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Abstract

regulatory elements.

Crosslinking immunoprecipitation sequencing (CLIP-seq) technologies have enabled researchers to characterize
transcriptome-wide binding sites of RNA-binding protein (RBP) with high resolution. We apply a soft-clustering
method, RBPgroup, to various CLIP-seq datasets to group together RBPs that specifically bind the same RNA
sites. Such combinatorial clustering of RBPs helps interpret CLIP-seq data and suggests functional RNA
regulatory elements. Furthermore, we validate two RBP—RBP interactions in cell lines. Our approach links
proteins and RNA motifs known to possess similar biochemical and cellular properties and can, when used in
conjunction with additional experimental data, identify high-confidence RBP groups and their associated RNA
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Background

RNA-binding proteins (RBPs) are essential to sustain
fundamental cellular functions, such as splicing, polya-
denylation, transport, translation, and degradation of
RNA transcripts [1, 2]. One study estimated that more
than 1500 different RBPs exist in human [3]. These
RBPs cooperate or compete with each other in binding
their RNA targets [4—6]. Many RBPs are capable of
binding different RNA targets, partially by associating
with different co-factors [7-9]. At the same time, some
consensus RNA sequence motifs are recognized by
homologous RBPs or homologous domains [10]. Thus,
proteins and RNAs appear to interact in a combinatorial
manner [11].

Recently, the advent of crosslinking immunoprecipita-
tion sequencing (CLIP-seq) technologies, which combine
immunoprecipitation with RNA-protein crosslinking
followed by high-throughput sequencing, has enabled
researchers to characterize transcriptome-wide RNA-
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protein binding sites with high resolution in different
mammalian cells [12-14]. The CLIP-seq data of mul-
tiple RNA binding proteins have been curated and
annotated in specific databases, such as CLIPdb,
POSTAR, and STARbase [15-17]. Several significant
studies improved the prediction of individual RBPs’
binding sites by training on CLIP-seq and RNAcompete
datasets [18—20]. Systematic assessment of combinatory
regulation of multiple RBPs would be more beneficial
to derive precious biological information from various
high-throughput CLIP-seq data.

Therefore, we analyzed the CLIP-seq data to group to-
gether RBPs that bind on the same RNA sites, in which
proteins interact with RNAs in a combinatorial manner.
For our classification, we used a soft-clustering method,
non-negative matrix factorization (NMF), which allows
each RBP to be clustered into more than one group, as
it is the case for proteins that participate in multiple
metabolic pathways. Using other RBPs’ binding signals
as background also enables us to identify specific bind-
ing. Through our approach, we defined RNA-protein
binding sites for the targeted RNAs and classified the
corresponding RBPs into groups. Subsequently, we dem-
onstrated that the binding sites we defined from RBP
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groups were supported by other types of biological data,
such as alternative splicing (AS) and RNA degradation
data. Furthermore, we compiled a web-based platform
(http://RNAtarget.ncrnalab.org/RBPgroup) to make the
binding sequences and enriched motifs easily accessible
by the scientific community.

Results

Curation of various CLIP-seq data

We collected 327 CLIP-seq datasets generated from
three technical approaches: PAR-CLIP, HITS-CLIP, and
eCLIP. The binding peaks of PAR-CLIP data were de-
fined by Piranha [21] and PARalyzer [22]; the binding
peaks of HITS-CLIP data were defined by Piranha and
CIMS [23] (see detail in “Methods”). We also down-
loaded the binding peaks of eCLIP data, defined by
CLIPper [24], from the ENCODE data portal (https://
www.encodeproject.org). First, we can see that different
RBPs display a very different number of binding peaks,
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ranging broadly from several thousands, ie. for
HNRNPU and TNRC6A, to tens of thousands, i.e. for
CPSF6 and MOV10 (Fig. 1a, Additional file 1: Figure
Sla). Such broad variance in the number of CLIP-seq
peaks associated to each RBP is probably caused by
many factors, such as differences in biochemical prop-
erties of the corresponding RBPs and in different labs’
experimental protocols. Second, our analysis shows
discrepancies in the number of peaks obtained from
different CLIP technologies and different peak calling
methods (Additional file 1: Figure S1b). We show the
CLIP-seq signal of an example RBP, where the binding
peaks defined by two computational tools (Piranha and
PARalyzer) are very different because they rely on two
experimental features: Piranha defines binding peaks
based on reads abundance, while PARalyzer utilizes the
information of T to C mutation in PAR-CLIP (Fig. 1b,
Additional file 1: Figure S2). Besides, yielding different
number of peaks for each RBP, peak calling software
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also differ in terms of peak width. While Piranha and
CIMS typically yield peaks of fixed width due to com-
putational strategies being used [21, 23] (see detail in
“Methods”), PARalyzer and CLIPper yield peaks of differ-
ent length distributions (10-50 nt long for PARalyzer and
1-90 nt long for CLIPper) (Additional file 1: Figure S3).

In summary, deposited CLIP-seq datasets display sig-
nificant variety probably due to intrinsic biochemical
properties of RBPs, to differences in the experimental
procedures and to the software used to identify RNA-
protein interaction sites. These observations reflect the
need to make CLIP-seq data analysis uniform and compar-
able and to define RNA—protein binding sites confidently
and consistently. In this study, we aim to define a set of
binding sites. We would sacrifice sensitivity and complete-
ness to improve the accuracy of our prediction. Therefore,
we only use peaks identified by multiple methods (e.g.
PARalyzer and Piranha) (see detail in “Methods”).

Clustering RNA-protein binding sites potentially identifies
high-confidence interactions

We reason that a strategy to find high-confidence RNA-
protein interactions in CLIP-seq data could be to iden-
tify RNA sites that are simultaneously associated with
multiple RBPs. If the same RNA site shows CLIP signal
for multiple RBPs that are biologically related, i.e. as part
of the same macromolecular complex or as competitors
on the same metabolic pathway, then such signal should
be considered reliable. Two examples illustrate this
idea. First, FXR1, FXR2, and EWSR1 have physical in-
teractions between each other to form a complex and
bind on the same RNA sites [25, 26]. When we align
the CLIP-seq signals of these three RBPs together, a co-
binding site shared by all three RBPs can be clearly
recognized (site 2 in Fig. 1c), while the other one is
probably ambiguous (site 1 in Fig. 1c). The second ex-
ample consists of proteins NUDT21, CPSF6, and CPSF7,
which usually bind on the same RNA regions for 3'-end
polyadenylation of messenger RNA (mRNA)[27]. How-
ever, the peaks (binding sites defined by peak caller) can-
not always be identified simultaneously from individual
RBPs (sites 1 and 2 in Fig. 1d). Still, a weak binding signal
missed for certain RBPs could be rescued by the strong
signals of other “co-binding” RBPs if a method considers
them together. These examples indicate that analyzing
correlated RNA binding signals of multiple RBPs provides
more information and potentially higher confidence than
analyzing only the binding signal of individual RBPs.

