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Abstract

called Qtip, which is compatible with popular aligners.

Read alignment is the first step in most sequencing data analyses. Because a read’s point of origin can be ambiguous,
aligners report a mapping quality, which is the probability that the reported alignment is incorrect. Despite its
importance, there is no established and general method for calculating mapping quality. | describe a framework for
predicting mapping qualities that works by simulating a set of tandem reads. These are like the input reads in
important ways, but the true point of origin is known. I implement this method in an accurate and low-overhead tool
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Introduction

Read alignment is often the first task when analyzing
sequencing data. This is the process of determining each
read’s point of origin with respect to a reference genome.
Much prior work is concerned with making read aligners
computationally efficient [1]. That said, a read’s point of
origin can be ambiguous, and the reported alignments can
be incorrect [2]. Repetitive genomes, sequencing errors,
and genetic differences contribute to the problem. In
addition to being efficient, aligners must accurately char-
acterize the uncertainty associated with each alignment,
as first proposed in the seminal MAQ study [2], which
coined the term “mapping quality” Aligners have methods
for predicting mapping quality, which is reported in the
MAPQ field of the SAM/BAM format [3]. These methods
are generally quite ad hoc, and are not well described in
research literature or software manuals.

We introduce the tandem simulation framework for
predicting mapping qualities for all the alignments in a
dataset in a manner that is agnostic to the aligner and
parameters used. We also introduce Qtip, a tool imple-
menting the framework. Qtip operates alongside and in
cooperation with an aligner like Bowtie 2 [4]; the term
“tandem simulation” refers to this cooperation. After
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observing the input reads and alignments, Qtip trains an
ensemble tree model for predicting mapping qualities.
Training uses simulated tandem reads, which are ran-
domly drawn from the genome but crafted in a way that
mimics the statistical properties of the input reads, includ-
ing their length, quality, gap, and edit distributions. The
aligner must be modified to report feature data for the
model, but alignment algorithms need not be changed. We
implemented changes for the Bowtie 2 [4], BWA-MEM
[5], and SNAP [6] aligners. Qtip works with any aligner
that outputs feature data in a special SAM field; it is not
limited to the tools adapted for this study.

We demonstrate that Qtip’s predictions are superior
to those made by the read aligners themselves, both on
average and for most specific MAPQ thresholds tested.
We use simulation experiments to show this for various
read aligners (Bowtie 2, BWA-MEM, and SNAP), align-
ment settings (read lengths, alignment parameters, and
species), and accuracy criteria. We also perform a variant-
calling experiment to show the improved mapping quali-
ties can benefit downstream analysis. To our knowledge,
this is the first description of a general technique for char-
acterizing alignment uncertainty that is applicable across
software tools and alignment settings.

Background
Alignment errors

Given a sequencing read and reference genome, a read
aligner like Bowtie 2 [4], BWA-MEM [5] or SNAP [6]
will search for the read’s highest-scoring alignment to a
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substring of the reference. An alignment score measures
the degree of similarity between the strings, with a higher
score indicating fewer mismatches and gaps. If more than
one alignment has the maximal score, one is chosen arbi-
trarily. Though many aligners can be configured to report
more than one alignment per read, we assume here that
just one is reported, as is common. If the reported align-
ment does not correspond to the read’s true origin, the
alignment is incorrect, and we call this an alignment error.
Incorrect alignments lead to interpretation problems
later [7, 8].

Aligners use heuristics — computational shortcuts — to
limit the effort expended. Heuristics affect which align-
ments can and cannot be found, shaping what errors the
aligner might make. Additional file 1: Note 1 outlines the
heuristics used by Bowtie 2.

We can divide alignment errors into three categories, as
suggested in the MAQ study [2]:

1. The read is reported to have originated from a locus
in the reference genome, but actually originates from

a sequence not included in the reference.
2. No alignment to the reference is found, but the read

actually originates from some locus in the reference.

3. Analignment to locus L, in the reference is reported,
but the read actually originates from a different locus
in the reference, L;.

Category 1 errors might be caused by contaminating
DNA, or by an inappropriate or incomplete reference
genome sequence. Category 2 errors can occur when
the alignment at L; falls below the minimum similarity
threshold (Spin), or when the alignment at L; is missed
due to alignment heuristics. Category 3 errors are caused
by a combination of repetitive DNA, sequencing errors,
genetic differences, and alignment heuristics. Category 3
errors and the related idea of multi mappers, reads that
align equally well to many loci, are discussed in prior stud-
ies [8, 9]. Category 3 errors are also the most numerous,
making up 95.8-99.7% of the errors in our simulations
(Additional file 1: Notes 2-3 and Table S1).

