mutation tree, but it can
also infer a binary leaf-labeled tree, where the cells are the
leaf labels and edges contain mutations. We used SCITE
to infer the binary leaf-labeled tree from simulated data
sets so that they can be directly compared against the
true trees. Since, SCITE is an MCMC-based algorithm,
occasionally it might report more than one optimal tree.
In such cases, we measure the average accuracy over all
the reported trees. OncoNEM infers a clonal tree, which
cannot be directly compared against the simulated trees.
OncoNEM first infers a cell lineage tree and then converts
it to a clonal tree by clustering nodes. The cell lineage tree
inferred by OncoNEM is a different representation of the
clonal tree. We convert the cell lineage tree inferred from
OncoNEM to an equivalent phylogenetic tree (potentially
non-binary) by projecting the internal nodes to leaves (for
details see “Methods” section), enabling us to compare
OncoNEM results against true trees.
We use the tree reconstruction error for the perfor-

mance metric. This measures the distance of the inferred
tree from the true tree. The distance between two binary
trees is measured in terms of the Robinson–Foulds (RF)
distance [46], which counts the number of non-trivial
bipartitions that are present in the inferred or the true tree
but not in both trees. We normalize this count using the
total number of bipartitions in the two trees. The output
of SiFit, SCITE, and the Bayesian phylogenetic inference
algorithm (MrBayes) is compared against the true tree in
terms of the RF distance. The tree inferred by OncoNEM
might be non-binary, so for OncoNEM trees, we sepa-
rately computed the FP and FN distances between the true
tree and the inferred tree. For binary trees with the same
leaf set, the FP and FN distances are equal. For a non-
binary tree, the FP and FN distances could differ from
each other. “Methods” section gives the details of the tree
reconstruction error metric for comparing trees.

Accuracy of phylogeny inference
To analyze the accuracy of SiFit’s tree inference, we sim-
ulated three sets of single-cell data with varying levels of
doublet noise: (1) data sets without any doublet (δ = 0),
(2) data sets with 5% doublet rate (δ = 0.05), and (3)
data sets with 10% doublet rate (δ = 0.1). For each set-
ting, we simulated random binary phylogenetic trees for
a varying number of leaves (single cells). The number of
cells, i.e., leaves in the trees, m, was varied as m = 50,
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m = 100, and m = 200. The number of sites, n, was
varied as n = 200, n = 400, and n = 600. For each
combination of δ, n, and m, we generated ten data sets
that were simulated from ten random trees. At the root
of the tree, all sites have a homozygous reference geno-
type. The sequences are evolved along the branches of the
tree starting from the root. In each branch of the tree, we
simulate four types of events that can alter the genotype
of a site: a new mutation, a deletion, LOH, and a recur-
rent point mutation (see “Methods” section for details).
After evolving, the leaves have genotype sequences with
true mutations. m genotype sequences corresponding to
m single cells constitute the true genotype matrix. Errors
are introduced into the true genotype matrix to simulate
single-cell errors. For data sets with doublets, doublets are
formed by merging the genotypes of two single cells (see
“Methods” section) with probability δ. The FN rate for cell
c, βc, is sampled from a normal distribution with mean
βmean = 0.2 and standard deviation βsd = βmean/10.
FNs are introduced into the genotype matrix with prob-
ability βc for cell c. We introduced FPs into the genotype
matrix with error rate α = 0.01 by converting homozy-
gous reference genotypes to heterozygous genotypes with
probability α. It is important to note that here the FP
rate, α, is by definition different from the false discovery
rate (FDR) reported in single-cell-based studies such as
[22, 24, 26]. α here indicates the fraction of non-mutant
sites that are reported as mutant in the observed genotype
matrix, whereas the FDR reported in the aforementioned
studies refers to the number of FP errors per sequenced
base pair. For exome-sequencing studies, even a very small
FDR (∼10−5) can lead to a large number of FP variants
in the observed genotype matrix, making α much higher
than the reported FDR. After adding noise, the imperfect
genotype matrices were used as input to SiFit for learning
the ML tree.
SiFit’s tree inference accuracy was compared against

three other methods. The same imperfect genotype
matrix was used as input to SiFit and SCITE. For
OncoNEM and MrBayes, the genotype matrices were
binarized by converting the heterozygous and homozy-
gous non-reference genotypes to 1, i.e., the presence of
a mutation. The comparison is shown in Fig. 1, which
shows the tree reconstruction error. For each value of n,
the mean error metric over ten data sets is plotted along
with the standard deviation as the error bar. For data
sets without doublets, SiFit substantially outperforms the
other three methods for all values ofm and n. The perfor-
mance of each algorithm except for OncoNEM improves
as the value of n increases. The behavior of OncoNEM
is different. For m = 100, its accuracy decreases for
n = 600 compared to n = 400. This might be because
OncoNEM was developed for clonal tree inference and
the effect of an additional number of sites cannot be

observed in the equivalent phylogenetic tree unless they
(the additional sites) are different across the clones. For
data sets with a higher number of sites (n = 600),
SiFit was able to find either the true tree topology or
a near-perfect tree topology for most of the data sets,
demonstrating its ability to infer the correct trees given
enough data.
For the data sets with doublets, we measured the

tree reconstruction error in two ways: (1) doublets are
removed from both the true tree and inferred tree and
then the RF distance is calculated and (2) the RF dis-
tance is calculated between the true tree and inferred tree
without any distinction of doublets. Since, doublets are a
hybrid of two cells that belong to two places in the tree,
measuring the tree reconstruction error as in (1) ensures
that position of all the other cells except the doublets are
properly inferred, whereas (2) measures the overall tree
reconstruction error. Figure 1 compares the algorithms in
terms of tree reconstruction error as described in (1). SiFit
outperforms the other three methods for all values of δ,
m, and n. The performance of SCITE and MrBayes is sub-
stantially affected by the presence of doublets, specifically
for the data sets with a smaller number of mutations. In
comparison, SiFit’s performance is much more robust in
the presence of doublets while recovering the positions of
the non-doublets in the tree. Even in terms of the overall
tree reconstruction error (measured as described in (2)),
SiFit performs better than the other algorithms for all sim-
ulation settings corresponding to different values of δ, n,
andm (Additional file 1: Figure S1).