Unifying multiple RBP binding sites and binding affinities
Based on the above observations, we set out to develop
a systematic framework to define high-confidence RNA-
protein binding sites in available CLIP-seq datasets
(Fig. 2). To develop our method, we used 84 raw CLIP-seq
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datasets of 48 human RBPs [15, 16] obtained in HEK293/
HEK293T cells (Fig. 2a, Additional file 1: Table S1).

We first filtered 450 K peaks out of ~4 M total peaks,
retaining those that are reproducibly identified by mul-
tiple peak calling methods (PARalyzer and Piranha)
and that occur in at least two biological replicas
(Fig. 2b, see detail in “Methods”). We then merged
these filtered peaks into a unified set of binding sites
(235 K in total) (Fig. 2c). Among these merged binding
sites, most were 20—60 nt in length, which corresponds
to one- to twofold the length of non-merged binding
peaks (Additional file 1: Figures S3, S4). Only ~10% of
the merged binding sites were longer than 100 nt. We
split these longer sites into 100-nt bins with 50-nt
overlap for the following analyses.

Next, we generated an occupancy profile matrix from
the merged binding sites (Fig. 2d). We used the CLIP-
seq signals normalized by total RNA-seq signals ob-
tained in HEK293 cell line as the values of our matrix
(see detail in “Methods”). We discarded binding sites
with no RNA-seq signals and those associated to only
one RBP. This filtering procedure resulted in 84,222
binding sites used for clustering. The final occupancy
profile matrix V is composed of N rows and M columns,
where N is the number of filtered binding sites (84,222)
and M is the number of RBPs (48).

Cluster RNA-protein binding sites with non-negative
matrix factorization

On this unified occupancy profile matrix V (N x M), we
applied a NMF method [28] (Fig. 2e) to identify groups
of RBPs that bind on the same RNA sites (Fig. 2f).
NMF has been used successfully in several biological
applications [28-33] because of its non-negativity con-
straint and soft-clustering approach. Soft clustering al-
lows one RBP to be clustered into multiple groups,
which is needed in our case because many RBPs play
multiple biological roles by interacting with different
co-factors. As a comparison, we also calculated Spear-
man correlations between RBPs and grouped them
with a hard-clustering hierarchical method. Although a
few RBPs were grouped together as expected (e.g.
IGBF2BP1, 2, and 3), many known complexes were not
clustered well (e.g. HNRNPs) (Fig. 3a, Additional file 1:
Figure S9a).

Decomposing the occupancy profile matrix V (N x M)
using NMF, we derived the coefficient matrix H (R x M)
(Fig. 2e), where R indicates the “rank,” i.e. the number of
RBP groups. The key issue to decompose the occupancy
profile matrix with NMF is to find a reasonable value for
the rank R. We used cophenetic and dispersion correl-
ation coefficients (Fig. 3b) to quantitatively measure the
clustering stability associated with each rank R, based on
a consensus matrix that is defined as the average
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Fig. 2 Integrative analytical pipeline for defining high-confidence RNA sequences/motifs bound by RBP groups. a In total, 84 CLIP-seq (including
PAR-CLIP and HITS-CLIP) datasets of 48 human RBPs from HEK293/HEK293T cell lines were collected. b Different computing methods (e.g. Piranha
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connectivity matrix over multiple factorization runs [33]
(see detail in “Methods”). We selected the local maxima
18 as the potential optimized value for R, from which
we calculated the consensus matrix visualizing the ro-
bustness of our clustering (Fig. 3c). Thus, from the coef-
ficient matrix, we identified R = 18 different RBP groups,
such that in each group all RBPs bind on the same RNA
sites (see detail in “Methods”). Twelve groups include
more than one RBP (Fig. 3d). These RBPs correspond
either to RBPs that compete for the same binding site
on target RNAs or to different subunits of the same
RNA-binding complex.

Moreover, by the basis matrix W (N x R) (Fig. 2e), we
determined the number of all RNA sequences bound by
each RBP group. In this step, other RBPs’ binding signals
are treated as background for each group, which makes
the identified binding sites more specific (see detail in
“Methods”). In total, we identified 28,277 RNA se-
quences out of the ~4 M binding peaks initially identi-
fied in the raw PAR-CLIP datasets (Fig. 2b). Among

these 28,277 RNA sequences, various consensus RNA
motifs emerge and are enriched in each given group
(see details later). An exhaustive compilation of all RBP
groups, RNA sequences, and enriched motifs is hosted
on our web-based platform (http://RNAtarget.ncrnalab.
org/RBPgroup).

RBPs grouped by NMF are supported by other types of
associations

Having established a classification of RBPs by NMF clus-
tering, we proceeded by analyzing the properties of various
RBP groups in detail.

Among the 12 RBP groups that include more than
one RBP, we found that eight groups were enriched
with proteins that are known to interact with each
other physically [34]. For example, the physical interac-
tions of AGO protein and TNRC6A/C, which were
clustered together as group 9, have been validated pre-
viously by affinity capture-Western experiment [35]. In
these eight groups, the frequency by which known
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b Criteria for estimating rank R in NMF. The cophenetic correlation coefficient (CPCC) and dispersion coefficient (DC) quantitatively measure
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100 runs. Each point represents the mean value; up/down whisker represents the max/min value. ¢ The average connectivity matrix over 30
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database. The p value was estimated from 10,000 random RBP sets for each group. Heatmap shows the weights of each RBP in each group,
which were derived from the coefficient matrix. The values of each column are scaled (0 - 1)

interactors fall into the same RBP group is significantly
higher than the expectation from a randomized set of
proteins (Fig. 3d, Additional file 1: Figure S5).

Besides grouping together known physical interactors,
our clustering also groups together proteins that are
known to be co-expressed, proteins that share domain
similarity, proteins that participate in the same meta-
bolic pathway, and proteins whose genes are related
(Additional file 1: Table S2). For instance, group 18
contains IGF2BP family proteins, which share a protein
domain, and group 7 contains C170rf85 and RTCB,
which are related at the genetic interaction level.

Finally, considering that a distinctive feature of our
soft-clustering NMF method is the ability to assign each
RBP to multiple groups if they interact with different
RNA targets, we looked for such “promiscuous” RBPs

in our groups. We identified six RBPs in more than one
group (Fig. 3d), namely AGO4 (in groups 2 and 9),
CPSF2 (in groups 2 and 13), CPSF6 (in group 5, 14, and
15), EWSR1 (in groups 3 and 16), TNRC6A (in groups
2 and 9), and TNRC6C (in groups 2 and 9).

