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Abstract

Single-molecule RNA fluorescence in situ hybridization (smFISH) provides unparalleled resolution in the measurement
of the abundance and localization of nascent and mature RNA transcripts in fixed, single cells. We developed a
computational pipeline (BayFish) to infer the kinetic parameters of gene expression from smFISH data at multiple time
points after gene induction. Given an underlying model of gene expression, BayFish uses a Monte Carlo method to
estimate the Bayesian posterior probability of the model parameters and quantify the parameter uncertainty given
the observed smFISH data. We tested BayFish on synthetic data and smFISH measurements of the neuronal
activity-inducible gene Npas4 in primary neurons.
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Background
Cell-to-cell variation in gene expression across an isogenic
population is a fact of life. The initiation of transcription
involves a series of stochastic biochemical events, which
includes chromatin accessibility, the binding of transcrip-
tion factors, and the assembly of RNA polymerase at
the promoter of a gene [1]. Distinct promoter states can
often arise when one of these biochemical events is rate-
limiting. The existence of multiple promoter states with
different expression rates can generate transcriptional
bursting, which are episodes of transcriptional activity
followed by long periods of inactivity [2–4]. This phe-
nomenon has been observed in bacteria [5, 6], yeast [7, 8],
flies [9, 10], and mammals [11–16].
Cell-to-cell variability in gene expression is often stud-

ied using techniques that measure transcription in single
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cells. One such technique, single-molecule RNA fluores-
cence in situ hybridization (smFISH) measures the abun-
dance and localization of individual transcripts in a single
cell [17, 18]. This method uses a cocktail of fluorescently
labelled DNA oligos complementary to the target RNA
and works in many organisms; see [19]. Each individ-
ual transcript is bound by fluorescent DNA probes and
appears as a bright, diffraction-limited spot in a fluores-
cence microscope. When there are multiple transcripts
(e.g., active transcription sites, TSs, at gene loci), the mea-
sured intensity can be significantly brighter. The smFISH
technique is simple and has been rapidly adopted by other
labs to address cell-to-cell variability in gene expression.
This has been helped in part by software packages [20, 21]
that facilitate image segmentation and spot analysis.
Gene expression is dynamic and the properties of tran-

scriptional bursting must be inferred from smFISH data,
which are static snapshots or distributions of mRNA
and active TSs per cell sampled from a population. This
inference is done using mathematical models of stochas-
tic gene expression, whose predicted distributions of
transcripts and active TSs in a population of cells are
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then fitted to smFISH data to infer the model param-
eters and likely properties of transcriptional bursting
[22]. The simplest model that generates such bursting
is the two-state model, which presumes that a gene
stochastically switches between two promoter states, a
transcriptionally active state and an inactive state. The
advantage of the two-state model is that the distribu-
tions have been solved analytically and model parameters
are inferred by fitting moments (e.g., mean and vari-
ance) or the full distributions to the observed smFISH
data using least-squares approaches. Despite the suc-
cess of two-state models, more complicated models are
often needed to explain the observed distributions prop-
erly [7, 15, 16, 23]. These complex models often do not
have analytical solutions and one must resort to simplify-
ing assumptions or computationally intensive numerical
methods to calculate distributions [24]. This is espe-
cially true for genes that are not in a steady state, e.g.,
induced genes.
We used smFISH to measure transcripts of the neu-

ronal activity-inducible gene Npas4 in primary neurons
after membrane depolarization with elevated extracellu-
lar potassium (Fig. 1). Our Npas4 smFISH measurements
showed a surprising amount of cell-to-cell variation in

both transcript levels and active TSs even when all neu-
rons were exposed to a uniform external stimulus. Given
prior studies of cell-to-cell variability in gene expres-
sion in other systems, this variability in the transcrip-
tional response of activity-inducible genes is likely to arise
from the probabilistic activation of transcriptional burst-
ing at single alleles. We reasoned that we could use this
single-cell transcriptional variability to build a model of
activity-inducible Npas4 induction that would inform our
quantitative understanding of the transcriptional pro-
cesses that drive dynamic changes in Npas4 expression
following neuronal activation.
Thus, we developed a computational pipeline (BayFish)

that uses a Bayesian approach to infer the best model
parameters from smFISH data and to quantify the uncer-
tainty in those parameters rigorously. The user specifies
any mathematical model of stochastic gene expression
with an unknown set of parameters (θ ) and provides
smFISH data (Y ) at different time points before and
after induction. BayFish then uses a Monte Carlo method
to estimate the Bayesian posterior probability P(θ |Y ) of
the model parameters, which elucidates the best-fitting
parameters and quantifies their uncertainty given the cur-
rent smFISH data. We first tested BayFish on synthetic