Inference withmissing data
Due to uneven coverage and amplification bias, current
SCS data sets are challenged by missing data points where
genotype states are unobserved. To investigate how miss-
ing data affect phylogeny reconstruction, we performed
additional simulation experiments. For m = 100 and
n = {200, 400, 600}, we generated data sets using the same
error rates as before. For each combination of δ, n, andm,
we generated ten data sets, for each of which, two other
data sets with missing data of {10%, 25%} were generated.
To generate the data sets with missing data, the genotype
information of sites was removed with probability 0.1, and
0.25 for missing data of {10%, 25%}, respectively. SiFit’s
results were compared against SCITE and OncoNEM.
The results are shown in Fig. 2. For each value of δ, as the
missing data rate increases from 0 to 25%, for each of the
competing methods, we observe a steady increase in the
tree reconstruction error.
For data sets without doublets (δ = 0), irrespective of

the percentage of missing data, SiFit performs substan-
tially better than SCITE and OncoNEM. SiFit’s likelihood
calculation treats each missing data point as contributing
amarginal probability of 1, effectivelymaking it equivalent
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Fig. 1 Performance comparison for data sets with a varying number of cells. SiFit’s tree reconstruction accuracy is compared against that of SCITE,
OncoNEM, and MrBayes. The y-axis denotes the tree reconstruction error, which measures the distance of the inferred tree from the ground truth.
Three points for n = 200, n = 400, and n = 600 are plotted on the x-axis. In each case, the mean tree reconstruction error over ten data sets is
plotted. The vertical error bar indicates the standard deviation of the tree reconstruction error over ten data sets. a Performance comparison for data
sets with 50 cells and δ = 0. b Performance comparison for data sets with 100 cells and δ = 0. c Performance comparison for data sets with 200
cells and δ = 0. d Performance comparison for data sets with 50 cells and δ = 0.05. e Performance comparison for data sets with 100 cells and
δ = 0.05. f Performance comparison for data sets with 200 cells and δ = 0.05. g Performance comparison for data sets with 50 cells and δ = 0.1. h
Performance comparison for data sets with 100 cells and δ = 0.1. i Performance comparison for data sets with 200 cells and δ = 0.1. For d–i, the
tree reconstruction error is measured without considering the doublets in both true and inferred trees. FN false negative, FP false positive

to reducing the number of sites n. For the data sets with
doublets, we measured the tree reconstruction error in
two ways as described in the previous section. SiFit out-
performs both SCITE and OncoNEM irrespective of the
way the tree reconstruction error was measured (Fig. 2
and Additional file 1: Figure S2).

Robustness to increasing error rates
ADO is the major source of error in SCS data resulting in
FNs [14]. To test the robustness of SiFit to an increase in
FN rate β , we simulated data sets with increased FN rates.
The number of cells m was set to 100 and the number of
sites n was set to 400. The mean FN rate βmean was varied
from 0.2 to 0.4 in steps of 0.1, i.e., βmean ∈ {0.2, 0.3, 0.4}.
The FN rate of cell c, βc, was sampled from a normal dis-
tribution as described in the previous experiment. The

FP rate was set to α = 0.01. With these settings, for
each value of βmean ∈ {0.2, 0.3, 0.4}, ten data sets were
simulated for phylogeny reconstruction.
The performance of SiFit was compared against SCITE

and OncoNEM. For different settings of FN rates, SiFit
consistently performs better than SCITE and OncoNEM
by achieving the lowest tree reconstruction error (Fig. 3).
For SCITE and SiFit, with the increase in the FN rate,
the tree inference error increases. For OncoNEM, the tree
reconstruction error first increases and then decreases.
The rate of increase in tree reconstruction error for SiFit
is also much lower compared to that of SCITE. This
indicates SiFit’s higher robustness against amplification
errors compared to SCITE. OncoNEM’s tree reconstruc-
tion error is higher than those of SCITE and SiFit for all
values of the FN rate. For OncoNEM, binarization of the
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Fig. 2 Performance comparison on data sets with missing data. SiFit’s tree reconstruction accuracy is compared against that of SCITE and OncoNEM
on data sets with missing data. The y-axis denotes the tree reconstruction error, which measures the distance of the inferred tree from the ground
truth. Three points for n = 200, n = 400, and n = 600 are plotted on the x-axis. In each case, the mean tree reconstruction error over ten data sets is
plotted. The vertical error bar indicates the standard deviation of the tree reconstruction error over ten data sets. a Comparison for data sets without
any missing data and δ = 0. b Comparison for data sets with 10% missing data and δ = 0. c Comparison for data sets with 25% missing data and
δ = 0. d Comparison for data sets with without any missing data and δ = 0.05. e Comparison for data sets with 10% missing data and δ = 0.05. f
Comparison for data sets with 25% missing data and δ = 0.05. g Comparison for data sets without any missing data and δ = 0.1. h Comparison for
data sets with 10% missing data and δ = 0.1. i Comparison for data sets with 25% missing data and δ = 0.1. For d–i, the tree reconstruction error is
measured without considering the doublets in both the true and inferred trees. FN false negative, FP false positive

data leads to loss of information and it employs a grid
search to learn the parameters before learning the optimal
tree. This divisive sequential approach of learning may
lead to a suboptimal solution if the initial solution gets
stuck in local optima.

Estimation of error rates
In addition to the phylogenetic tree, SiFit also learns the
error parameters from the data. To examine SiFit’s capa-
bility to estimate the FN rate from the data, we simulated
30 data sets from 30 random binary trees. For these data
sets, the number of cells was set to 100, the number of
sites was set to 400, and the FP rate was set to α = 0.01.
The FN rate β was varied from 0.1 to 0.4. These imperfect
data matrices were given to SiFit for inference of the tree
and FN rate.

SiFit performed very well in estimating FN rate, as
shown in Fig. 4. The ML values of β learned from the data
were highly correlated (0.9843) to the ones that generated
the data. This experiment demonstrates SiFit’s ability to
infer error parameters from data.
SCITE and OncoNEM can also learn the FN rate from

the data. To compare SiFit’s estimate of the error rate
against those of OncoNEM and SCITE, we applied SCITE
andOncoNEM to the same data sets for learning FN rates.
SCITE’s performance (correlation 0.9622) was better than
that of OncoNEM (correlation 0.8766) but SiFit was the
best performer. Specifically, for data sets with a higher
FN rate (>0.2), SiFit’s estimates were much better than
those of SCITE and OncoNEM. This indicates a degree
of robustness of SiFit in the presence of higher error rates
compared to the other methods.
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Fig. 3 Effect of increase in error rates. SiFit’s tree reconstruction accuracy is compared against that of SCITE and OncoNEM for increasing FN rate. The
y-axis denotes the tree reconstruction error, which measures the distance of the inferred tree from the ground truth. Four points corresponding to
FN rate β = {0.2, 0.3, 0.4} are plotted. In each case, the mean tree reconstruction error over ten data sets is plotted. The vertical error bar indicates the
standard deviation of the tree reconstruction error over ten data sets. FN false negative, FP false positive

Fig. 4 Estimation of error rates. The maximum likelihood estimate of the false negative rate is compared against the false negative rate used for
generating the data. The red line represents the perfect estimate (the correlation coefficient is 1). The blue dots represent the estimates by SiFit, the
green dots represent the estimates by SCITE, and the yellow dots correspond to estimates by OncoNEM. ML maximum likelihood
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Run times
To measure the run time of SiFit, we simulated data sets
containing different numbers of cells. The number of cells,
i.e., leaves in the trees, m, was varied as m = 100, m =
200, and m = 500. The number of sites n was varied as
n = 200 and n = 400. The error rates were chosen as
described in the previous experiments. For each combi-
nation of m and n, ten data sets were simulated. For each
of these data sets, SiFit was run for 200,000 iterations in
a node with 24 CPU cores (AMD 2.2 GHz). In each case,
the average run time for 200,000 iterations was recorded
(Additional file 1: Figure S3). For a fixed number of sites
n, with the increase in the number of cells in the tree,
SiFit’s run time increases almost linearly. This behavior is
observed for both n = 200 and n = 400. This indicates
that SiFit is scalable and will adopt well when future exper-
iments generate sequencing data consisting of thousands
of single cells. The theoretical computational complexity
of SiFit is described in “Methods” section.

