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Abstract

Background: Whole-genome bisulfite sequencing (WGBS) is the gold standard for studying landscape DNA
methylation. Current computational methods for WGBS are mainly designed for gene regulatory regions with
multiple under-methylated CpGs (UMCs), such as promoters and enhancers.

Results: To reliably predict the functional importance of single isolated UMCs across the genome, which is usually
not achievable using traditional methods, we develop a multi-sample-based method. We identified 9421 sparse
conserved under-methylated CpGs (scUMCs) from 31 high-quality methylomes, which are enriched in distal
interacting anchor regions co-occupied by multiple chromatin-loop factors and are flanked by highly methylated
CpGs. Moreover, cell lineage-specific scUMCs are associated with essential developmental genes, regulators of cell
differentiation, and chromatin remodeling enzymes. Dynamic methylation levels of scUMCs correlate with the
intensity of chromatin interactions and binding of looping factors as well as patterns of gene expression.
Conclusions: We introduce an innovative computational method for the identification of scUMCs, which are novel

epigenetic features associated with high-order chromatin structure, opening new directions in the study of the
inter-relationships between DNA methylation and chromatin structure.

Keywords: Sparse conserved under-methylated CpG, Whole-genome bisulfite sequencing, Multi-sample-based
method, Chromatin-loop factors, Interacting anchor, DNA methylation, Chromatin structure

Background

DNA methylation is an important epigenetic modification
involved in both normal development and disease. In the
whole genome, highly methylated CpG dinucleotides gov-
ern most of the methylome (70-80%) [1, 2], except in
gene regulatory regions which are characterized by inter-
mediate to low levels of methylation. Single-base methy-
lome analysis by whole-genome bisulfite sequencing
(WGBS) has led to the recent proposal of several epigen-
otypes that characterize the nature and function of DNA
sequences with reduced cytosine methylation, including
low methylated regions (LMRs) [3], hypo-methylated re-
gions (HMRs) [4], under-methylated regions (UMRs) [4],
and DNA methylation canyons [5] and valleys (DMVs)
[6]. These hypomethylated regions are often both enriched
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in transcriptional regulatory elements such as promoters,
enhancers, and transcription factor binding sites (TFBSs)
as well as subject to aberrant changes in tumorigenesis. A
defining property common to the last three epigenotypes
is the extent of low methylation (mCG < 10%). Thus, they
may be broadly considered classes of UMR. Given that
methylation of a single cytosine position in supercoiled
DNA has been shown to be sufficient to alter the kinetics
of local DNA helix stability in vitro [7], it surprised us that
current computational methods cannot reliably predict
genome-wide very short, functional UMRs containing less
than four under-methylated CpGs (UMCs) [2, 5]. For ex-
ample, they can either be ignored by algorithmic design
[5] or discarded following correction for multiple hypoth-
esis testing [2] (Additional file 1: Figure Sla).

Additional strategies for identifying gene transcrip-
tional regulatory regions also include Dnase I Hypersen-
sitive sites (DHSs) [8] as well as chromatin modifications
assayed by chromatin immunoprecipitation sequencing
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(ChIP-seq) [9, 10]. The majority of DHSs are associated
with local hypomethylation. If we consider the frequency
of co-occurrence between a given set of UMRs (pre-
dicted without false discovery rate [FDR] correction) and
DHSs in a particular cell model, the proportion of short,
single-base UMRs found in DHSs is low relative to that
of larger UMR (Additional file 1: Figure S1b). However,
the absolute number of these single-base UMRs is ap-
proximately threefold greater than that of larger UMRs
(Additional file 1: Figure Slc) [2], suggesting there is a
considerable number of functional sequence elements
with regulatory potential subject to epigenetic control
that have been missed by previous methylation studies.
Among these methods for investigating regulatory re-
gions genome-wide, WGBS is unique in that it provides
information at single-base resolution. We can map
single-base UMCs, but no published methods can pre-
dict their functionality. Hidden Markov Model (HMM)
[3-5] and window-based [6] methods are frequently
used to identify regions of low methylation. But these
two methods will not be effective because they are
agglomerative and depend on the correlation of methyla-
tion levels between adjacent CpGs [11]. Simply put,
functional single-base UMCs, by definition, do not
cluster together as the UMCs in larger UMRs.