Fig. 1 Single-molecule fluorescence in situ hybridization data of Npas4mRNA in primary neurons after membrane depolarization. Measurements
are shown before the stimulus (uninduced), 5 min after KCl exposure, and an additional 10 and 20 min later after cells were returned to the
conditioned medium (CM); see “Methods”. a Example of an image-processed cell at each time point. We show detected mRNAs (green circles) and
active transcription sites (TSs; green squares) within the cell contour (yellow line) and nucleus (dashed yellow line). Neurons are post-mitotic and,
thus, we observed up to two active gene loci per diploid cell. b For each condition, a histogram of the number of mRNA molecules binned by the
number of TSs (dots, left y-axis). Smoothed histogram with bins of 20 mRNAs (bars, right y-axis). The total number of cells (n) per time sample is
listed at the top. CM conditioned medium, TS transcription site
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data and demonstrate how to select the best model from
multiple mathematical models by combining information
criteria with the likelihood and Bayesian posterior cal-
culated by BayFish. We then used BayFish on the Npas4
smFISH data to infer the parameters of an underlying two-
state model of gene expression that were likely affected by
the stimulus. Our results show that a two-state promoter
model can recapitulate Npas4 dynamics after induction
and we further inferred that the transition rate from the
promoter off state to the on state is increased by the
stimulus.
There is currently no software that allows a user to

specify any model of stochastic gene expression, evaluate
the time evolution of mRNA and active TS distri-
butions after induction, and rigorously infer parame-
ters and confidence intervals from smFISH data using
the Bayesian posterior probability. We expect BayFish
to fill an important gap that will facilitate the adop-
tion of the smFISH technique by other laboratories
that wish to address cell-to-cell variability in gene
expression.

Results
BayFish is a software package that combines numerical
methods with a Monte Carlo method to estimate the
Bayesian posterior probability P(θ |Y ) of model param-
eters (θ ) given the observed smFISH data (Y ) at dif-
ferent time points before and after induction. Bayes
theorem states that P(θ |Y ) = P(Y |θ)P(θ)/P(Y ) where
P(Y |θ) is the likelihood L of the data given the param-
eters. P(θ) and P(Y ) are the prior probability distri-
butions of the parameters and the data, respectively.
Each iteration of the Monte Carlo method uses several
numerical subroutines to calculate the time evolution of
the mRNA and active TS distributions given a set of
model parameters (θ ), to evaluate the likelihood that the
smFISH data (Y ) were sampled from this distribution or
L = P(Y |θ), and to calculate the Bayesian posterior prob-
ability P = P(θ |Y ) given the likelihood and priors. The
global program is based on the Metropolis random walk
algorithm [25, 26]:

1. Specify a mathematical model of stochastic gene
expression that has an unknown set of parameters θ .

2. Choose an initial θ and calculate the corresponding
likelihood L = P(Y |θ) and Bayesian posterior
probability P = LP(θ)/P(Y ) using several numerical
subroutines.

3. Iterate over t = {1, 2, . . . ,T} as follows:
(a) Draw a random proposal φ ∼ θt + N (0,�),

whereN (0,�) is a multivariate normal
distribution with the same dimension as θ and
with zero mean. � is the covariance matrix.

(b) Evaluate the likelihood of the proposal
Lφ = P(Y |φ) using several numerical
subroutines.

(c) Calculate the Bayesian posterior probability
Pφ = LφP(φ)/P(Y ).

(d) Update parameters θt+1 ← φ and
Pt+1 ← Pφ with probability min(Pφ/Pt , 1);
otherwise, θt+1 ← θt and Pt+1 ← Pt .

Over time, the algorithm will generate a Markov chain
of θt whose distribution converges to the Bayesian pos-
terior probability P(θ |Y ). BayFish saves the likelihood Lt
and θt of each step. After discarding the early part of
the chain (the burn-in phase), the remaining θt values
were used to estimate the Bayesian posterior probability
P(θ |Y ); see “Methods.”