Inference of tumor phylogeny from experimental SCS data
We applied SiFit to two experimental SCS data sets:
exome sequencing from a non-hereditary colorectal can-
cer patient and high-throughput SCS from a metastatic
colorectal cancer patient. From these data, we inferred
the phylogenetic lineages of the tumor and ordered the
chronology of mutations. These studies used different
SCS methods and had different samples sizes and error
rates. We selected them to show that SiFit is flexible and
can be applied broadly to different single-cell mutation
data sets.

Phylogenetic lineage of adenomatous polyps and colorectal
cancer
SiFit was applied to single-cell exome sequencing data
from a non-hereditary colorectal cancer [37] patient. The
data set consisted of 61 single cells in total, with 35 cells
sampled from colorectal cancer tissue, 13 from an adeno-
matous polyp tissue, and 13 from normal colorectal tissue.
Variant calling resulted in the detection of 77 somatic
SNVs from these 61 cells. In total, approximately 9.4% of
the values weremissing in the data set. The reported geno-
types were binary values, representing the presence or
absence of a mutation at the SNV sites (Additional file 1:
Figure S4a).
To test whether the genotype matrix violates the

infinite-sites assumption, we ran the four-gamete test. The
four-gamete theorem states that an m × n binary matrix
M has an undirected perfect phylogeny if and only if no
pair of columns contain all four binary pairs (0,0; 0,1; 1,0;
and 1,1), where m represents the number of taxa (leaves
of the tree) and n represents genomic sites [47]. The per-
fect phylogeny model conveys the biological feature that
every genomic site mutates at most once in the phylogeny

[47] and that mutations are never lost. The existence of
a perfect phylogeny shows that the data could fit the
infinite-sites model of evolution. A violation of the four-
gamete condition may indicate a potential deviation from
the infinite-sites assumption. However, it is important to
note that for SCS data, there could be more than one
potential event leading to violation of the four-gamete test
(see Additional file 1: Supplementary Note and Additional
file 1: Figures S5 and S6 for more details). The binary
mutation matrix from this colorectal patient violated the
four-gamete test, with 1847 (out of 2926) pairs of SNV
sites that contained all four binary pairs.
The ML tree inferred by SiFit on 77 SNVs is shown in

Fig. 5. The tree shows that the normal cells are placed
very close to the root. In the original study, some of the
adenomatous polyp cells were found to have no somatic
mutations and were speculated to have derived from nor-
mal colorectal cells. In the tree inferred by SiFit, these cells
(ap8–ap13) are accurately placed along with the normal
cells. The original study also reported a set of cells from
the cancer tissue as normal cells because they did not con-
tain any somatic mutations. The tree inferred from SiFit
placed these cells along with the normal cells, represent-
ing a completely independent lineage that likely initiated
from a different originating cell.
We performed k-medoids clustering using the silhou-

ette score (see “Methods” section for details) on the ML
tree-based distance matrix. The cancer cells were clus-
tered into two subpopulations (A and B). The chrono-
logical order of the mutations was inferred based on the
inference of the mutation status of the internal nodes.
We extended the algorithm in [48] for inferring ances-
tral sequences by accounting for single-cell-specific errors
(see “Methods” section for details). This enabled us to find
theML solution for placing the mutations on the branches
of the SiFit tree. Altogether, 53 clonal mutations occurred
in the trunk of the tree, including mutations in LAMA1
(PI3K-Akt signaling pathway) and ADCY3 (FGFR signal-
ing pathway). These clonal mutations are driver events
that likely led to the expansion of subpopulation A. Sub-
population B emerged from subpopulation A by acquiring
additional subclonal mutations in EPHA5, CASQ2, and
SMARCE1. The SiFit tree also shows the evolution of the
adenomatous polyp cells (marked in blue), which evolved
from the normal cells by acquiring mutations in OR1B1
(GPCR signaling pathway),DCDC5, andMLLT1. The ade-
nomatous polyp cells evolved independently and further
accumulated mutations in CSMD1, FBXO15, and TCP11.
The tree inferred by SiFit represented the evolution of
both the adenomatous polyp cells and the colorectal can-
cer cells and identified the order of the mutations that are
associated with different signaling pathways andmay have
played a key role in the development of heterogeneity in
this cancer patient.
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Fig. 5Maximum likelihood phylogenetic tree reconstructed by SiFit for adenomatous polyps and colorectal cancer. The leaves with legend marked
with “n” are normal cells, leaves marked with “ap” are adenomatous polyp cells, and all other leaves are single tumor cells. Mutations are annotated
on the branches of the tree. Important genes reported in the original study are marked in purple
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To compare the results of SiFit with other algorithms,
we also applied SCITE and OncoNEM on this data set.
To enable a direct comparison, SCITE was used to infer a
binary leaf-labeled tree, which is an ML solution with the
single cells placed at the leaves of the tree. SCITE reported
a single ML tree (TSCITE) from this data set (Additional
file 1: Figure S7). We compared the tree inferred by SiFit
(TSiFit) to the tree inferred by SCITE in terms of the
likelihood value. Since the ML tree inferred by SCITE
(TSCITE) does not have branch lengths, we cannot directly
compute the likelihood value of TSCITE using our likeli-
hood function. Instead, we used the likelihood function of
SCITE to compare the two trees. SCITE uses an expected
mutation matrix defined by the mutation tree topology
and sample attachments to compute the likelihood of a
tree. After finding the ML placement of the mutations on
the SiFit tree (TSiFit), we obtained the expected mutation
matrix E, defined by TSiFit and the annotated mutations
on the branches of TSiFit and then calculated its likeli-
hood using Eq. 3 of [39]. This likelihood function of SCITE
gives an edge to SCITE and is disadvantageous for SiFit
because the branch lengths inferred by SiFit are ignored
in this likelihood calculation. TSiFit had a log-likelihood
value of −632.5, which was substantially higher than the
log-likelihood (−785.92) of TSCITE. This higher likelihood
suggests that the tree inferred by SiFit explains the data
better than that of SCITE on this experimental data set.
We used OncoNEM to infer the cell lineage tree

(TOncoNEM) from this data set (Additional file 1: Figure
S8). OncoNEM can also estimate the occurrence of
mutations on the cell lineage tree based on posterior
probability. Since, OncoNEM follows the infinite-sites
assumption, if a cell in the lineage tree contains a muta-
tion, all its descendants should have that mutation. Based
on this principle and OncoNEM’s estimate of the occur-
rence of mutations, we can compute an expected muta-
tion matrix that is defined by TOncoNEM. This enabled
us to use the likelihood function of SCITE to com-
pare TOncoNEM against TSiFit. The log-likelihood value
(−664.79) of TOncoNEM was better than that of TSCITE but
it was worse than that of TSiFit. The higher likelihood of
the tree inferred by SiFit compared to those of OncoNEM
and SCITE suggests that the expected mutation matrix
defined by SiFit’s tree inferred under a finite-sites model
of evolution explains the data better than those of its con-
temporaries inferred under the infinite-sites assumption.