The genome possesses three-dimensional (3D)
organization in nuclear space, which regulates transcrip-
tion by facilitating interactions between gene promoters
and distal regulatory elements within large topological
domains [12—17]. Chromatin loops are used to describe
the long-range interactions within topological domains
that connect distal regulatory elements with target pro-
moters [9, 18]. Cohesin protein complex (RAD21 and
SMC3), CTCE and ZNF143 are four major factors in-
volved in the establishment and maintenance of long-
range interactions. In fact, most of the anchors of chroma-
tin loops mapped in human cells are co-bound by these
four factors together [14, 19] (Additional file 2: Table S1).
The mechanisms through which these four factors medi-
ate high-order chromatin structures are partially under-
stood (Additional file 2: Table S2). Several studies have
shown that the deletion or inversion of CTCF sites is
enough to disrupt the corresponding chromatin loop and
alter gene expression [20—22]. Furthermore, some proto-
oncogenes (such as PDGFRA (23], TALI, and LMO?2 [24])
can be activated by the deletion of CTCF sites at the
boundaries of topological domains. ZNF143, a more re-
cently characterized chromatin-loop associated factor,
provides sequence specificity to secure chromatin interac-
tions at gene promoters, interactions which are disrupted
by single-nucleotide polymorphisms (SNPs) at ZNF143
motif sites [25]. Notably, the binding of chromatin-loop
factor CTCF is methylation-sensitive [26]. Two recent
studies focusing on specific gene loci demonstrated that
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DNA methylation of CTCE-binding sites can disrupt
chromatin looping and alter the expression of target genes
[23, 27]. Methods to predict chromatin-interaction fre-
quencies and/or topological-associated domains from
large, genome-wide epigenetic datasets [28, 29] have been
proposed, but the broader role of DNA methylation in
mediating 3D organization of the genome remains poorly
understood.

Here, we developed a new method, which is based on the
information from multiple samples, to identify functional
UMCs. We define sparse conserved under-methylated
UMC (scUMC) as CpG maintained at under-methylated
levels and sparsely distributed in highly methylated back-
ground in multiple cell types. The scUMCs are found in
distal anchor regions co-occupied by multiple chromatin-
loop factors (RAD21, SMC3, CTCEF, and ZNF143). Despite
the fact that neighboring CpGs are highly methylated, the
binding intensity of chromatin-loop factors and interaction
frequencies associated with scUMC are comparable to
those observed with conventional, long UMRs. Further-
more, cell-type-specific methylation of scUMCs (such as
during cell lineage commitment) is concomitant with re-
duced chromatin interactions and chromatin-loop factor
binding and altered gene expression programs. Overall, our
results demonstrate that a new epigenetic feature, scUMC,
is involved in cell-specific regulation of long-range chroma-
tin interaction mediated by chromatin-looping factors.

Results and discussion

Identification of sparse under-methylated CpG conserved
across cell types

Compared with long UMRs (regions including > 4 UMCs),
the majority of single-base UMCs in a methylome popula-
tion are sample-specific (~93%) (Fig. 1a). Thus, the first
step in detecting functional UMC is to remove those which
occur stochastically. The recent adoption of WGBS by the
epigenetics field has led to a number of high-quality refer-
ence methylomes. We utilized the information from a large
number of biological replicates to quantify single-base
UMC frequency in the population. Our method is as
follows (Additional file 1: Figure S2): first, we collected all
the UMCs from 31 phenotypically normal human cell
model WGBS datasets passing stringent quality controls
and processed via the same analysis workflow. We removed
sites in long UMRs as well as those associated with SNPs.
Second, we assigned an under-methylation conservation
score to each candidate UMC based on the observed fre-
quency in the population. Third, we selected a set of con-
served UMCs based on modeling the scores according to
Chebyshev’s Inequality [30], a robust, probabilistic method
to detect outliers without assumption of the distribution.
When applying the cutoff p<0.01, only those UMCs
conserved in ten or more methylomes are designated
functional UMCs (Additional file 1: Figure S2). Our analysis
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Fig. 1 Identification of scUMC. a Number of sample methylomes sharing either a given UMR (no less than four CpG, right) or a given UMC in an
otherwise discarded UMR (less than four CpG, left). b Methylation levels of central UMC and flanking CpG sites in UMRs detected in B cells.