Mathematical model of stochastic gene expression
We considered a two-state model of gene expression
(Fig. 2), where each promoter can be in an inactive off
state ρ0 with a basal transcription level (synthesis rate μ0)
or an active on state ρ1 with a higher transcription level
(synthesis rate μ1). Transitions between promoter states
occur with a promoter activation rate k1 and a promoter
deactivation rate k0. We chose a two-state model because
it is the simplest model that can generate transcriptional
bursting, a feature observed in our Npas4 smFISH data
(Fig. 1). Neurons are post-mitotic and, thus, our model
does not include duplicated alleles (e.g., three or four
active loci) that arise after DNA replication. Each pro-
moter allele was assumed to be regulated independently,
as shown previously [11, 15, 23, 27]. The two-state model
parameter set, which determines the dynamics of mRNA
and active promoters, is θ = {μ0,μ1, k1, k0}. We fixed the
mRNA degradation rate δ because it is a known quan-
tity, but this parameter could be a free parameter in other
models.
Our smFISH experiments measured gene expression

both before and after the stimulus. We presumed that
gene expression before the stimulus was at a steady
state determined by one set of model parameters (θU ,
unstimulated parameter set). Upon induction, the stim-
ulus changed one or more of the model parameters (θS,
stimulated parameter set). Thus, the mRNA and active
TS distribution will evolve towards a new steady state in
response to the changed parameters. Below, we describe
how we calculated the stationary mRNA and active TS
distribution before the stimulus using θU and howwe then
calculated the time evolution of the distribution after the
stimulus using θS.

Time evolution of the probability distribution
The chemical master equation (CME) is an infinite set of
coupled differential equations that describe the dynamics
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Fig. 2 A two-state model of gene expression. a Each diploid cell has two genetic loci and the promoter (circle) of each gene can be in either an
active (ρ1) or an inactive (ρ0) state. Each gene synthesizes mRNA molecules (m) with rate μ1 or μ0 if the promoter is active or inactive, respectively.
Transitions between promoter states occur with a promoter activation rate k1 and a promoter deactivation rate k0. Each mRNA is degraded with
rate δ. b Possible biochemical reactions and cell states of our model. A cell state x (grey box) is the number of active promoters ρ1 ∈ {0, 1, 2} and
mRNA moleculesm ∈ {0, 1, 2, . . . ,M} in a cell, or x =[ ρ1,m]T . There are four possible biochemical reactions that change a cell from one state to
another state: (1) promoter activation (blue arrow), which increases ρ1 by 1; (2) promoter inactivation (purple arrow), which decreases ρ1 by 1; (3)
mRNA synthesis (orange arrow), which increasesm by 1; and (4) mRNA degradation (gray arrow), which decreasesm by 1. The propensity or
probability per unit time (ak) for a particular reaction (k) to occur is listed above the reaction arrows. The propensities depend on the model
parameters θ = {μ0,μ1, k1, k0}

of the probability of the biochemical system being in a par-
ticular state x at time t, P(x, t) [28, 29]. The probability
flow into and out of each state x is given by:

∂P(x, t)
∂t

=
∑

k
[ ak(x− νk)P(x− νk , t) − ak(x)P(x, t)] .

(1)

The summation is over all possible biochemical reac-
tions k into and out of state x:

x ak(x)−−−→ x + νk (2)

where ak(x) ∂t is the probability that the biochemical reac-
tion k will occur within the infinitesimal time interval ∂t
given that the system is in state x. The model parameters
θ affect the propensities of different biochemical reactions
(Fig. 2), and the stoichiometric vector (νk) of reaction k
describes how the system state changes when the reaction
k occurs. More generally, the CME is written in matrix
form:

∂P(X, t)
∂t

= A(θ) · P(X, t) (3)

where all possible cell states X are enumerated as a vector
[ x1, x2, . . . , xN ]T . P(X, t) is the probability density state

vector [P(x1, t),P(x2, t), . . . ,P(xN , t)]T of possible states
organized identically to X. The state reaction matrix A(θ)

has elements:

Aij =
⎧
⎨

⎩

− ∑
k ak(xi), ∀i = j,

ak(xi), ∀j such that xj = xi + νk ,
0, otherwise.