Phylogenetic lineage of ametastatic colorectal cancer patient
Next, we applied SiFit to infer the metastatic lineage of a
colorectal cancer patient with a matched primary tumor
and liver metastasis that was untreated. This data set
consisted of highly-multiplexed SCS data [31] from 178
single cells using a 1000 cancer gene panel. Variant call-
ing resulted in the detection of 16 somatic SNVs from

these 178 cells [49]. The FP rate was estimated to be
1.52% and the FN rate was estimated to be 7.89%. In total,
approximately 6.9% of the values were missing in the data
set. The reported genotypes were binary values, repre-
senting the presence or absence of a mutation at the SNV
sites (Additional file 1: Figure S4b).
Altogether, 104 (out of 120) pairs of SNV sites violated

the four-gamete test, indicating the potential violation of
the infinite-sites assumption.
The ML tree inferred by SiFit from this data set is

shown in Fig. 6. k-medoids clustering using the silhou-
ette score on the ML tree-based distance matrix iden-
tified three subpopulations of somatically mutated cells
along with the population of cells without mutations. The
subpopulation of cells (marked in cyan) without muta-
tions consisted mostly of diploid cells, suggesting they
are normal stromal cells. The first somatic subpopula-
tion (marked in green) consisted of mostly diploid cells.
The second subpopulation (marked in blue) consisted of
mostly primary aneuploid cells and a few diploid cells.
The third subpopulation (marked in red) consisted of
metastatic cells only. The chronological order of themuta-
tions was inferred based on the ML placement of the
mutations on the branches of the tree. Three diploid cells
in the first subpopulation first acquired a heterozygous
nonsense mutation in APC. This mutation was present
in all the descendants (all primary and metastatic tumor
cells), suggesting that this was the first mutation that ini-
tiated the tumor. Subsequently, mutations were acquired
in the KRAS oncogene, the TP53 tumor suppressor gene,
and the CCNE1 oncogene, which led to the expansion
of the primary tumor mass. These primary tumor cells
accumulated seven additional somatic mutations. In the
later stages of the phylogeny, the accumulation of muta-
tions in EYS, ZNF521, and TRRAP marked the point of
metastatic divergence, after which tumor cells dissem-
inated to the liver. Three more mutations occurred in
RBFOX1, GATA1, and MYH9. The phylogeny also indi-
cates potential losses of mutations, including POU2AF1,
which was lost in 17 primary tumor cells, and the muta-
tion in TCF7L2, which was lost in four metastatic tumor
cells, but these losses did not mark any point of diver-
gence, indicating they might be passenger mutations.
We also applied SCITE and OncoNEM on this data set.

SCITE inferred a single binary leaf-labeled tree (TSCITE,
shown in Additional file 1: Figure S9), which is the
ML solution with a log-likelihood score of −387.68. To
compute the likelihood of the tree (TSiFit) inferred by
SiFit using SCITE’s likelihood function, we computed
the expected mutation matrix E defined by TSiFit using
the ML placement of the mutations on its branches.
TSiFit had a higher value of the log-likelihood score
(−201.63). OncoNEM was used to infer a cell lineage
tree (TOncoNEM, shown in Additional file 1: Figure S10)
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Fig. 6Maximum Likelihood phylogenetic tree reconstructed by SiFit for a metastatic colorectal cancer patient. Mutations are annotated on the
branches of the tree. The cancer genes and tumor-suppressor genes are marked in purple

from this data set. We also estimated the occurrence of
mutations onTOncoNEM based on the posterior probability
values. This enabled us to calculate the likelihood of
TOncoNEM through the computation of the expected

mutation defined by TOncoNEM. TOncoNEM had a log-
likelihood value of −349.95, which is worse than that of
TSiFit. The higher likelihood value of TSiFit on this data
set suggests that the tree inferred by SiFit is superior to
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those of SCITE and OncoNEM in terms of explaining
the data.

Conclusions
Tumor phylogenies provide insight into the clonal sub-
structure of tumors and the chronological order of muta-
tions that arose during tumor progression. These lin-
eages have direct applications in clinical oncology, for
both diagnostic applications in measuring the amount of
intra-tumor heterogeneity in tumors and for improving
targeted therapy by helping oncologists identify muta-
tions that are present in the majority of tumor cells. SCS
data provides an unprecedented opportunity to recon-
struct tumor phylogenies at the highest possible resolu-
tion. However, they are challenged by extensive technical
errors that are introduced during genome amplification.
In this paper, we introduced SiFit, a probabilistic method
for recreating the evolutionary histories of tumors under
a finite-sites model of evolution from imperfect mutation
profiles of single cells. This likelihood-based approach
can infer the ML phylogeny that best fits single-cell data
sets with extensive technical noise. SiFit can also esti-
mate the error rates of SCS experiments. SiFit employs a
resilient error model that can account for various techni-
cal artifacts in SCS data, including ADO, FPs, and missing
data. Our model is adaptable and can be easily extended
to include position-specific error rates. SiFit also pro-
vides flexibility in choosing the model of evolution, for
which we developed a finite-sites model of evolution that
accounts for the effects of various events in tumor evo-
lution such as point mutations, deletion, LOH, etc. in
single-cell data sets. SiFit is robust to any variation in
error rates and performs consistently with a varying num-
ber of cells in the data set, making it widely applicable to
SCS data sets that vary in error rates and the number of
cells sequenced.
The main difference between SiFit and existing meth-

ods, such as SCITE [39] and OncoNEM [38], is that SiFit
introduces a finite-sites model of evolution. Both SCITE
and OncoNEMmake the infinite-sites assumption, which
is frequently violated in convergent evolution or reversal
of genotypes, events that occur in human tumors due to
LOH and chromosomal deletions [43]. SiFit also makes
use of high-resolution SCS data by utilizing the single
cells as the taxonomic units of the reconstructed phylo-
genetic tree. On the other hand, SCITE reports a muta-
tion tree in which the lineage of the cells is not shown.
OncoNEM reports a clonal tree, which is a condensed
tree with multiple cells clustered into a clone. This type of
clonal clustering and the use of clones as the taxonomic
units, though useful for finding genealogical relationships
between clones, is low resolution as a clone represents a
consensus of information from multiple single cells. The
utilization of mutation information from each individual