¢ Methylation levels of scUMCs and flanking CpG sites detected in B cells. d Percentage of indicated epigenetic features (candidate UMCs or
scUMCs) overlapping DHSs. Candidate UMCs represent all UMCs in discarded UMRs from the population of methylomes (n = 31). Further details
are provided in “Methods" and Fig S2. e Average vertebrate PhastCons scores in 2.5-kb region flanking scUMCs or non-conserved UMCs
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identified 9421 UMCs satisfying these criteria. Whereas
spatially proximal UMCs cluster together to form conven-
tional UMRs (Fig. 1b), our predicted functional UMCs are
flanked by highly methylated CpGs (Fig. 1c). Further, they
are enriched in open, DNase I-accessible chromatin (Fig. 1d)
and evolutionarily conserved (Fig. 1e). Given their charac-
teristics, (1) sparse distribution in a highly methylated
background, (2) DNase I hypersensitivity, (3) evolutionary
and (4) epigenetic conservation (maintaining under-
methylated states in multiple cell types), we termed them
scUMC. Detailed comparisons between scUMC and almost
all (to the best of our knowledge) previous studies for
UMRs demonstrate that scUMC is indeed a novel epigen-
etic feature with negligible overlap with previously reported
UMRSs. (Additional file 1: Figure S1d; Additional file 2:
Table S3 and S4).

scUMCs are enriched in chromatin-loop factors and
long-range chromatin interactions

If 9421 scUMCs are functionally distinct from 43,996 con-
served UMRs (see “Methods”), we reasoned they should
differ in CpG density and proximity to gene promoters. In
contrast to conserved UMRs, scUMCs are markedly CpG-
poor (Fig. 2a) and generally not found in either CpG islands
[31] or CpG island shores (Fig. 2b). The scUMCs occur dis-
tal to transcriptional start sites (TSSs) whereas conserved
UMRs are equally likely to be found proximal or distal
(Fig. 2c). To investigate scUMCs further, we considered
functional elements predicted by an unbiased, data-driven
approach: chromatin state segmentation [9]. As expected,
the analysis found scUMCs are not associated with pro-
moter states (Additional file 1: Figure S3), but are enriched
in insulator elements compared to conserved UMRs. The
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Fig. 2 Features of scUMCs. a—d Three groups of under-methylated features are color-coded: blue (conserved UMRY), red (scUMCs), and gray
(non-conserved UMCs). a CpG density (normalized to 100 bp). b Percentage of features associated with either CGl or CGI shore. ¢ Distribution of
distances to TSSs. d Percentage of features associated with regulatory elements from ENCODE. Promoter and enhancer regions are defined by
chromatin state segmentation (ChromHMM) from ENCODE as described in “Methods.” TFBSs are ChIP-seq peak clusters for 161 transcription factors
(ENCODE). Promoter TFBS is the subset of TFBSs with overlapping promoter states. Enhancer TFBS is the subset of TFBSs with overlapping enhancer
states. Distal TFBS is the subset of TFBS not overlapping chromHMM Promoter or Enhancer states. The error bar is the 95% confidence interval of

percentage for nine cell lines involving chromatin state segmentation
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scUMC:s are associated with enhancer states, but to a much
lesser extent than conserved UMRs. Next, we examined the
relationships between scUMCs and peak clusters of DNA
binding for 161 transcription factors in 91 cell types from
the ENCODE Project Consortium [9]. The scUMCs show
strong enrichment for distal TFBSs not overlapping with
either promoters or enhancers, whereas conserved UMRs
are similarly enriched for both promoter and distal TFBSs
(Fig. 2d).