NMF identifies significantly enriched RNA motifs
associated to specific RBP groups

Besides grouping together RBPs that are biologically re-
lated, our NMF clustering pipeline also yields interesting
information about the RNA binding motifs associated to
such RBP groups.

First, the genomic distributions of the binding sites
associated to many RBP groups are, in general, consist-
ent with known functions of the corresponding RBPs
(Fig. 4a, b). For instance, the RNAs associated to RBP
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group 4, which contains RBPs involved in splicing [36],
are enriched in binding sites that are located in intronic
regions. The RNAs associated to Group 5, 6, 13, and
15, which contain RBPs involved in polyadenylation
[27, 37], are mainly located in 3'-UTR and intronic
regions. Consistently, it was reported that widespread
mRNA polyadenylation events could happen in introns,
indicating dynamic interplay between polyadenylation
and splicing [37]. Moreover, the RNAs associated to
groups 9 and 18, which contain RBPs involved in
mRNA degradation, mRNA transport, and translation
[13], are enriched in binding sites that are located at
3’-UTR regions.

Second, we could identify similarities in the sequences
of the binding sites associated to each RBP group. Such
similarities allowed us to derive consensus RNA motifs
that are particularly recurrent (enriched) for each RBP
group (Fig. 4b, Additional file 1: Figure S6, see detail in
“Methods”), in different genomic regions (i.e. 5" UTR, 3’
UTR, CDS, and intron) (Additional file 1: Figure S6a).
We note that the PAR-CLIP data could be biased by U
content. To prevent the nucleotide bias, we extended
the binding sites to upstream and downstream 100 nt
for motif finding. Meanwhile, we used HOMER to
normalize the control (background) to the same nucleo-
tide content as the binding sites’ sequences. Each motif
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enrichment was calculated based on this normalized
background (Additional file 1: Table S5). Some of the re-
current consensus motifs correspond to known protein-
binding RNA motifs (Fig. 4c). For example, consensus
motifs related to RNA polyadenylation, i.e. AAUAAA
(polyadenylation signal [PAS]) and U-/GU- (downstream
sequence element [DSE]), are recurrent among the bind-
ing sites associated to RBP groups 13 and 6, which con-
tain proteins involved in RNA polyadenylation [38], i.e.
cleavage and polyadenylation specificity factors (CPSFs)
and cleavage stimulatory factors (CSTFs), respectively
[39—41]. Moreover, motif UGUA, which is generally lo-
cated upstream of 3'-end RNA cleavage sites [42, 43],
is recurrent among the binding sites associated to RBP
groups 5 and 15, which contain proteins involved in 3'-
end cleavage of RNA transcripts, i.e. simplekin and
cleavage factor Im (CFIm). Remarkably, the enrichment
of these known motifs within the RBP groups identified
by our clustering pipeline is statistically more signifi-
cant than the occurrence of such motifs in the binding
peaks identified from each single RBP (Fig. 4c). We also
tested the enrichments with different thresholds of peak
calling for individual RBPs and our observations were
confirmed (Additional file 1: Figure S6b). We further
compared the enrichment of known motifs in our RBP
group-related RNA sequences with individual RBP-
associated RNA sequences predicted by three published
methods [18-20]. Our results showed substantially
better enrichments than others (Additional file 1: Table
S6). In addition to these known protein-binding motifs,
we are also able to detect novel RBP association with
other consensus motifs. For instance, motif UGUGU is
a cis-regulatory element related to splicing [44] and de-
novo finding detects a very similar motif as the most
recurrent motif among binding sites associated to
group 4 RBPs (binomial test, p value = 1E-28) (Fig. 4d).
Group 4 contains six HNRNP splicing factors, which
exclude exons and create sites of AS by interacting with
silencer sequences [4, 45]. UGUGU occurs in ~30% of
the binding sites associated to group 4, but only in 1-
3% of the binding peaks associated to each single
HNRNP. Such UGUGU motif could not have been pre-
dicted de novo from peak calling of individual HNRNPs
(Fig. 4d). More novel consensus motifs are shown in a
table (Fig. 4b).

All the above results show that the binding sites defined
from our RBP groups are enriched with consensus motifs,
including both known and novel motifs. Such binding re-
dundancy and identification of enriched consensus motifs
within RBP groups suggest that the binding sites filtered
by our pipeline are specific, bona fide, high-confidence
sites by protein interaction. To make these motifs easily
accessed, we organized them in our web-based platform,
available at http://RNAtarget.ncrnalab.org/RBPgroup.
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RNA binding sites associated to RBP groups are
supported by other biological data

Having established that our clustering approach groups
together proteins and RNA sequences that possess re-
lated biological functions, we questioned whether we
could find other supporting evidence and correlations
across our RBP groups or our RNA consensus motifs.

First, we noticed that RBP group 9 includes proteins
AGO1-4 and TNRC6A/C (Fig. 5a), which function as a
complex in miroRNA (miRNA)-mediated decay [46].
Therefore, we analyzed whether RNA binding sites asso-
ciated to RBP group 9 have similar short half-lives. We
downloaded the data of degradation rates (measured as
half-lives time) of human mRNAs in HEK293 cell line
from a previous study (GSE49831) [47]. We defined
genes with half-life > 174 min (80th percentile of all
genes) as long half-life genes, while genes with half-life
<40 min (20th percentile) were defined as short half-life
genes. RNA binding sites co-bound by RBP group 9 are
significantly enriched in short half-life genes (Fisher’s
exact test, p value = 5.14E-11) (Fig. 5b). Such enrichment
is higher among RNA binding sites associated to RBP
group 9 than among the CLIP-seq peaks associated to
each individual RBP (i.e. AGO1-4 or TNRC6A/C)
(Fig. 5b). We also compared the enrichments under dif-
ferent thresholds of peak-calling for individual RBPs and
the trend remained (Additional file 1: Figure S7a). As an
example, we show a clear binding site associated to
group 9 RBPs in MARCH9’s RNA, which has a short
half-life (34 min) (Fig. 5c). Instead, RNA IPOS8, which
has a binding site only for AGO2, but not for other
RBPs of group 9, is much more stable, with a half-life of
255 min (Fig. 5d). While AGOs and TNRCs thus likely
bind on MARCHY to degrade this RNA, AGO2 is un-
likely to degrade IPO8’s RNA. Other metabolic functions
of AGO2 may explain its interaction with IPOS, i.e. the
role of AGO2 in translation inhibition. No other RBP
group except group 9 includes RBPs involved in RNA
decay. Consistently, when we examined the half-life of
the RNAs associated to each of the other RBP groups,
we did not find any significant correlations (Fig. 4b and
Additional file 1: Figure S7b).