cell makes SiFit’s tree reconstruction method both robust
and high resolution.
SiFit performs accurately, as evident from a compre-

hensive set of simulation studies that takes into account
different aspects of modern SCS data sets by experiment-
ing with a varying number of cells in the data set, a wide
range of error rates, and different fractions of missing
data. The simulation studies also demonstrated that SiFit
substantially outperformed the state-of-the-art methods
and is more robust to technical errors from WGA. We
also applied SiFit to reconstruct the phylogeny for two
experimental SCS tumor data sets from two patients with
colorectal cancer, including one patient with a matched
liver metastasis. SiFit accurately reconstructed the phy-
logenetic lineages of these tumors, and identified points
in which subpopulations diverged from the main tumor
lineages. These trees also provided insight into the order
of mutations and the chronology in which they occurred
during tumor progression.
SiFit’s phylogeny inference can potentially be improved

by incorporating copy-number variations along with
SNVs. Recent studies [50] indicate that copy number fol-
lows a punctuated evolutionary model and is likely to
provide insight into possible LOH events and can facili-
tate tree inference. Such an approach has previously been
used in the context of bulk sequencing data [16] and
can be incorporated for SCS data under a finite-sites
model of evolution. SiFit currently uses fixed error rates
at every site. The error model can be further extended
using position-specific error rates, where sites with lower-
confidence mutations will have higher error rates and
vice versa. The error model will have higher complex-
ity in that situation and systematic model selection has
to be performed. It is important to note that out of the
three different types of events that could hint at a devi-
ation from the infinite-sites assumption, SiFit currently
models events (deletions, LOH, etc.) that affect the same
genomic site more than once and the FP and FN errors
in SCS data. The other potential source, cell doublets, are
not explicitly included in SiFit’s error model. To include
doublets in the error model, it will be necessary to move
beyond the phylogenetic tree to phylogenetic networks, as
doublets are an amalgamation of two separate genotypes
and should be represented by a node of in-degree two.
Another approach might be to treat them as a nuisance
parameter and integrate them out during the likelihood
calculation.
As SCS becomes more high-throughput [31, 51],

enabling hundreds of cells to be analyzed in parallel at
reduced cost and throughput, SiFit is poised to analyze
the resulting large-scale data sets to understand the evolu-
tion of clones during tumor progression. SiFit represents
a major step forward in understanding tumor phylogeny
from SCS data and will have important translational
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applications for improving cancer diagnosis, treatment,
and personalized therapy [14, 52]. Although the current
study focused on cancer, SiFit can potentially also be
applied to single-cell mutation profiles from a wide variety
of fields, including immunology, neurobiology, microbi-
ology, and tissue mosaicism [53]. These applications are
expected to provide new insights into our understanding
of cancer and other human diseases.

Methods
Input data
The input to SiFit is a matrix Dn×m = (Dij) of observed
genotypes, where i ∈ {1, ..., n} denotes the index of
genomic locus, j ∈ {1, ...,m} is the index of the single cell,
and Dij is the observed genotype at the ith site of cell j.
The genotype matrix can be binary or ternary depend-
ing on the representation of the data. For a binary matrix,
Dij ∈ {0, 1,X}, where 0, 1, and X denote the absence
of a mutation, the presence of a mutation, and miss-
ing data, respectively. For a ternary matrix, Dij can take
values from the set {0, 1, 2,X}, where 0 denotes a homozy-
gous reference genotype, 1 and 2 denote heterozygous and
homozygous non-reference genotypes, respectively, and X
denotes missing data.

Model of single-cell errors
FP errors and FN errors are the two different types of noise
that could be present in the genotype matrix. If α is the
FP error rate and β is the FN error rate, then for a ternary
genotype matrix, the relationship between the true and
observed genotype matrices is given by

Pr(Di,j|Gi,j) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − α − αβ

2
, if Di,j = 0,Gi,j = 0,

α, if Di,j = 1,Gi,j = 0,
αβ

2
, if Di,j = 2,Gi,j = 0,

β

2
, if Di,j = 0,Gi,j = 1,

1 − β , if Di,j = 1,Gi,j = 1,
β

2
, if Di,j = 2,Gi,j = 1,

0, if Di,j = 0,Gi,j = 2,
0, if Di,j = 1,Gi,j = 2,
1, if Di,j = 2,Gi,j = 2,

(4)

where Gi,j is the unobserved true genotype at the ith site
of cell j. A true homozygous non-reference genotype (site
with true homozygous mutation) is affected by neither FP
error nor ADO. An FN error can affect the heterozygous
genotype and combined with an FP error, it can also affect
the homozygous reference genotype. FP errors can affect
homozygous reference genotypes.

Single-cell data sets also contain missing data, sites for
which genotype information is missing. In our computa-
tion, we take Pr(Di,j|Gi,j) = 1 whenever Di,j = X. By
doing so, we marginalize the effect of missing data over
three possible true genotypes and this is reflected in the
likelihood computation.

Likelihood of a phylogenetic tree
Phylogenetic tree
We consider that the phylogenetic tree for single cells
is a rooted directed binary tree T = (T , t). It has two
components, a tree topology T and a vector of branch
lengths t. The phylogenetic tree represents the genealog-
ical relationship among a set of single cells. The root of
this tree has homozygous reference genotypes at all sites.
The leaves of the tree represent the observed single cells.
The internal nodes represent ancestral cells that are not
observed in the data. Cells evolve along the branches of
the tree following a model of evolution and the branch
length denotes the expected number of mutations per site.

Model of evolution
The finite-sites model of evolution for SCS data (M)
is modeled using a continuous-time Markov chain that
assigns a probability to each possible transition of the
genotypes. We assume that the genomic sites evolve iden-
tically and independently. Assuming three possible geno-
type states {0, 1, 2} (for ternary data) for a genomic site,
the model of evolution can be represented by a 3 × 3
transition probability matrix. The transition probability
matrix Pt along a branch of length t is computed by
matrix exponentiation of the product of the transition-
rate matrix (Q) of the Markov chain and the branch
length. The entries in the transition-rate matrix denote
the infinitesimal rates (during infinitesimally small time
�t) at which the continuous-time Markov chain moves
between genotype states. We also consider that the time
�t is the smallest unit of time, during which only one
event can occur at a site. Since, we are considering the
somatic mutation sites, the infinitesimal rate for the geno-
type transition 0 → 1 is set to 1. This accounts for the
point mutations. LOH events can result in the genotype
transitions 1 → 0 and 1 → 2 whereas deletions can result
in the genotype transitions 1 → 0, 1 → 2, or 2 → 1.
To compute the infinitesimal rates for these transitions,
we introduce two parameters λd and λl, which account for
the effects of deletions and LOH, respectively. The prod-
uct of the transition-rate matrix and the branch length (t)
is given by

Qt =
⎡

⎢
⎣

−t t 0
(λd+λl)×t

2 −(λd + λl) × t (λd+λl)×t
2

0 λd × t −λd × t

⎤

⎥
⎦ (5)
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In Eq. 5, Qt(i, j) denotes the rate of genotype i changing
to genotype j along a branch of length t, i, j ∈ {0, 1, 2}. λd
and λl constitute the set of parameters (Mλ) of the model
of evolution.
The transition probability matrix, Pt is given by

Pt = exp(Qt). (6)

Pt(i, j) denotes the probability of the transition of geno-
type i to genotype j along a branch of length t. Each entry
of Pt is a function of t, λd , and λl.
For binary genotype states, the product of the

transition-rate matrix and the branch length is given by

Qt =
[

−t t
(λd+λl)×t

2 − (λd+λl)×t
2

]

, (7)

and the transition probability matrix is computed using
Eq. 6.