Having established that scUMCs are associated with dis-
tal TEBSs collectively, we next asked whether the relation-
ship was characterized by enrichment for particular DNA-
binding proteins. We identified four factors specifically
enriched in scUMCs, including RAD21, SMC3, CTCE,
and ZNF143 (Fig. 3a; Additional file 1: Figure S4a). En-
richment of each factor is present but considerably re-
duced in conserved UMRs (p value = 0.045; one-tailed t-
test) by comparison and indistinguishable from other TFs
such as POLR2A, MAX, MYC, YY1, and EP300 (Fig. 3b).
These four factors (RAD21, SMC3, CTCE, and ZNF143)
are present at the anchor regions of chromatin interac-
tions, serving as chromatin-looping factors [14]. To inves-
tigate this relationship further, we focused on looping
factor occupancy and chromatin-interaction frequency at

scUMC:s in a particular cell type. The GM12878 is a well-
characterized cell model for the lymphoid-committed B-
cell lineage. We obtained published looping factor ChIP-
seq and chromatin interactions detected by RAD21 ChIA-
PET in GM12878 cells. We compared these datasets to
predicted scUMCs and conserved UMRs (5237 and
43734) in B cells (GSM791827 [32]). The scUMCs show
increased enrichment both for sites co-occupied by loop-
ing factors as well as distal interacting anchors compared
to conserved UMRs (Fig. 3¢c). The scUMCs in chromatin-
loop factor binding sites are proximal to highly methylated
CpG, resulting in marked differences between the average
methylation levels of binding sites with scUMCs com-
pared to sites with conserved UMRs (Fig. 3d). Neverthe-
less, the binding intensities of chromatin-loop factors
(Rad21, Znf143, and CTCF) to regions with scUMCs or
with UMRs are quite comparable (Fig. 3e). Rad21 inter-
action frequencies are slightly greater for anchor regions
associated with scUMCs compared to UMRs (Fig. 3f).
These central findings regarding scUMCs, comparable (1)
intensity and (2) methylation level of chromatin-loop
factor binding sites, and (3) cohesin subunit interaction
frequencies were replicated in independent analyses of H1
embryonic stem cells (ESCs) (Additional file 1: Figure
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S4b—f). Thus, several lines of evidence suggest scUMCs
are characteristic of distal functional genomic elements
and distinct from conserved UMRs. scUMCs are more
frequently associated with looping factor occupancy
as well as anchor regions of chromatin loops. Even
though the regions are more highly methylated as a
whole, they show the same level of factor occupancy
or interaction frequency compared to regions with
conserved UMRs.

Methylation of scUMCs impacts chromatin-loop factors
occupancy and the intensity of chromatin interactions
If scUMC:s play a functional role in mediating higher order
chromatin interactions, we reasoned that gain of