Second, we noticed that RBPs of groups 4 and 6 are
strongly related to RNA splicing and cleavage [27, 36]
(Fig. 4b). For example, group 4 contains six HNRNP
splicing factors (Fig. 5€). Therefore, we examined if there
is any correlation between RNA binding sites associated
to RBP groups 4 and 6 and their splicing score
(Additional file 1: Figure S8). A Percentage Spliced In
(PSI) score was calculated for every exon using RNA-seq
data from HEK293 cell line. We defined exons with PSI
scores < 0.2 as AS exons, while exons with PSI>0.8 as
constitutive exons. As expected, the binding sites co-
bound by group 4 are significantly closer to AS exons
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Fig. 5 Representative RBP groups correlated with RNA degradation and splicing data. a Known physical interactions between RBPs in Group 9.

b We calculated the fractions (log2 ratios) having binding sites co-bound by Group 9 (or binding peaks identified from individual RBP's CLIP-seq
data) for long half-life genes and short half-life time genes. The binding peaks of single RBP are the overlapped ones defined by both Piranha
and PARalyzer using default parameters. The average and standard deviation of the ratios for individual RBPs are shown. The enrichment was
tested with Fisher's exact test for each individual RBP and the group, respectively. Four numbers were used in the test: total number of long half-
life genes, total number of short half-life genes, numbers of long and short half-life genes containing the binding sites/peaks. (***p value < 0.001).
c A group-related binding site located at 3-UTR of gene MARCH9 with short half-life. d A single RBP's binding site located at 3"-UTR of gene IPO8
with long half-life. e, h Known physical interactions between RBPs in groups 4 and 6. f, i We calculated the fractions (log2 ratios) having binding
sites co-bound by RBPs in group 4/6 (or binding peaks identified from individual RBP's CLIP-seq data) for AS exons and constitutive exons. The
average and standard deviation of the ratios for individual RBPs are shown. The enrichment was tested with Fisher's exact test for each individual
RBP and the group, respectively. Four numbers were used in the test: total number of AS exons, total number of constitutive exons, numbers of
AS and constitutive exons close to the binding sites/peaks. (**p value < 0.005; ***p value < 0.001). g, j Group 4/6 associated binding site, which is
located near cassette exon(s) of gene LUC7L2/TCF7L2 with low PSI score. The binding site of group 4 contains the known motif, UGUGU

than to constitutive exons (Fisher’s exact test, p value =
4.88E-05) (Fig. 5f); and the enrichment is higher than
the binding peaks identified from nearly all individual
HNRNPs data and as good as HNRNPM data (Fig. 5f)
independent of the thresholds used (Additional file 1:
Figure S8b). Similarly, we found significant association
between the splicing scores and binding sites co-bound
by RBP group 6 (Fisher’s exact test, p value = 1.48E-04,
Fig. 5i, Additional file 1: Figure S8c).

As mentioned above, the binding sites associated to
group 4 RBPs are enriched with the UGUGU motif and
are located close to transcript regions susceptible to AS

(Fig. 4d). Here, we show an example of the binding on
LUC7L2’s RNA, indicating proximity (~800—1000 nt dis-
tance) between a binding site with UGUGU motif that
recruits splicing factors (HNRNPs) and their putative
target splicing site (the cassette exon) (Fig. 5g). From the
RNA-seq signals, we can see that the cassette exon is
spliced (low PSI score) as a consistent result. Similarly,
we show an example of the binding signals of RBPs in
group 6 on TCF7L2’s RNA (Fig. 5j).

Such correlations between RNA sequences associated
to the clustered RBP groups and their putative biological
targets suggest that our clustering method has the
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potential to identify not only consensus protein-binding
sequences in RNA but also functional RNA regulatory
elements.

NMF clustering can be applied to CLIP-seq data from any
cell line and CLIP technology

Our clustering approach could also be expanded to data
obtained from other cell lines (i.e. HepG2 and K562)
and CLIP methodologies (ie. eCLIP). After using PAR-
CLIP and HITS-CLIP data collected from different re-
positories to illustrate the advantage of our method, we
further applied our method on eCLIP data generated by
ENCODE [48]. ENCODE data have less heterogeneity
than the PAR-CLIP and HITS-CLIP data because they
were produced by the consortium using identical experi-
mental procedures. In total, 99 eCLIP datasets of 33
RBPs in HepG2 cell line and 144 eCLIP datasets of 48
RBPs in K562 cell line were collected (Fig. 6a). First, we
show that the RBPs are not able to be clustered well by
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hierarchical clustering methods (Additional file 1: Figure
S9). Instead, using our soft-clustering method, the RBPs
can be successfully clustered into 12 and 17 groups in
HepG2 and K562 cell lines, respectively (Additional file
1: Tables S3, S4). Some of the groups, such as
HNRNPAI1-SRSF7 in HepG2 cell line, HNRNPA1-
HNRNPU-KHDRBS1, U2AF1-U2AF2, and FMR1-FXR2
in K562 cell line, are significantly enriched with proteins
that are known to physically interact. However, different
from the result in HEK293/HEK293T data, the larger
amount of RBPs in ENCODE generated a higher number
of groups that are composed by proteins not known to
interact together (Additional file 1: Tables S3, S4). Al-
though not annotated as known physical interactions in
the GeneMANIA database, several putative interactions
were found to be reported by literatures or annotated as
predicted interactions (Fig. 6b). For instance, BCCIP and
SND1 in group 1 (HepG2 cell line) were reported to
interact with MTDH [49]. IGF2BP1 and IGF2BP3 in

a HepG2 b
ENCODE: 99
eCLIP Cell line Group # RBP Supported interaction Supporting data
1 BCCIP, SND1 BCCIP-SND1 Ref. 49
HEK293
CLIPdb: 84 - K562 GeneMANIA
PAR-/HITS-CLIP ENCODE: 144 4 HNRNPA1,SRSF7 HNRNPA1-SRSF7 (physical
ebLIP interaction)
6 LARP7, TIA1 LARP7-TIA1 Ref. 50
C  Group 8: FKBP4-SRSF1 (HepG2)
P:  1gG  SRSF1 HepG2 7 IGF2BP1,IGF2BP3 IGF2BP1-IGF2BP3 NCBI
ANase A&TY -+ - + co-IP experiment
«-FKBP4 I:I_ FKBP4 8 FKBP4, SRSF1 FKBP4-SRSF1 (Figure 6C)
o
B GeneMANIA
o-SRSF1 EI_ SRSF1 10 SF3B4,U2AF1,U2AF2 U2AF1-U2AF2 (oredicted)
. | a-FKBP4 EI— FKBP4 PRPF8-SF3A3- GeneMANIA
5 1 BUD13,PRPF8,SF3A3,SMNDC1 SMNDC1 (predicted)
1 SRSF1,YWHAG SRSF1-YWHAG (physical
1.2 3 4 interaction)
GeneMANIA
d  Group 3: EIF4G2-IGF2BP1 (K562) 2 HNRNPA1HNRNPUKHDRBS HNRI\}I*PNUF—‘I:‘}};IB?BSL (physical
IP: 19G EIF4G2 interaction)
ANase A&TI -+ - =+ 3 EIF4G2, IGF2BP1 EIF4G2iGF2Bp1  °O7IP experiment
(Figure 6D)
o a-IGF2BP1 — |GF2BP1 K562
- 4 HNRNPUL1, NPM1 HNRNPUL1-NPM1 Harmonizome
a-EIF4G2 —EIF4G2
GeneMANIA
.. | a-IGF2BP1 EI— IGF2BP1 6 U2AF1,U2AF2 U2AF1-U2AF2 (physical
a interaction)
f
= | a-EIFaG2 —EIF4G2 GeneMANIA
16 FMR1,FXR2 FMR1-FXR2 (physical
1 2 3 4 interaction)