(4)

Pre-stimulus stationary distribution
We assumed that the pre-stimulus mRNA and active TS
distribution P∗(X) is time-independent and stationary.
We calculated the stationary distribution by setting Eq. 3
to zero and determined the nonzero eigenvector V ≥ 0 in
the kernel of A

(
θU

)
using the Arnoldi iteration algorithm

[30] (eigs MATLAB function, or eig_gen Armadillo
C++ library). Each element of P∗ is given by

P∗(xi) = Vi∑
j Vj

(5)

where Vi is the ith element in the vector V =
[V1,V2, . . . ,VN ]T and

∑
i P∗(xi) = 1.

Post-stimulus distribution dynamics
Given an initial distribution P∗(X) at time zero and post-
stimulus state reaction matrix A

(
θS

)
, the post-stimulus

distribution P(X, τ) at time τ after stimulus is:
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P(X, τ) = exp[A
(
θS

)
τ ]P∗(X). (6)

We calculated P(X, τ) after induction using the same
MATLAB routines from the finite state projection
method [24], or the equivalent functions in the Armadillo
C++ library. We used finite state projection to verify that
our estimated probability distributions were below the
error threshold

(
ε ≤ 10−12) for finiteM; see below.

Likelihood of smFISH data from probability distributions
The smFISH data are for a finite sample of cells at several
time points {0, τ1, τ2, . . . , τS} after induction. Each cell was
in a state, i.e., number of active TSs andmRNAmolecules,
contained within [ x1, x2, . . . , xN ]T . The size (N) of the
vector and matrix is determined by N = p(M + 1), where
p is the number of distinct promoter states per cell (p = 3
for a two-state model and two alleles per cell, i.e., a cell
can have zero, one, or two active TSs).M is the maximum
number of mRNA molecules a cell can display, which
could, in principle, be infinite. For practical purposes, we
chose M = 500 because it is finite and larger than the
expected mRNA levels in our smFISH data. The smFISH
data vector Yt for sample t is a count of observed cell
states, where [ n1, n2, . . . , nN ]T . The likelihood of having
sampled the observed data given the calculated distri-
butions P(X, τ) for model parameters θ is a product of
multinomial distributions:

L = P(Y |θ) =
S∏

t=0

⎡

⎣

⎛

⎝

(∑
j Y t

j

)
!

∏
k Y t

k !

⎞

⎠
N∏

i=1
[P(xi, τt)]Y

t
i

⎤

⎦ .

(7)

Calculating the Bayesian posterior probability
The Bayesian posterior probability is the likelihood L
multiplied by P(θ) and divided by P(Y ), which are the
prior probability distributions of the parameters and data.
These priors are often unknown and P(θ) and P(Y ) are
presumed flat and constant, i.e., any parameter set and
data set are equally likely. BayFish assumes flat priors
unless specified otherwise. We implemented a Heaviside
step function for P(θ), where the prior was zero for non-
physiological parameters, but otherwise flat and constant.
Non-physiological parameters include negative numbers
(i.e., below 10−8) or a maximum transcription rate
(i.e., 12–18 mRNAs per minute; see [31]).

Validating BayFish with synthetic smFISH data
To test the ability of BayFish to infer parameters correctly,
we generated synthetic smFISH data from a two-state
model with known parameters. Our first model was a k1-
stimulus model, where k1 changed from kU1 to kS1 upon
induction and all other parameters stayed constant; see

“Methods”. We created three technical replicates of syn-
thetic smFISH data with a similar sampling density and
number of time points as our Npas4 data. Each technical
replicate (Fig. 3a) is different from the others only because
of sampling error. We then ran BayFish using an underly-
ing k1-stimulus model to infer the free parameters of each
technical replicate. The mRNA degradation rate was not a
free parameter in these BayFish runs and was fixed to its
known value to mimic our situation for Npas4.
If the synthetic smFISH data were too sparse to con-

strain the model, then we would expect the Bayesian
posterior distributions to be flat. However, each BayFish
run converged to well-defined Bayesian posterior distri-
butions of model parameters and the technical replicates
had posterior distributions that were relatively close to
one another and overlapped the true underlying param-
eters (Fig. 3b). This demonstrates that sparsely sampled
smFISH data at multiple time points already constrain
the parameters of the underlying model. We then created
a synthetic smFISH data set using the same k1-stimulus
model, but varied the sampling density at each time
point (n = 30, 100, 300, 1000 cells). As expected, increas-
ing the sampling density better constrained the Bayesian
posterior distribution and more accurately estimated the
underlying model parameters (Fig. 3c).