methylation would perturb chromatin interactions. ESC
and blood-cell lineages are similarly represented in the
population of methylomes we used to define scUMCs and
can be clearly clustered into two groups by methylation
level (Additional file 1: Figure S5). Further, they model a
critical cell-fate decision point in stem-cell biology. Methy-
lation differences could reflect biological differences. Thus,
we compared the methylation levels of scUMCs in
chromatin-looping factor binding sites (n =2195) between
the two groups, ESCs and cells committed to the blood
lineage. We identified 177 and 285 scUMCs specific to
ESCs and blood cells, respectively (Additional file 1: Figure
S6). Next, we asked whether the differentially methylated
scUMCs were associated with particular types of genes or
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biological functions. We found cell lineage-defining
scUMC:s are associated with essential developmental genes,
regulators of cell differentiation as well as hematopoietic
system phenotypes (supported by mouse knockout models).
Interestingly, they also include nuclear proteins with spe-
cific functions in chromosome organization, including
chromatin remodeling (SWI/SNF) and histone methylation
(Fig. 4a). The epigenetic changes clearly reflect and are con-
sistent with stem-cell differentiation and commitment to
the functional blood-cell lineage. We then investigated
whether cell-specific scUMCs reflected differences in bind-
ing of chromatin-loop factors (Rad21, Znf143, and CTCEF)
between GM12878 blood and H1 ESCs. Factor binding at
blood-specific scUMCs was significantly decreased in H1
ESCs and conversely, binding at ESC-specific scUMCs was
significantly reduced in GM12878 cells (Fig. 4b and Add-
itional file 1: Figure S7a). Binding was not affected at
scUMCs common to both cell types. These results indicate
the methylation state of scUMCs can be directly related to
the binding intensity of chromatin-loop factors. To test the
impact of cell-specific scUMCs on functional chromatin
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interactions, we compared ChIA-PET experiments of
Cohesin complex members RAD21 [14] in GM12878 blood
and SMCI1 [17] in H1 ESCs (to the best of our knowledge,
GM12878 Rad21 and H1 SMC1 are the only two suitable
ChIA-PET datasets that also have corresponding WGBS
methylation data). In GM12878 cells, RAD21 interaction
intensity is increased for loop anchor regions with blood-
specific scUMCs compared to regions with ESC-specific
scUMCs (Fig. 4c, d). Conversely, SMC1 interaction inten-
sity in H1 cells is increased for loop anchor regions with
ESC-specific compared to blood-specific scUMCs (Add-
itional file 1: Figure S7b). Furthermore, in the additional
analysis between blood lineage and alternate cell commit-
ment fibroblast/neuron lineages, we again observed the in-
crease of RAD21 interaction in loop anchor regions with
blood-specific scUMCs compared to regions with fibro-
blast/neuron-specific scUMCs, although with a p value
(0.057) trending towards significance (Additional file 1: Fig-
ure S8). In summary, despite the fact that scUMCs repre-
sent individual unmethylated CpG among a highly
methylated background, scUMCs’ gain of methylation is

a c
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directly linked to both weakened binding of chromatin-
loop factors as well as reduced chromatin interactions (me-
diated by the chromatin-loop factors).

scUMC dynamics and gene expression
Chromatin loops anchored by Rad21, Znf143, and CTCF
are known to bridge the enhancer and promoter and
regulate gene expression [14, 15]. Although scUMCs do
not overlap enhancer regions with the same frequency as
conserved UMRs (Additional file 1: Figure S3), they are
more enriched for the anchors of chromatin-interaction
loops. Histone modifications, such as H3K27ac and
H3K4mel, can also contribute to the cell-specific binding
and interactions [14, 33]. We asked whether cell-specific
scUMCs are associated with distinct patterns of histone
modifications. Interestingly, we observed cell-specific in-
creases in the profiles of active enhancer marks, such as
H3K27ac, H3K4mel centered on cell-specific scUMCs,
but not for inactive mark H3K27me3 (Fig. 5a, Additional
file 1: Figure S9a). The active marks are depleted at the
sites of scUMCs but enriched around their flanking re-
gions, suggesting the scUMCs are found in nucleosome-
free DNA.

Next, we investigated whether cell-specific scUMCs in
chromatin loops are associated with cell-specific gene ex-
pression programs. We used the anchors of chromatin
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loops to associate scUMCs with scUMC-target genes. If the
mate of an anchor region containing a scUMC overlapped
with the promoter region (+3 kb from TSS) of a gene, it
was considered the scUMC-target gene. We used ChIA-
PET experiments of Cohesin complex members RAD21
[14] in GM12878 blood and SMC1 [17] in H1 ESCs to
detect blood- and ESC-specific target genes separately
(Additional file 1: Figure S9b). The control scUMC-target
genes were the combined results of the two (Additional file
1: Figure S9b). Analysis of GM12878 and H1 RNA-seq pro-
files indicate cell-specific scUMC-target genes, as a popula-
tion, tend to be more highly expressed in the cell type of
which they are defined (Fig. 5b). One blood-specific
scUMC-target gene of interest is PDS5B. The yeast homo-
log Pds5 functions as a regulatory subunit of the Cohesin
complex. Human PDS5B has been shown to be a negative
regulator of cell proliferation and may function as a tumor
suppressor [34]. In GM12878 cells, a RAD21 interacting
loop bridges the PDS5B promoter and blood-specific
scUMCs together with a specific enhancer beside this
scUMC, resulting in higher expression of PDS5B in
GM12878 cells (GM12878 vs. H1 rpkm values: 9.37 vs.
3.31; p value < 0.05) (Fig. 5¢c). Collectively these results sug-
gest that cell-type-specific scUMCs correlate with differen-
tial gene expression by impacting chromatin high-order
structure and interactions.
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Conclusion