IGF2BP1 (group 3) in K562 cell line

Fig. 6 RBP groups inferred from eCLIP data and co-IP validation. a We show the summary of datasets for different CLIP technologies and cell lines
used in this study. The Venn diagram shows only a few number of shared RBPs among three cell lines. b Example RBP groups having interactions
supported by other data/evidence in HepG2 and K562 cell lines. ¢ Co-IP of FKBP4 and SRSF1 (group 8) in HepG2 cell line. d Co-IP of EIF4G2 and




Li et al. Genome Biology (2017) 18:169

group 7 (HepG2 cell line) were also supported by NCBI
(https://www.ncbi.nlm.nih.gov/gene/10642), where
LARP7 and TIA1 are proposed as candidates in regulat-
ing 5’ terminal oligopyrimidine (TOP) for mRNA trans-
lation [50]. HNRNPUL1 and NPM1 in group 4 (K562
cell line) were found to be supported by the Pathway
Commons Protein-Protein Interactions dataset in Har-
monizome database [51]. We also compared the RBP
groups between these two cell lines (Additional file 1:
Figure S10). A large proportion (17/21) of the shared
RBPs were grouped with the other RBPs uniquely exist-
ing in different cell lines, which suggests different roles
in different cell lines or data bias.

These groups represent interesting candidates for fur-
ther exploration and discovery of potentially novel
RNA-protein complexes. We experimentally validated
the interactions in two putative groups, group 8
(FKBP4-SRSF1) in HepG2 cell line and group 3
(EIF4G2-IGF2BP1) in K562 cell line. SRSF1 is a splicing
factor and FKBP4 is an immunophilin protein with
PPlase and co-chaperone activities. Endogenous co-IP
experiments were performed to assess FKBP4-RSF1
interaction in physiological condition. Endogenous
FKBP4 could be detected in anti-SRSF1 IP complex, but
not in control IgG (Fig. 6¢c). In addition, retrieved en-
dogenous FKBP4 was obviously decreased after RNase
A +T1 treatment (Fig. 6¢, lane 4). These results suggest
that SRSF1 is associated with FKBP4 in HepG2 in a
RNA-dependent matter. The other validation experi-
ment is the co-IP of two translational regulators, EIF4G2
and IGF2BP1, in group 3 (K562). Endogenous IGF2BP1
could be detected in anti-EIF4G2 IP complex, but not in
control IgG (Fig. 6d, lane 4). RNase A + T1 treatment
did not disrupt the interaction between EIF4G2 and
IGE2BP1. These results suggest that EIF4G2 binds
IGF2BP1 independent of RNAs in K562 cells.

Discussion

Many of the published methods use CLIP-seq data as
training data and aim to predict individual RBP’s binding
sites [18-20]. Our method is different because we
started from peaks defined from the CLIP-seq data. The
focus and highlight of our study is the consequent re-
sults related to RBP groups: finding novel RBP—RBP as-
sociations, revealing enriched RNA motifs related to
these RBP groups, and associating them with biological
processes, such as AS and degradation.

We implemented a soft-clustering NMF approach to
cluster protein-binding sites. We showed that the bind-
ing sites cannot always be clustered well by hierarchical
clustering with three cut tree methods (i.e. dynamic tree,
dynamic hybrid, and static) (Additional file 1: Figure S9).
For instance, we identified 18 distinctive RBP groups
using CLIP-seq data obtained from HEK293/HEK293T
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cell lines. However, the conventional methods (i.e. hier-
archical clustering) only identified five clusters (Add-
itional file 1: Figure S9), which are all included by the 18
clusters we identified. On the other hand, many well-
supported known interactions were only detected by our
method. For instance, the HNRNP, FBL-NOP56-NOP58,
and AGO-TNRC6 groups are well-known interactions
[13, 36, 52-54], which were successfully identified by
our method, not the conventional clustering. Sometimes,
two subunits of the same complex do not crosslink with
the same efficiency. Our NMF method would also detect
such binding site if the signal of one RBP is weak while
the others are strong, because it considers the overall
binding strength of the whole RBP group.

Our method has its limitations. We assume that over-
lap of peaks from proteins in the same pathways might
indicate true binding sites. However, it could also be
shared noise caused by the experimental or systematic
bias. We would miss many single RBP-related binding
sites because we only aim to find binding sites associated
to RBP groups. We sacrificed the sensitivity and com-
pleteness to ensure the confidence of the final set. Some
binding sites that cannot be detected by the current
CLIP-seq experiments were also missed because our
analyses did not predict new binding sites that cannot be
identified from CLIP-seq data. In this paper, we used
overlapped peaks defined by two computational tools
(i.e. Piranha and PARalyzer); therefore, we would miss
some true peaks identified by one method only. The ac-
curacy of our results would also be significantly affected
by false negatives caused by many other factors [55].

We found that our clustering approach could group to-
gether protein—-RNA binding sites that have related bio-
logical functions. However, they could also be introduced
by biological or technical artifacts. For instance, 41 out of
48 RBP data were produced by PAR-CLIP in HEK293/
HEK293T, except for a few HITS-CLIP data for DGCRS,
HNRNPA1, HNRNPA2B1, HNRNPE HNRNPHI,
HNRNPM, and HNRNPU. Using our method, HNRNPs
were grouped together (Fig. 3d), which could be caused by
either similar biological function of proteins in HNRNP
family or technical batch effect. Still, among these HITS-
CLIP RBPs, DGCR8 and HNRNPs were clustered into
two different groups. In addition, we generated a new
dataset consisting of different technologies to show that
our method is able to cluster together RBPs in the same
protein family without influence of technical bias (Add-
itional file 1: Figure S11). We also noticed that RBPs char-
acterized by different experimental studies could be
clustered in the same group. For example, group 4 con-
tains RBPs from two studies, GSE34996 [36] and
GSE23694 [56], and group 9 contains RBPs from three
studies, GSE43573 [52], GSE28865 [53], and GSE21578
[13]. These results suggest that our method is robust and
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can overcome the inconsistencies and heterogeneities re-
lated to individual sample processing and analysis.