Model selection using BayFish and information criteria
Previously, we initialized BayFish with the correct under-
lying model (k1-stimulus model). However, one does not
usually know the correct model and it has to be inferred
along with the unknown parameters. It is well known that
models with more parameters have a higher likelihood of
fitting the data. Thus, we combined BayFish with several
likelihood-based metrics to evaluate different underlying
models and penalize those with more free parameters (see
“Methods”). These metrics are the Bayesian information
criterion (BIC) [32] and the Akaike information criterion
(AIC) [33], which are based on the maximum likelihood
calculated by BayFish. The deviance information crite-
rion (DIC) [34] uses both the likelihood and the Bayesian
posterior distribution calculated by BayFish.
To test the ability of BayFish and information criteria

to select the correct model, we generated two synthetic
smFISH data sets from different parameter-stimulusmod-
els. The first set was generated using a k1-stimulus model,
whereas the second set was generated using a more
complex (k1, k0,μ1)-stimulus model; see “Methods.” We
then systematically ran BayFish using multiple underly-
ing parameter-stimulus models, where different combina-
tions of parameters were affected by the stimulus: k1-, k0-,
μ1-, (k1,μ1)-, (k0,μ1)-, and (k1, k0,μ1)-stimulus models.
The one-parameter-stimulus models had five free param-
eters and the three-parameter-stimulus model had seven
free parameters to be inferred. As before, the mRNA
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Fig. 3 Validating BayFish on synthetic smFISH data. a Example of a technical replicate of synthetic smFISH data generated for an underlying
k1-stimulus model, where n = 100 cells per time point were sampled from the mRNA and active transcription site distribution (solid lines). Our
synthetic data were sampled at t = 0, 5, 15, 25 min after induction. bMarginal Bayesian posterior distributions of parameters estimated by BayFish
on three technical replicates (different colors). cMarginal Bayesian posterior distributions of parameters estimated by BayFish for different sampling
densities (n = 30, 100, 300, 1000 cells per time point) of the same technical replicate. Vertical dashed lines are the true parameters of the k1-stimulus
model used to generate the synthetic data

degradation rate was fixed to its known value. We ran
three replicas of BayFish with random initial parameters
for T = 105 iterations for each underlying parameter-
stimulus model. We then plotted the different informa-
tion metrics obtained from each BayFish run on the
k1-stimulus synthetic data set (Fig. 4a) and the (k1, k0,μ1)-
stimulus synthetic data set (Fig. 4b). A lower information
criterion score indicates that the underlying model had a
better fit. Our results with synthetic data demonstrate that
BayFish and the different information criteria select the
correct underlying model.

Running BayFish on Npas4 smFISH data
We then used BayFish to infer parameters and select
an underlying parameter-stimulus model for the Npas4
smFISH data. We used the same approach as above, but

the Npas4 mRNA degradation rate constant was fixed to
δ = 0.0559 min−1 [35]. Our results demonstrate that the
best underlying model with the fewest parameters is the
(k1, k0)-stimulus model (Fig. 5). The inferred mRNA and
active TS distribution and Bayesian posterior distribution
of the (k1, k0)-stimulusmodel are shown in Fig. 6 and sum-
marized in Table 1. Model selection using BayFish and
information criteria also showed that not all parameters
are equivalent. Regulation of k1 by the stimulus consis-
tently gave a better fit to the observed data than regulation
by k0 or μ1 alone or in combination.

Discussion
Like any inference approach, BayFish is limited by the
information content of the data and the underlying model
assumptions. For example, our smFISH datameasured the
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Fig. 4Model selection using BayFish and information criteria. We applied the Bayesian information criterion (BIC), the Akaike information criterion
(AIC), and the deviance information criterion (DIC) metrics to the BayFish results obtained with the different parameter-stimulus models listed on
the x-axis. All models were run on the same synthetic smFISH data. The maximum likelihood observed in each BayFish run was used for BIC and AIC
metrics, and the full likelihood and Bayesian posterior distribution, excluding the burn-in period, were used for DIC. Models with the lowest BIC and
AIC scores (left, y-axis) and DIC (right, y-axis) are the most informative models with the fewest parameters. a BayFish results for synthetic smFISH data
(n = 100 cells per time point) generated for an underlying k1-stimulus model. b BayFish results for synthetic smFISH data (n = 100 cells per time
point) generated for an underlying (k1, k0,μ1)-stimulus model. AIC Akaike information criterion, BIC Bayesian information criterion, DIC Deviance
information criterion