In general, sparse UMCs are discarded by conventional
approaches for predicting functional UMRs. Our multi-
sample-based method identifies a novel epigenetic feature,
scUMC, whose functionality is suggested by multiple lines
of experimental evidence: DNA binding of chromatin-
looping factor, chromatin-interaction intensity, and gene
expression. We demonstrate evidence of functionality in
both ESCs as well as blood lineage-committed cells and
that differential methylation of scUMCs reflects their bio-
logical differences, being significantly enriched for genes
involved in stem-cell differentiation and hematopoietic
phenotypes. Despite the fact scUMCs represent individual
unmethylated cytosines among a highly methylated back-
ground, scUMC gain of methylation is directly linked to
both weakened binding of chromatin-loop factors as well
as reduced chromatin interactions. In fact, much of the
variation in CTCF binding has been linked to differential
DNA methylation, concentrated at two critical positions
within the CTCF recognition sequence [35]. We are only
now beginning to understand the role of gene distal
methylation alterations in disease [36, 37]. Disruption of a
topological domain boundary by DNA methylation upre-
gulates the oncogene PDGFRA in IDH mutant gliomas
[23]. We observed roughly 15% of scUMCs occur in such
boundaries delineated by ChIA-PET [24]. Therefore,
further studies of the role scUMCs may play in boundary
collapse or other aberrant chromatin interactions during
tumorigenesis are warranted.

Methods

Published datasets

In this study, we used a total of 51 datasets (Additional file 3:
Table S5) including 31 WGBS, 16 ChIP-seq, two ChIA-PET,
and two RNA-seq obtained from Roadmap Epigenomics and
ENCODE. CpG island (CGI) reference coordinates were
downloaded from the UCSC genome annotation database.
DHS clusters, peak clusters of 161 TFBS (wgEncodeRegTth-
sClusteredV3), wgEncodeBroadHmm tables were generated
by the ENCODE Project Consortium and downloaded from
the UCSC database. The wgEncodeBroadHmm datasets
represent chromatin state segmentation for nine human cell
types learned by computationally integrating ChIP-seq data
for nine factors plus input using a HMM [38]. Promoter and
Enhancer states presented in Fig. 2d represent the union of
multiple states describing these same broader categories.
Analyses including all predicted states for all nine cell types
are presented in Additional file 1: Figure S3.

WGBS data pre-processing

For each WGBS sample in 31 normal cell types (Additional
file 3: Table S5), we use BSMAP to trim adaptor and low-
quality sequences with default threshold, align bisulfite-
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treated reads to human hgl9 genome. BSeQC [39] was
then used to remove the technical biases in WGBS data, in-
troduced by end repair, polymerase chain reaction (PCR)
amplification, and overlapping segments in paired-end
reads. We used MOABS [40] to calculate the methylation
ratio for CpG sites supported by at least four aligned reads.

UMR detection

The UMRs are identified with the requirement of at least
four consecutive hypomethylated CpG sites and a mean
methylation ratio < 10% as previously described [5]. A total
of 1,397,217 UMRs were identified from the 31 samples.

Conservation score

First, we collected all UMCs (UMC: %mCpG < 10%) found
in at least one sample methylome. Next, we excluded
UMC:s lying in conventional UMRs from the subsequent
analysis. In addition, the UMCs lying in SNPs are also
removed. The result is candidate UMCs that may be
scUMCs. Finally, we used the following formula to calcu-
late the conservation score for a candidate UMC.