We used the total RNA-seq data enriched from chro-
matin fraction to normalize the HEK293 dataset (see
“Methods”), because most of the RBPs we studied in
HEK293 are splicing and cleavage factors. According to
the subcellular localization information of GeneCards
(http://www.genecards.org/), almost all the RBPs we
used in HEK293 exist in nucleus (Additional file 1: Table
S1). Nevertheless, we recognized that using the total
RNA-seq data from chromatin fraction may lead to
some potential bias when normalizing the CLIP-seq sig-
nal. Therefore, we used 25 RBPs also confidently existing
in cytoplasm and performed the normalization with a
cytoplasm RNA-seq dataset (i.e. poly-A enriched RNA-
seq, GSE68671) (Additional file 1: Figure S12). Seven
groups (group cl—-c7) were defined according to a coeffi-
cient matrix. Among the seven RBP groups, five of them
(groups cl, ¢3, c4, ¢5, and c7) were overlapped with the
previous results. Two of them (groups cl and c5) were
significantly supported by known physical interactions.
Meanwhile, we calculated the fractions (log2 ratios) hav-
ing binding sites co-bound by AGO proteins in Group
cl for long half-life genes and short half-life genes. RNA
binding sites co-bound by RBP group cl were signifi-
cantly enriched in short half-life genes (Fisher’s exact
test, p value = 4.64E-05) (Additional file 1: Figure S13).
The conclusion is consistent with the result we got pre-
viously (Fig. 5b).

Furthermore, we determined that our clustering ana-
lysis suggests important correlations between the func-
tion of proteins that cluster in the same RBP groups.
Finally, we identified a correlation between RNA se-
quences associated to our clustered RBP groups and
their biological properties and/or their putative bio-
logical targets. These considerations suggest that our
clustering method has the potential to identify not only
consensus protein-binding sequences in RNA but also
functional RNA regulatory elements. We will provide a
useful tool for analyzing protein—RNA interaction data-
sets continuously being produced by CLIP-seq technolo-
gies and improving our understanding about the
regulatory mechanisms of biologically important RNA-
protein complexes.

Conclusion

In summary, we show that integrating public CLIP-seq
datasets can provide novel insights into the combinator-
ial classification of RBPs. We provide a unified and high-
confidence set of protein-binding RNA sites and clus-
tered RBP groups, which were validated by the known
physical interactions and co-IP experiments. The bind-
ing sites defined by our method were more enriched
with known motifs and better correlated with RNA

Page 11 of 16

degradation data and AS data than the binding sites of
single RBPs. We shared our method and code, as well as
the derived RNA regulatory elements, with the RNA
community via a web-based platform (see “Availability
of Data and Materials”).

Methods

Defining binding peaks from various CLIP-seq data

We collected 327 CLIP-seq datasets from the ENCODE
data portal (https://www.encodeproject.org) and our pub-
lished database, CLIPdb [15]. From ENCODE, we down-
loaded 99 and 144 eCLIP-seq datasets for 33 and 48 RBPs
in HepG2 and K562 cell lines, respectively. The CLIP-seq
data in CLIPdb [15] were collected from more heteroge-
neous resources. From CLIPdb, we used 84 CLIP-seq
datasets in HEK293/HEK293T cell lines for 48 human
RBPs. The experiments with large amounts of sequencing
reads were preferred. The majority of data (41 out of 48
RBPs) are from photoactivatable ribonucleoside-enhanced
crosslinking and immunoprecipitation (PAR-CLIP) [13];
the remaining data are from high throughput RNA
sequencing and crosslinking (HITS-CLIP) [14] (Additional
file 1: Table S1).

For ENCODE’s eCLIP data, we directly downloaded the
binding peaks defined by CLIPper [24], with options —s
hgl9 —o —bonferroni —superlocal-threshold-method bino-
mial—save-pickle, considering read 2 only (the read that is
enriched for termination at the crosslink site) [48].

For PAR-CLIP data, we used two computational
methods, Piranha [21] and PARalyzer [22], to identify
the binding peaks of each RBP. Piranha identifies regions
of statistically significantly larger read count than the
background read-count distribution [21]. PARalyzer is
designed for PAR-CLIP, which identifies RBP binding
peaks by utilizing the distribution of thymine (T) to
cytosine (C) transition in CLIP-seq read clusters [22]. By
default, we used p value <0.01 for Piranha and Mode-
Score > =0.5 for PARalyzer.

For HITS-CLIP data, we also used two computational
methods, Piranha [21] and CIMS [23, 57], to identify the
binding peaks of each RBP. The crosslinking-induced
mutation site (CIMS) is designed for HITS-CLIP, which
detects statistically significant mutations induced by pro-
tein—RNA crosslinking sites [23, 57]. Default parameters
were used.

Overlapping binding peaks of different peak calling
methods and biological replicas

The quality of CLIP raw data largely depends on the
complexity of library and depth of sequencing in each
experiment. Therefore, different experiments, peak call-
ing methods, and biological replicas for the same RBP
could generate very different binding peaks [58]. We
measured the similarity between replicas and different
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peak calling methods using the Jaccard similarity coeffi-
cient, which is defined as the number of regions that
overlap between two peak sets, divided by the union of
the two sets. The larger the Jaccard similarity coefficient,
the more similar two peak sets are in terms of overlap-
ping regions.

First, we overlapped the peaks identified by different
methods for PAR-CLIP and HITS-CLIP data, because
the identified binding peaks vary a lot among different
peak calling methods. In general, PARalyzer identified
more peaks than Piranha and CIMS found the least
binding peaks. (1) For PAR-CLIP data, peaks variance is
due to different conventions followed by different soft-
ware to define an RNA-protein interaction peak. Pi-
ranha defines binding peaks based on reads abundance,
while PARalyzer defines peaks based on the T to C mu-
tations caused by the PAR-CLIP procedure. As a result,
PARalyzer tends to generate more binding peaks than
Piranha (Additional file 1: Figure S1, S2 and S14). We
only kept the binding peaks identified by both PARalyzer
and Piranha to ensure the confidence of our set from
the very beginning. (2) For HITS-CLIP data, we kept the
binding peaks defined by Piranha without considering
CIMS, because CIMS identified too few peaks in our
data (less than 200 for most cases). Notably, overlapping
would miss some real binding sites only identified by
one method, but it kept most confident ones (Fig. 2d).
(3) For ENCODE’s eCLIP data, we used the downloaded
peaks defined by one method, CLIPper [24].