Fig. 5 Comparing different stimulus models for Npas4 smFISH data. We applied the BIC, AIC, and DIC metrics to the Npas4 BayFish results obtained
with the different parameter-stimulus models listed on the x-axis. For each parameter-stimulus model, three replicas of BayFish were run with
different initial conditions. The Bayesian posterior distributions for each parameter-stimulus model are shown in Additional file 1: Figure S1. AIC
Akaike information criterion, BIC Bayesian information criterion, DIC Deviance information criterion
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Fig. 6 Bayesian posterior distribution for (k1, k0)-stimulus model run on Npas4 smFISH data. aMarginal posterior distributions of parameters for
BayFish replicas (i.e., different colors correspond to distinct random number generator seeds and initial conditions). There are two distributions for k0
and k1, one of which is the pre-stimulus parameter (continuous lines) and the other is the post-stimulus parameter (dotted lines). b The mean
distribution of mRNA and active transcription site 〈P(X , τ)〉 as inferred from the Bayesian posterior distribution of parameters. The standard
deviation (σP) is shown in gray. A histogram of experimental data is shown for comparison (green dots)

mRNA and active TS counts per cell, but one could also
measure the brightness of TS sites from the smFISH data
to estimate the number of nascent mRNAs and, hence,
the transcription rate (μ1) [20]. This additional informa-
tion could further constrain the underlying model, as has
been done by others [15]. We did not include or fit TS
intensity in our Npas4 model and, thus, this provides an
independent test of the μ1 parameter inferred by BayFish.
We estimated nascent mRNAs and the transcription rate
from Npas4 active TSs (Additional file 1: Figure S2). The
estimated transcription rate has a strong mode between
7–10 mRNA min−1, which is consistent with our inferred
μ1 of 8 mRNA min−1; see Table 1.

However, our analysis also shows that there are caveats
with estimating the transcription rate from the integrated
intensity of active TSs. First, the estimate depends on the
choice of transcription elongation rate, which can vary
across genes and organisms [31]. Second, some active TSs
havemore nascent mRNAs and a higher transcription rate
than theoretically possible (grey area in Additional file 1:
Figure S2). The simplest explanation for these unusually
bright spots is that mRNAs continue to be associated with
chromatin at active TSs after transcription until further
processing [36]. Thus, the integrated intensity of an active
TS cannot be assumed to represent only nascent mRNAs
in the process of transcription.

Table 1 Estimated parameters for Npas4 (k1, k0)-stimulus model

Parameter Mean Standard deviation Units

kU1 Activation rate 0.0093 0.0010 min−1

kS1 Activation rate after stimulus 0.0839 0.0063 min−1

kU0 Deactivation rate 0.1108 0.0172 min−1

kS0 Deactivation rate after stimulus 0.0189 0.0056 min−1

μ0 ρ0 synthesis rate 0.0078 0.0042 mRNA min−1

μ1 ρ1 synthesis rate 8.14 0.2305 mRNA min−1

δ mRNA degradation rate 0.0559 – min−1
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Our mathematical model of stochastic gene expression
also assumed that each promoter allele was regulated
independently [11, 15, 23, 27]. However, previous work
has also shown that genes can exhibit strongly correlated
gene expression, particularly when integrated adjacent to
one another on the same chromosome [14, 37]. If one
Npas4 allele is independent of the other, then we expect
the active TS to exhibit a binomial distribution of zero,
one, or two active TSs with probability (1−p)2, 2p(1−p),
or p2 where p = k1/(k0 + k1), i.e., the probability of an
active allele or burst fraction. Although our results show
a statistically significant difference between the measured
and expected fractions for independent alleles (Additional
file 1: Figure S3), the data are closer to independent alleles
than perfectly correlated alleles (i.e., there are no cells with
one active TS). Modeling the weak correlations between
alleles and the post-transcriptional processing of mRNAs
at active TSs is beyond the scope of our current soft-
ware package, but these could be potentially informative
extensions of BayFish.