S = ]Gl : % 100
heres. — {1 if sisa UMC in the ith sample
' 0, otherwise

Sparse conserved under-methylated CpG (scUMC)
detection

It is expected the UMC with a higher conservation score
(occurs in more samples) is more likely to be a functional
region. Therefore, credible UMC detection is essentially
the identification of “outlier” UMCs with significant
conservation scores. Here, we used Chebyshev’s Inequality
to detect the credible UMCs and merging regions within
300 bp to obtain scUMCs. Chebyshev’s Inequality is a
non-parametric method to detect outliers [30]. This
method is statistically robust and does not make assump-
tions of the distribution of UMC conservation scores.
Chebyshev’s Inequality is usually stated for a random
variable. Let X has a finite mean y and finite non-zero
variance ¢°, then for any real number & > 1:

1
Pr(|X- ,u|2ka)£P

Applying this into credible scUMC detection and using
as m and v as estimators of # and ¢®. For UMC conserva-
tion score, m and v are its mean and standard deviation in
all the WGBS data. So, we have:
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1
Pr(|X- m|2kv)sp

For a UMC, if its conservation score in all the WGBS
data was 4.5 times of v (standard deviation) larger than
the m (mean), then the probability of finding a UMC
which occurs with the same or more samples than this
UMC in these 31 WGBS data is 1/(4.5**2) = 0.05. This
value is a kind of p value. Based on this criterion of p =
0.01, only the candidate UMCs conserved in ten or more
samples would be detected as scUMCs. Non-conserved
UMC is a subset of candidate UMCs based on non-
significant p value (0.95) without scUMC.

Conserved under-methylated region (UMR) detection

In order to compare scUMCs, we identified the con-
served UMRs from all the UMRs detected from the 31
high-quality methylomes. We merged a total of
1,397,217 UMRs to 260,150 non-redundant UMRs. We
then calculated the conservation score as described
above for each UMC lying inside the non-redundant
UMR. We defined 43,996 conserved UMRs with at least
one UMC lying inside the UMR with the same conserva-
tion cutoff (not less than ten samples).

FDR calculation for minimal number of CpG in UMR

To calculate the FDR for a cutoff of the minimal CpG
number in a conventional UMR, we compared the UMR
detected in the original methylome with a randomized
methylome by HMM. For a given methylome, we per-
formed a random shuffle for the methylation level of all the
CpGs to destroy the spatial correlation in nearby CpGs and
construct the randomized methylome. Thus, we detected
the UMR in the randomized methylome by the same pro-
cedure. The resulting null distribution indicates the min-
imal CpG number required in classic UMR detection.

Rad21, CTCF, Znf143, and histone modification ChiP-seq
data analysis

The raw reads for ChIP-seq data were downloaded from
Gene Expression Omnibus and the detail information
about the data were listed in Additional file 3: Table S5
[41]. Reads were mapped to human genome hgl9 using
BWA [42]. Reads that could be mapped to multiple loca-
tions were removed. To remove the PCR resulted clonal
reads, two clonal reads at the most were kept for subse-
quent analysis. The number 2 was based on Poisson p value
cutoff of 1 x 10 - 5 determined by the total number of reads
with respect to the theoretical mean coverage across the
genome. Then, the remaining reads were analyzed with
DANPOS v2.2.1 [43] for read depth normalization, input
signal subtraction, and occupancy calculation.
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RNA-seq data analysis

Raw reads for GM12878 (GSM958728;GSM958742) and
H1 (GSM958733;GSM958743) cells were downloaded from
Gene Expression Omnibus [44]. We used Trim Galore
(http://www.bioinformatics.babraham.ac.uk/projects/trim_-
galore/) to trim the low-quality bases and the adapters.
TopHat [45] was used to mapping the raw reads on hgl9
with the default parameters. The gene annotation used for
transcriptome alignment is hgl9 GTF annotation file from
UCSC annotation database. Differentially expressed genes
were defined by the cutoff: FDR <0.05 using the function
Cufdiff in Cufflinks [46].

Additional files

Additional file 1: A PDF file containing all supplementary figures.
(DOCX 1444 kb)

Additional file 2: A.docx file containing Tables S1-S4. (DOCX 282 kb)

Additional file 3: Table S5. is anxIs file containing all datasets (31 WGBS,
16 ChIP-seq, two RNA-seq, and two ChIA-PET) used in this study. (XLS 36 kb)

Additional file 4: Table S6. is anxls file containing 9421 scUMCs
detected in 31 WGBS. (XLS 1919 kb)
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