Next, we adapted a previous method overlapping bind-
ing peaks identified from biological replicas [14]. Binding
peaks with more than 3 reads in at least two replicas
were kept. We used this semi-overlap strategy to save
enough peaks, because the Jaccard similarities are usu-
ally low even for replicas of CLIP-seq data (Additional
file 1: Figure S15).

We used the above overlapping steps to improve the
data quality for the following analyses. Finally, we got
three sets of binding peaks for different RBPs in three
cell lines, HEK293/HEK293T, HepG2 (ENCODE), and
K562 (ENCODE) (Additional file 1: Figure S16).

Merging different binding peaks into one set of binding
sites for multiple RBPs

To identify the combinatorial binding patterns of mul-
tiple RBPs, we merged the overlapping binding sites
from all 48 RBPs into one set of merged binding sites
on RNAs (Fig. 2c). The lengths of most binding sites
were 20—60 nt, which is about one- to twofold of the
average length of single RBPs’ binding sites (Additional
file 1: Figures S3, S4). To reduce the bias from long
binding sites in the downstream analysis, these long
binding sites (length >100 bp) were split into 100-bp
bins with 50-bp overlap.
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We annotated the binding sites to their located gen-
omic regions (e.g. UTR, CDS, intron, miRNA, long non-
coding RNA [IncRNA], etc) for each RBP, according to
GENCODE (version 19) [59] and miRBase VX [60]. The
annotation of each binding site was based on the follow-
ing priority: CDS, canonical ncRNA, 3'-UTR, 5'-UTR,
IncRNA exon, pseudogene, intron (mMRNA and IncRNA),
intergenic region, and others. The canonical ncRNAs in-
clude miRNA, small nuclear RNA, small nucleolar RNA,
transfer RNA, ribosomal RNA, Y RNA, and 7SK RNA.

Calculation and normalization of each RBP’s occupancy
The coverage of CLIP-seq reads in binding sites can be
highly affected by the abundance of the transcripts [61].
Thus, we used total RNA-seq (GSE56862) by default in
HEK293 and to normalize the binding affinity (i.e. occu-
pancy [®]) of each merged binding site. We assume that
the binding of RBP and a binding site is in equilibrium,
which is based on the observation that the timescale of
the binding and unbinding events (min) or the diffusion
of the RBP (s) is much smaller than the half-life of most
transcripts (h) [62]. Thus, the system reaches a steady
state in a short time even when disturbances in the cell
state (e.g. RBP concentration, transcript level) occurs.
We also assume that the post-transcription regulation of
the RBPs do not lead to major changes in the transcript
levels. Then, the equilibrium equation is:

[RBP][Unbound site] = K ;[Bound site],

where [RBP], [Unbound site], [Bound site], and (Kg4) are
the concentration of free RBPs, free RNA binding sites,
RNA binding site being bound, and dissociation con-
stant, respectively. Therefore, the occupancy, which is
defined as the fraction of transcripts that is bound by an
RBP at the binding site, is proportional to the CLIP-seq
signal (RPM, read counts per million mapped reads) di-
vided by total RNA-seq signal (for eCLIP, we used the
input signal instead):

[Bound site]
- [Sitel,,,  [Bound site] + [Unbound site]
[Bound site]

[Bound site] + K4 %

[Bound site]

normalized CLIP-seq signal

) normalized total RNA-seq signal -

We scaled the ratio by the 95% quantile, which is a rea-
sonable estimate for full occupancy under the assumption
that the top 5% of binding sites are nearly fully occupied
on each transcript and that crosslinking efficiency for a
given factor does not depend strongly on sequence con-
text. According to the definition, the occupancy is treated
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as a probability; therefore, the ratios for each RBP were
scaled into the range of 0-1 [61].

Finally, we generated the occupancy profile matrix
(Fig. 2d) for all merged binding sites (N rows) bound by
different RBPs (M columns).

Soft-clustering based on non-negative matrix
factorization

NMEF is a matrix factorization technique that can be ap-
plied to multidimensional data to reduce dimensionality.
It usually approximately factorizes the original matrix
into two matrices, with the constraint that all three
matrices have no negative elements. This non-negativity
makes the resulting matrices easier to be interpreted as
biological meaningful features [33]. We adapted the
NMF (R package: NMF 0.17.6) [63] method to decom-
pose the occupancy profile matrix V. (N x M, N rows:
merged binding sites, M columns: RBPs) (Fig. 2e) into a
coefficient matrix H (R x M) and a basis matrix W (N x
R), with a given rank R:

V~WH,

by minimizing the Kullback-Leibler distance between
the original matrix V and WH:

N M
ZZ Vi log ) -V + (WH)ij
=1 j=1

The optimization can be solved by iterative updates of
the matrix W and H. The basis matrix defines group-
related binding sites, which can be used to associate the
binding affinity with post-transcriptional regulatory
events (e.g. AS, degradation) and identify putative mo-
tifs. The coefficient matrix defines the RBP components
and their weights in each group.

The key issue to decompose the occupancy profile
matrix is to find a reasonable value for the rank R (i.e.
the number of RBP groups). Several criteria have been
proposed to decide whether a given rank R decomposes
the occupancy profile matrix into meaningful clusters.
The cophenetic correlation coefficient (CPCC) and dis-
persion coefficient (DC) quantitatively measure the sta-
bility of clustering associated with a given rank R, based
on a consensus matrix C (M x M) that is defined as the
average connectivity matrix of cluster components
(RBPs) over multiple factorization runs:

1 Number_of _Runs
Cij)=——+——"—— Ck(i,j),
) Number_of _Runs £—k=1 (0,))
(i) = 1 if items i and j belong to the same cluster
kb)) = 0 otherwise '

The CPCC is a measure (ranges from —1 to 1) of how
faithfully a dendrogram generated by a hierarchical
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clustering algorithm preserves the pairwise distances be-
tween the original un-modeled samples. Those distances
are defined as a symmetric matrix D = (1-C), which is
named dissimilarity matrix. The cophenetic distance is
defined as the minimum dissimilarity level to merge two
samples into the same cluster in a hierarchical clustering
algorithm. Then the cophenetic distance between sam-
ples forms the cophenetic matrix T, which is also a sym-
metric matrix. Finally, the CPCC is computed as the
Pearson correlation coefficient of the M(M-1)/2 upper
diagonal elements of D and T:

>, (DG, )-d) (T(,j)-)
V(L 06-7) (3, r)-07)

where t and d are the mean of M(M-1)/2 upper diagonal
elements of T and D.