Likelihood
Since we assume that each site evolves independently and
the technical errors affect each site independently, for the
observed genotype matrix given a phylogenetic tree T ,
error rates θ , and the parameters of themodel of evolution
Mλ, the likelihood is given by

L(T , θ ,Mλ) = Pr(D|T , θ ,Mλ) =
n∏

i=1
Pr(Di|T , θ ,Mλ),

(8)

whereDi is the observed data at site i. This is a vector with
m values corresponding to m single cells. Let γ be the set
of possible genotypes. If v is an internal node of the tree
with children u,w, then let Lvi (g), g ∈ γ denote the partial
conditional likelihood defined by

Lvi (g) = Pr(Dv
i |T , θ ,Mλ, D̂i(v) = g), (9)

whereDv
i is the restriction of dataDi to the descendants of

node v and D̂i(v) is the ancestral genotype for the ith site
at node v. Lvi (g) is the likelihood at site i for the subtree
rooted at node v, given that the genotype at v is g.
The likelihood of the complete observed data Di at the

ith site is given by

Pr(Di|T , θ ,Mλ) = Lri (0), (10)

where r is the root of the tree. Since we consider that the
genotypes at the root are all homozygous reference (0), the
probability Pr(D̂i(r) = 0) equals 1. The partial conditional
likelihood function satisfies the recursive relation

Lvi (g) =
⎡

⎣
∑

h∈γ

Ptvu(g, h)Lui (h)

⎤

⎦

⎡

⎣
∑

h∈γ

Ptvw(g, h)Lwi (h)

⎤

⎦ ,

(11)

for all internal nodes v with children u and w. tvu and
tvw are the branch lengths corresponding to branches that
connect v to u and w, respectively. Ptvu(g, h) and Ptvw(g, h)
are the transition probabilities that are calculated using
Eq. 6 with arguments tvu and tvw, respectively. For a leaf of
the tree that denotes a single cell j, the partial likelihood is
given by

Lji(g) = Pr(Di,j|Gi,j = g),

where Pr(Di,j|Gi,j) is calculated using either Eqs. 2 or 4
depending on the data. The partial likelihood values at
the leaves are computed based on the error rates of the
SCS data.
The log-likelihood for the observed genotype matrix

given a phylogenetic tree T , error rates θ , and model
parametersMλ becomes a summation over n sites:

logL(T , θ ,Mλ) =
n∑

i=1
log Lri (0). (12)

This likelihood computation uses Felsenstein’s pruning
algorithm [54] for calculating the likelihood of a phyloge-
netic tree with the transition probabilities given by Eq. 6.
To calculate the partial likelihoods for leaves, we use the
SCS error model instead of values suggested in [54].

Search algorithm to infer phylogeny
We developed a heuristic search algorithm to explore
stochastically the joint space of phylogenetic trees, error
rates, and evolution model parameters. In the joint
(T , θ ,Mλ) space, we need to consider three different
types of moves to propose a new configuration. In tree-
changing moves, a new phylogenetic tree T ′ is proposed
from current state T . In error-rate-changingmoves, a new
error rate θ ′ is proposed from the current error rate θ . In
parameter-changing modes, a new value of the parameter
Mλ′ is proposed from the current parameter valueMλ. If
the proposed configuration results in a higher likelihood,
it is accepted, otherwise it is rejected.
With a small probability, the proposed configuration is

accepted or rejected based on an acceptance ratio (only for
tree-changing or error-rate-changing moves). The accep-
tance ratio for proposing a new phylogenetic tree is
given by

ρT = min
{
Pr(D|T ′, θ ,Mλ)qT (T |T ′)
Pr(D|T , θ ,Mλ)qT (T ′|T )

, 1
}

, (13)

which involves calculating the ratio of the likelihood of
the new configuration and the current configuration. The
acceptance ratio also requires a proposal ratio, which
is computed based on qT , the proposal distribution for
proposing a new tree. A new error rate θ ′ is accepted with
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the ratio given by

ρθ = min
{
Pr(D|T , θ ′,Mλ)pθ (θ

′)qθ (θ |θ ′)
Pr(D|T , θ ,Mλ)pθ (θ)qθ (θ

′|θ)
, 1

}

, (14)

which takes into account the ratio of the likelihoods of
the new and current configurations, the ratio of the prior
probability of the new and current error rates, and also
a proposal ratio. pθ is the prior distribution of the error
rate and qθ is the proposal distribution for proposing
the new error rate. These steps of the search heuris-
tic are motivated by the Metropolis–Hastings algorithm
[55] for MCMC sampling and they help in exploring the
likelihood space. The inference algorithm is shown in
Algorithm 1.
Tree proposals
To explore the space of trees, we need efficient moves
that can make small and big changes in the tree topol-
ogy. Also, we need moves that change only the branch
lengths instead of changing the topology. To ensure that
our search does not get stuck in a local optimum, we
use a combination of different types of moves. Lakner
et al. [56] described several tree proposal mechanisms
that are effective in Bayesian phylogenetic inference.
Since our goal is to search the tree space effectively,
we can employ the same tree proposals in our search
algorithm. We adopt two different types of the tree pro-
posals described in [56] in our search process: branch
change proposals that alter branch lengths and branch-
rearrangement proposals that alter the tree topology. The
branch-rearrangement proposals can be divided into two
subtypes: the prune and reattach moves and the swapping
moves.
For proposing a new branch length, we draw a sam-

ple u from a uniform distribution on [ 0, 1) and then
get a random number r∗ by applying the transforma-
tion r∗ = eη(u−0.5). The new branch length l∗ is a
product of the current branch length l and r∗. In this
way, we update the branch length of all branches. This
ensures that the branch lengths are locally changed and
the proposal ratio becomes a product