Conclusions
We developed a suite of MATLAB programs (BayFish),
and an alternative C++ version, that use Bayesian infer-
ence to estimate model parameters robustly from smFISH
data. We expect this software package to be useful for
other labs because it fills a critical gap in the down-
stream analysis of population snapshots of smFISH in
single cells. The user specifies any mathematical model of
stochastic gene expression with an unknown set of param-
eters (θ ) and provides smFISH data (Y ) of mRNA and
active TS counts in a population of cells at different time
points before and after induction. BayFish uses a Monte
Carlo method to estimate the Bayesian posterior probabil-
ity P(θ |Y ) of the model parameters, which elucidates the
best-fitting parameters and quantifies their uncertainty.
Based on the confidence intervals of inferred parameters
from a current data set, BayFish permits labs to design
the next set of experiments and collect additional smFISH
data (e.g., different times or more cells) that is maximally
informative.
We generated synthetic data to validate the ability of

BayFish to infer the correct parameters and tested its per-
formance on smFISH data sets with sampling error. We
further demonstrated how BayFish can be combined with
information criteria to select the most informative under-
lying model. Finally, we used BayFish to extract mean-
ingful biological information from Npas4 gene expression
in single neurons (Fig. 1). Our results favor a two-state
model where the stimulus increases k1 and decreases k0.
Both parameters modulate the Npas4 burst fraction, e.g.,
fraction of time that a promoter spends in the active, on
state, without changing the transcription rate of the on or
off state. Modulation of the burst fraction upon induction

is consistent with previous observations for other genes
[13, 15, 38], although modulation of the transcription
rate (μ1) upon induction has also been documented
[14]. Future experiments will address mechanisms of
activation and cell-to-cell variability in Npas4 and other
immediate-early genes of primary neurons. This can be
done by combining genetic and pharmacological per-
turbations of gene expression with downstream BayFish
analysis of multi-color smFISH distributions of several
immediate-early genes.

Methods
Npas4 smFISHmeasurements in single neurons
Neuron-enriched cultures were generated from the cortex
of male and female E16.5 CD1 mouse embryos (Charles
River Laboratories Inc., Wilmington, MA, USA) and cul-
tured as previously described [39]. Neurons were treated
with 1 μM tetrodotoxin (TTX) (Tocris Cookson, Ball-
win, MO, USA), a sodium channel inhibitor, at DIV6 and
depolarized by elevating the extracellular potassium con-
centration to 55 mM with an isotonic KCl solution at
DIV7 [40], which activates L-type voltage-gated calcium
channel dependent transcription ofNpas4 [41]. Cells were
fixed at four time points: no KCl, 5 min KCl treatment,
5 min KCl treatment plus 10 min condition medium, and
5 min KCl treatment plus 20 min condition medium as
indicated in Fig. 1.
Neurons were fixed in 4% Paraformaldehyde (PFA)

at room temperature for 10 min after sampling and
permeabilized by 70% (v/v) EtOH at 4 °C overnight.
The mouse Npas4 mRNAs were hybridized with the
Quasar® 570 Stellaris RNA FISH Probe set following the
manufacturer’s instructions, which are available online.
Custom Stellaris® FISH Probes were designed against
mouse Npas4mRNA by utilizing the Stellaris® RNA FISH
Probe Designer (Biosearch Technologies, Inc., Petaluma,
CA, USA), which is available online. We hybridized
probes to samples in a hybridization buffer (10% for-
mamide, 10% 20× SSC, 10% dextran sulfate, 1 mg mL−1

Escherichia coli tRNA, 2 mM vanadyl ribonucleoside
complex, and 20 μg mL−1 Bovine serum albumin (BSA))
at 37 °C for 4 hours followed by Hoechst staining. Z-
stack images were captured on a wide-field microscope
(DMI4000, Leica) equipped with a CCD camera (DFC365
FX, Leica) and controlled by MetaMorph (Molecular
Devices). An objective withNA 1.4 and 63×magnification
yielded an xy pixel-size of 146 nm. Then, 35–45 Z-slices
were recorded with a 200 nm step-size and 1 second
exposure time.
We used FISH-quant [21] to identify and count absolute

mRNA numbers and active TSs in single cells (Fig. 1). The
active TSs can be detected because nascent mRNAs are
transiently attached to the elongating RNA Polymerase
II in the gene, accumulating fluorescent probes around
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active sites, and then appear as highly intense dots (one or
two, as there are two copies of the gene) in the nucleus of
the diploid cell. We and others have confirmed that these
nuclear spots mark the active TSs because they colocal-
ize in two-color smFISH with probes specific for the gene
introns, which are present only in nascent RNAs (data not
shown and [42]).