The DC reflects the dispersion (range of 0-1) of
the consensus matrix C from the value 0.5. The
closer to 1 is the DC, the more perfect is consensus
matrix, and thus the more stable is the clustering. In
a perfect consensus matrix, all entries are 0 or 1,
meaning that all connectivity matrices are identical.
The DC is defined as:

DC = Z, 1211 ( l]—1>2

We searched ranks from 5 to 20 and performed 10,
30, 50, 80, and 100 runs for each rank to find the
local maximums of CPCC and DC as potential ranks
(Fig. 3b, c). Subsequently, we used the potential ranks
to decompose the occupancy matrix into basis matrix
and coefficient matrix with 100 runs and then se-
lected the decomposition result with the lowest ap-
proximation error (ie. Kullback-Leibler distance)
among the 100 runs. We also showed that the local
maximum rank, 18, generated groups better sup-
ported by other evidence than the global maximum
rank, 7 (Additional file 1: Figure S17).

CPCC =

Identification of protein components in each RBP group
We used the coefficient matrix to define RBP groups.
The RBPs in one group could probably compete with
each other for the same binding site or form a complex
to bind RNAs. In the coefficient matrix, each row repre-
sents one RBP group and each column represents one
RBP. The values in the matrix indicate the weights of
RBPs in their corresponding RBP group. The coefficient
matrix was then scaled by column (RBP) to 0—1. Subse-
quently, we used a coefficient threshold 0.2 (~95th per-
centile of the whole matrix) to define the RBP
components in each RBP group.
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Defining binding sites and their binding affinities
associated to each RBP group

We associated each RBP group with binding sites ac-
cording to the basis matrix. For each binding site and
each group, we derived a basis coefficient score, which
represents the binding affinity contributed by all RBPs in
the defined group. In addition, we also calculated a
basis-specificity score for each binding site using “kim”
methods (featureScore in NMF package) [32]. The basis-
specificity score is in the range of 0—1. The RBP group
with a high basis-specificity score means that it specific-
ally associates with the binding site. When the basis-
specificity score is>0.8 and the basis coefficient score
is > 80% quantile for each column, we associate them to-
gether. In this way, our method rules out the unspecific
binding associated with a large number of RBPs, which
may be caused by high RNA abundance.

Evidence used to validate the putative RBP groups

We used various protein—protein interactions in the
GeneMANIA database [34] to confirm our predicted
RBP groups (i.e. whether the RBPs within the predicted
RBP group have known associations). GeneMANIA con-
tains a large set of protein—protein association data with
multiple types of evidence, including physical interac-
tions, genetic interactions, pathways, co-expression, co-
localization, and protein domain similarity. We down-
loaded all the protein—protein associations of 48 RBPs
and calculated the association number for each RBP in
each group by counting its connectivity with other RBPs.
Then, we calculated the p value for each type of support-
ing evidence in each RBP group, based on the back-
ground of 10,000 random gene sets of the same size
(Additional file 1: Figure S5).

Motif analysis for the binding sequences of RNAs

De novo motif finding was performed using RNA se-
quences in individual RBP binding peaks and binding
sites co-bound by RBPs in each group. HOMER tool was
used for this analysis (findMotifsGenome.pl with param-
eters -len 4,6,8 -norevopp -rna) [64]. Background se-
quences were randomly selected from the genome,
which matched the GC-content distribution of the input
sequences. The p values were calculated by binomial test
as default. In the main result, we showed the top two
motifs with p values < 1E-10, with HOMER motif files
provided in our supplementary website, http://RNAtar-
get.ncrnalab.org/RBPgroup. We searched the known
motifs, which were derived from the literature [39, 44],
within each set of binding sites/peaks using HOMER
[64]. The enrichment was tested with Fisher’s exact test
between the group and individual RBPs. Four numbers
were used in the test for each known motif, total num-
ber of binding sites associated to the group, total
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number of binding peaks associated to an individual
RBP, total number of binding sites, and binding peaks
containing each known motif.

Enrichment calculation for RNA degradation

We downloaded the degradation rates (measured as
half-lives time) of human mRNAs in HEK293 cell line
from a previous study (GSE49831) [47]. In total, 1626
genes with long half-life time (over 80th percentile;
174 min) and 1628 genes with short half-life time (below
20th percentile; 40 min) were selected. We then over-
lapped the binding sites/peaks with these genes using
BEDTools [65]. The fraction of genes having the RBP
(group) binding sites/peaks was calculated. The log2 ra-
tio of the fractions for the long half-life genes and short
half-life genes were shown in the main figure. The en-
richment was tested with Fisher’s exact test for each
RBP group and each individual RBP, respectively. Four
numbers were used in the test for each set of binding
peaks/sites: total number of long half-life genes, total
number of short half-life genes, and numbers of long
and short half-life genes containing the binding sites/
peaks.

Enrichment calculation for alternative splicing

We used the RNA-seq data in HEK293 (GSE44267) [66]
to calculate PSI score, in the range of 0—1, with MISO
tool [56]. A total of 10,713 exons with PSI score < 0.2
were regarded as AS exons; 9940 exons with PSI score >
0.8 were regarded as constitutive exons. Considering
that splicing can be regulated by the flanking sequence
of the exon, we associated the RBP (group) binding
sites/peaks at a distance of 2 kb upstream and down-
stream of the exon, which would be most likely to affect
splicing [36]. We calculated the fraction of exons having
the RBP (group) binding sites/peaks. The log2 ratio of
the fractions for AS exons and constitutive exons were
shown in the main figure. The enrichment was tested
with Fisher’s exact test for each RBP group and each in-
dividual RBP, respectively. Four numbers were used in
the test for each set of binding peaks/sites: total number
of AS exons; total number of constitutive exons; and
numbers of AS and constitutive exons close to the bind-
ing sites/peaks.

Cell lines and immunoprecipitation

HepG2 cells were grown in DMEM high glucose
medium (Corning) with 10% fetal bovine serum (FBS)
(GIBCO). K562 cells were maintained in RPMI 1640
(Corning) with 10% FBS. Endogenous Co-IP was carried
out using indicated antibody and Protein A/G Magnetic
Beads (Thermofisher, 88803). After RNase A/T1 Mix
(Thermofisher, EN0551) treatment and several times of
washes, precipitated protein were eluted in SDS loading
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buffer and separated by SDS-PAGE, transferred onto
PVDF membranes (Millipore) and detected blots with
appropriate antibodies. Antibodies used in this study in-
clude: anti-SRSF1  (Abcam, ab38017), anti-FKBP4
(Abcam, ab129097), anti-EIF4G2 (Cell Signaling, 5169),
and anti-IGF2BP1 (Abcam, ab107205).

Additional file

[ Additional file 1: Supplementary figures and tables. (PDF 1961 kb) ]
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