∏
k r∗k , where k

is the total number of branches in the tree. η is a
tuning parameter that is set to the value suggested
in [56].
We consider two types of pruning-regrafting moves,

namely random subtree pruning and regrafting (rSPR) and
extending subtree pruning and regrafting (eSPR), which
were described in [56]. The pruning-regraftingmoves ran-
domly select an interior branch, prune a subtree attached
to that branch, and then reattach the subtree to another
regrafting branch present in the other subtree. For rSPR,
the regrafting branch is chosen randomly. For eSPR, an
extension probability guides the movement of the point of

regrafting across one branch at a time. eSPR favors local
rearrangements more.
We consider three types of swapping moves, namely

stochastic nearest-neighbor interchange (stNNI), random
subtree swapping (rSTS), and extending subtree swapping
(eSTS). stNNI chooses an internal branch as the focal
branch and stochastically swaps the subtrees attached to

Algorithm 1 Algorithm for phylogeny and error rate
inference. D is the observed genotype matrix, θp is the
starting value of the error rates, and Mλ0 is the starting
value of the model parameters. The algorithm runs for
niter iterations. Error-rate-changing moves are proposed
with probability π . Model parameters are updated with
probability pλ. Metropolis–Hastings moves are applied
with probabilitymh.
1: function PhyloTreeSearch(D, θp,Mλ0 , niter, π , pλ ,m,mh)
2: Initialize:

T 0 to a random tree withm leaves
θ0 to θp
M0

λ toMλ0

3: L0 ← Likelihood of
(
T 0, θ0,M0

λ

)

4: Lbest ← L0,T best ← T 0, θbest ← θ0,Mbest
λ ← M0

λ
5: for i = 1, ..., niter do
6: Define T ← T i−1, θ ← θ i−1,Mλ ← Mi−1

λ
7: Sample r ∼ U(0, 1)
8: if r ≤ π then
9: Sample θ ′ ∼ qθ (θ ′|θ), rθ ∼ U(0, 1)
10: if rθ ≤ mh then

11: ρθ ← min
{
Pr(D|T , θ ′ ,Mλ)pθ (θ

′)qθ (θ |θ ′)
Pr(D|T , θ ,Mλ)pθ (θ)qθ (θ ′|θ)

, 1
}

12: accept θ ′ with probability ρθ

13: else
14: if Pr(D|T , θ ′,Mλ) > Pr(D|T , θ ,Mλ) then
15: accept θ ′
16: end if
17: end if
18: θ i ← θ ′ ,T i ← T ,Mi

λ ← Mλ

19: Li ← Likelihood of (T , θ ′,Mλ)
20: else if r ≤ π + pλ then
21: SampleM′

λ ∼ qλ(M′
λ|Mλ)

22: if Pr(D|T , θ ,M′
λ) > Pr(D|T , θ ,Mλ) then

23: acceptM′
λ

24: end if
25: θ i ← θ ,T i ← T ,Mi

λ ← M′
λ

26: Li ← Likelihood of (T , θ ,M′
λ)

27: else
28: Sample T ′ ∼ qT (T ′|T ), rT ∼ U(0, 1)
29: if rT ≤ mh then

30: ρT ← min
{
Pr(D|T ′ , θ ,Mλ)qT (T |T ′)
Pr(D|T , θ ,Mλ)qT (T ′|T )

, 1
}

31: accept T ′ with probability ρT
32: else
33: if Pr(D|T ′ , θ ,Mλ) > Pr(D|T , θ ,Mλ) then
34: accept T ′
35: end if
36: end if
37: θ i ← θ ,T i ← T ′ ,Mi

λ ← Mλ

38: Li ← Likelihood of (T ′ , θ ,Mλ)
39: end if
40: if Li > Lbest then
41: Lbest ← Li ,T best ← T i , θbest ← θ i,Mbest

λ ← Mi
λ

42: end if
43: end for
44: return

(
Lbest,T best, θbest

)

45: end function
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the focal branch. eSTS also involves the swapping of two
subtrees but not necessarily nearest neighbors. The sub-
trees are chosen according to an extension mechanism
like eSPR. For rSTS, two randomly chosen subtrees are
swapped.
At each step of the search algorithm, one of these

six moves is chosen with a fixed probability. The pro-
posal ratio associated with each branch-rearrangement
proposal is described in detail in [56].

Estimation of error rate
During the search process, we also update error rates. The
estimates of error rates that are input to SiFit are used
to design the prior probability p(θ). The error rate being
a probability (value between 0 and 1), we choose a beta
prior. The mean of the prior is estimated from the input
error rate and observed genotype matrix. We choose a
large standard deviation to cover a wide range of values.
We choose a normal distribution as the proposal distribu-
tion for proposing the new error rate. At each generation,
the normal distribution is centered on the current value
of the error rate. A user-specified fixed probability deter-
mines whether, in a particular iteration, a new error rate
will be proposed.

Estimation of parameters of model of evolution
The parameters of the model of evolution, λd and λl, are
also updated during the search process. For each of these
parameters, the next value is proposed from a normal
distribution centered at the current value. The standard
deviation is chosen so that a wide range of values are
covered. These parameters being relative quantities (they
denote the rates of deletion and LOH, respectively, relative
to the rate of point mutations), we choose a beta distri-
bution as their prior. Like proposing new error rates, a
user-specified fixed probability determines whether, in a
particular iteration, a new value of these parameters will
be proposed.

Complexity analysis
In each step of the algorithm, finding the likelihood of the
tree is the most expensive task. For m single cells and n
sites, the likelihood calculation takes O(mk2n), where k
is the maximum number of states per site. For genotype
data, k = 3 and for a binary mutation matrix, k = 2.
The number of iterations used in SiFit is user-defined.

Assuming i to be the number of iterations used for run-
ning SiFit, the overall complexity becomesO(mk2ni).

Tree inference error metric
To measure the accuracy of tree inference, we used a met-
ric that compares the topology of the inferred tree to that
of the true tree and computes a distance between the
two. This metric was proposed for general phylogenetic

trees in [46] and it is based on the symmetric difference
between the bipartitions of the two trees. The topology of
a tree can be represented by the bipartitions present in the
tree. A bipartition of a tree based on an edge gives us two
set of leaves that would be formed by deleting the edge. If
E is the set of edges of T , then the bipartition encoding of
T , denoted by C(T ) = {ξ(e) : e ∈ E}, is the set of biparti-
tions defined by each edge in T . ξ(e) is the bipartition on
the leaf set of T produced by removing the edge e from T .
We consider three distances between two trees.
If Tt is the true tree on a set of single cells S and Ti is

the inferred tree, then the following are the three inference
error metrics:

1. False negative (FN) distance: This counts the edges
in Tt that induce bipartitions that are not present in
C(Ti). This distance is normalized by dividing by the
total number of bipartitions in Tt , i.e.,∣
∣C(Tt) \ C(Ti)

∣
∣/
∣
∣C(Tt)

∣
∣.