Monte Carlo sampling and burn-in
The number of iterations (T), covariance matrix (�),
and burn-in period were determined by monitoring
the acceptance rate of proposals and the distribution of
parameters and likelihood in the stationary phase of the
Monte Carlo algorithm. The rate at which the Markov
chain approaches stationarity (i.e., the region with higher
likelihood) depends on the covariance matrix � used
to draw new proposals. We defined the burn-in as the
initial period where the log-likelihood was increasing
and less than 99.5% of the maximum. The burn-in period
is sensitive to the initial parameters and the parameter-
stimulus model. Given our experimental data, we verified
that T = 105 iterations and our covariance matrix �

were sufficient for BayFish to achieve stationarity and
adequately sample the Bayesian posterior distribution
after discarding the burn-in. The final covariance matrix
� was diagonal with 10−5 for k0, k1,μ0 and 10−3 for μ1
proposals.

Generating synthetic smFISH data
For a given stimulus model and known parameter set
(truth), we calculated the mRNA and active TS distribu-
tions using the algorithms described in the main text. The
pre-stimulus stationary distribution at t = 0 min was
generated using the unstimulated parameters, whereas
the post-stimulus distributions at t = 5, 15, 25 min were
generated using the stimulated parameters. From these
distributions, we created a technical replicate by ran-
domly sampling n cells from each mRNA and active TS
distribution calculated at each time point. We generated
technical replicates of synthetic smFISH data for two
parameter-stimulus models: a k1-stimulus and a (k1, k0,
μ1)-stimulus model. The k1-stimulus model had the fol-
lowing six parameters: kU1 = 0.01 min−1, kS1 = 1 min−1,
k0 = 0.1 min−1, μ1 = 2 mRNA min−1, μ0 = 0.01 mRNA
min−1, and δ = 0.05 min−1. The (k1, k0, μ1)-stimulus
model had the following eight parameters: kU1 = 0.01
min−1, kS1 = 1 min−1, kU0 = 1 min−1, kS0 = 0.01 min−1,
μU
1 = 0.2 mRNAmin−1,μS

1 = 2mRNAmin−1,μ0 = 0.01
mRNA min−1, and δ = 0.05 min−1.

Information criterion andmodel fitting
We used several information criteria, such as BIC [32],
AIC [33], and DIC [34], to evaluate the likelihood of
different models and to penalize model over-fitting:

• Bayesian information criterion:

BIC = −2 ln(L̂) + m ln(n). (8)
• Akaike information criterion:

AIC = −2 ln(L̂) − 2m + 2m(m + 1)
n − m − 1

. (9)

The maximum likelihood L̂ = P(Y |θ̂ ) is the maximum
value of L obtained during the BayFish run,m is the num-
ber of free parameters that were fit, and n is the total
sample size. These metrics do not take full advantage of
the Bayesian posterior probability estimated by BayFish.
Thus, we also used:

• Deviance information criterion:

DIC = 2D̄ − D(θ̄). (10)

The deviance is

D(θ) = −2 lnP(Y |θ) = −2 lnL. (11)

D̄ = E[D(θ)] is the mean of the deviance D(θ) calculated
from the Bayesian posterior probability, whereas D(θ̄) =
D(E[ θ ] ) is the deviance of the mean of θ calculated from
the Bayesian posterior probability.

Availability and requirements
Project name: BayFish
Project homepage: https://github.com/mgschiavon/
BayFish; http://doi.org/10.5281/zenodo.830056
Operating system: Platform independent
Programming language:MATLAB or C++
Other requirements: See README file in the project
homepage.
License: GNU General Public License v3.0

Additionally, the datasets analyzed during the current
study are also available in the GitHub repository, https://
github.com/mgschiavon/BayFish/tree/master/DATA.

Additional file

Additional file 1: Supplementary figures S1–S3. (PDF 233 kb)
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