2. False positive (FP) distance: This counts the edges in
Ti that induce bipartitions that are not present in
C(Tt). This distance is normalized by dividing by the
total number of bipartitions in Ti, i.e.,∣
∣C(Ti) \ C(Tt)

∣
∣/
∣
∣C(Ti)

∣
∣.

3. Robinson–Foulds (RF) distance: The Robinson–
Foulds distance is the average of the FP and FN
distances. This is the most common error metric.

If the two trees to compare are binary, then we use the
RF distance between them as the error metric. For binary
trees, the FP, FN, and RF distances are equal to each other.
To compare a true binary tree to an inferred non-binary
tree, we compute the FP and FN distances separately.
SiFit, SCITE, and MrBayes output a binary tree that can

be compared against the true tree in terms of RF dis-
tance. For OncoNEM, we consider the cell lineage tree
that it infers, which we convert into an equivalent phy-
logenetic tree by projecting the observed single cells to
leaves (shown in Additional file 1: Figure S11). The equiv-
alent phylogenetic tree might be binary or non-binary and
we compute both the FP and FN distances for it when
comparing to the true tree.

Inference of ancestral sequences and order of mutations
Inferring the chronological order of mutations in the
tumor lineage requires inferring the mutation status of
the internal nodes so that the mutations can be placed
on the branches of the phylogeny. We infer the muta-
tional profiles of the internal nodes using a likelihood-
based approach that finds the most likely mutational
profile for an internal node given the phylogenetic tree
and error rates. We extend the dynamic programming
algorithm for inferring ancestral sequences described in
Pupko et al. [48] to account for the error rates of the
single cells.
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For a single cell c at the leaf of the tree, the partial
likelihood for a genotype g at site i is calculated as

Lc(g) = argmax
h

Ptvc(g, h)Pr(Di,c|Gi,c = h).

The mutation state mc(g) is set to the value of h that
attains the maximum value for partial likelihood. v is the
parent of c and tvc is the branch length connecting v to
c. For a missing data point, Pr(Di,c|Gi,c = h) becomes 1.
For a non-root internal node, u, with children y and z, the
partial likelihood is calculated as

Lu(g) = argmax
h

Ptwu(g, h)Ly(h)Lz(h).

The mutation state mu(g) is set to the value of h that
attains the maximum value. For the root of the tree,
mutation statemr = 0 and the mutation state for an inter-
nal node, u, whose parent w’s mutation state is already
determined as g, is chosen asmu(g).
After inferring the mutational profiles of the internal

nodes, the mutations on a branch can be found by finding
the SNV sites for which the mutational status of the two
nodes at the two ends of the branch differs.

Clustering of cells
To cluster the cells into subpopulations for the tumor data
sets, we used k-medoids clustering with silhouette scores.
A distance matrix was obtained for the cells containing
mutations from the ML tree reconstructed by SiFit, in
which an entry represents the distance between two cells.
The distance between two cells was calculated by sum-
ming the branch lengths on the path that connects the
two cells. k-medoids clustering was performed on the
resulting distance matrix using the clustering library of R
(http://www.r-project.org) and the number of clusters was
varied from 2 to 5. In each case, the average silhouette
score was measured and the number of clusters that max-
imized the silhouette score was reported as the optimal
number of clusters.

Simulation of synthetic data
Evolution of single-cell sequences
To simulate single-cell data sets, first, a random binary
tree is constructed on a leaf set of single cells by a recur-
sive algorithm that randomly divides the set of cells into
two subtrees that are also randomly generated, and then
joins them into a single tree by choosing a root that has
the two subtrees as the left and right children. We spec-
ify the number of sites n in the single-cell genome. The
root node of the phylogeny is populated with a homozy-
gous reference genotype (g = 0) at each site. In each
branch of the tree, a Poisson-distributed number of sites
p is mutated. If t is the branch length, the parameter for
the Poisson distribution is chosen as t × n, so that on
average, a child node in the tree differs from its parent

Table 1 Expected genotype state after combining two
genotypes using the binary operator ⊕
⊕ g = 0 g = 1 g = 2

g = 0 0 1 1

g = 1 1 1 1

g = 2 1 1 2

by the proportion of loci, which is given by the branch
length. When mutating a new site, the genotype changes
from a homozygous reference (g = 0) to heterozygous
(g = 1). Recurrent mutations are introduced with prob-
ability r. If the locus in the node for which a recurrent
mutation happens has a homozygous reference geno-
type (g = 0), then a parallel mutation happens in that
branch, i.e., the genotype changes from a homozygous ref-
erence (g = 0) to heterozygous (g = 1). If the locus
in the node already contains a mutated genotype, then
a back-mutation results in reverting the genotype to the
homozygous reference (g = 0). To simulate LOH events,
the loci with heterozygous (g = 1) genotypes are set to
either homozygous reference (g = 0) or homozygous non-
reference (g = 2) genotypes with probability ω. If LOH
happens at a locus, either of the homozygous genotypes
are chosen with equal probability. A deletion is simulated
with probability d at a branch. A deletion can affect mul-
tiple loci at a time. For a heterozygous site, a deletion can
happen for any of the copies, resulting in either of the
homozygous genotypes (g = 0 or g = 2). A deletion
does not affect the homozygous reference genotypes but
can change the homozygous non-reference genotypes to
a heterozygous genotype. In this way, sites are evolved at
each branch of the tree. At the corner case, when there
is no new locus to mutate at a branch, recurrent muta-
tions are introduced. After considering all the branches of
the tree, we have the single-cell genotypes at the leaves of
the tree.

Simulating doublets
Doublets are events when two cells get trapped in the
same well, resulting in a merger of the genotypes of
the two cells. To model doublets, we need to define
the expected genotype state, which is a combination of
two genotype states. The expected genotype state can be
defined by a binary operator ⊕ whose results for SNV
data are shown in Table 1. δ denotes the fraction of
cells that are doublets. With probability δ, a cell is cho-
sen to be a doublet and its genotype is combined with
that of a randomly sampled co-trapped cell (the geno-
type of which is a copy of that of another cell in the tree)
to form the new genotype as defined by the ⊕ opera-
tor. The pseudocode for simulating doublets is shown in
Algorithm 2.

http://www.r-project.org
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Algorithm 2 Simulating doublets. m is the number of
cells, δ is the doublet rate as a fraction, and D is the
genotype matrix. D−j denotes a matrix consisting of all
columns of D except the jth column. rand(0, 1) is a ran-
dom number between (0,1). For a matrix D, D[ j] is the jth
column of D.
1: function SimulateDoublets(m, δ, D)
2: Ddoublet ← D
3: for j = 1, ...,m do
4: rd ← rand(0, 1)
5: if rd ≤ δ then
6: Sample a cell c with replacement from D−j
7: Ddoublet[ j]← Ddoublet[ j]⊕D−j[ c]
8: end if
9: end for

10: return Ddoublet
11: end function

Additional file

Additional file 1: Supplementary Material. This file contains a
supplementary note and supplementary figures. (PDF 1024 kb)
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