Here we focus on the task of predicting mapping quali-
ties for aligned reads in light of category 3 errors. Category
2 errors are not considered, since no mapping-quality pre-
diction is needed in those cases. Although category 1
errors affect mapping-quality prediction, we assume they
are rare enough to be ignored. In principle, category 1
errors could be included in our model, e.g. by assuming
a global prevalence of category 1 errors and scaling pre-
dictions accordingly, or by including contamination in the
simulation.

Mapping quality
While searching for alignments, aligners uncover infor-
mation that can be used to predict whether a given
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alignment is correct. For instance, if the aligner discovers
that a read aligns equally well to several copies of a repeat,
its confidence that the selected alignment is correct will
be low. If the aligner discovers that a read aligns perfectly
to one locus and very poorly to a few others, confidence
will be higher. Confidence is measured as the probability
p that the reported alignment is correct. Let the mapping
quality g = —10log,,(1 — p). Higher values for p (or
q) indicate higher confidence. The SAM/BAM format [3]
requires that g, rounded to the nearest integer, be reported
in the MAPQ field of each alignment. We, therefore, seek
a method that predicts g (or equivalently, p) accurately
across a range of alignment scenarios.

Mapping quality measures something distinct from
alignment score. A high alignment score indicates high
sequence similarity (few mismatches and gaps) between
read and reference. It does not imply high mapping qual-
ity. For instance, consider a read that aligns with no gaps
or mismatches to two distinct loci in the reference. The
alignment score is high because there are no gaps or mis-
matches, but there is only a 50% chance of choosing the
correct alignment (g < 3). Other measures that do not
take genomic repeats into account, such as E values [10],
are also poor proxies for mapping quality.

Related work

The MAQ study [2] describes sources of alignment error
and presents a model for predicting g given alignment
scores for the best and second-best alignments, and the
number of alignments tied for second best. Successors to
MAQ, such as BWA [11], BWA-SW [12], and BWA-MEM
[5], use more complex prediction functions. For exam-
ple, BWA-MEM uses information about whether and how
seeds — substrings of the read — match the genome. Qtip
uses similar data to train its model. Qtip takes a general
approach, learning the prediction model from data, and
can adapt to a variety of aligners and alignment settings.

ARDEN [13] uses a mutated decoy genome to estimate
the aggregate prevalence of category 3 errors. However, it
is only concerned with aggregate summaries and does not
predict g for individual alignments. LoQuM [14] uses sim-
ulated training alignments and a logistic regression model
to predict new g’s for an already-aligned dataset. Unlike
Qtip, LoQuM does not predict g from scratch; rather, it
recalibrates ¢ using the aligner-reported mapping qual-
ity as an input, along with other inputs derived from the
alignment.

The MOSAIK [15] aligner uses a neural network to pre-
dict g. The user trains the model ahead of time, supplying
simulated reads annotated with their true point of ori-
gin. Model features include alignment scores of the best
and second-best alignments, read sequence entropy, and
the number of potential mapping locations. Tandem sim-
ulation works like MOSAIK’s approach, building a model
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from simulated reads, but without requiring the user to
collect training data.

Tandem simulation also has similarities to a previ-
ous method for allele-specific expression proposed by
Hodgkinson et al. [16]. In that method, RNA sequenc-
ing reads are aligned to a reference genome and allelic
ratios are computed at heterozygous sites. The method
then simulates a null dataset where (a) the genome from
which the reads are simulated is customized to include
non-reference alleles detected in a separate assay and (b)
when a simulated read overlaps a heterozygous variant,
both alleles are sampled with equal frequency. Null reads
are aligned to the original reference using the same aligner
and parameters as in the initial alignment step, much like
the alignment of tandem reads in our framework. Allelic
ratios derived from null alignments are used to normal-
ize the original ratios, reducing bias. While our method
and Hodgkinson et al’s target different problems, they are
alike in their use of a newly simulated dataset to improve
results from an initial alignment.

Results

Experimental conditions

Simulations were conducted using Mason v0.1.2 [17], or
a different simulator where indicated. We ran Qtip v1.6.2
in combination with Bowtie 2 v2.3.2, BWA-MEM v0.7.15,
and SNAP v1.0beta.18. Experiments were performed on
nodes of the Maryland Advanced Research Computing
Center; each node is an Intel Haswell system with two
12-core processors (2.5 GHz) and 128 GB RAM.

All read aligners were run in their default reporting
modes. In other words, all aligners report up to one best
alignment per read. Reads that fail to align are excluded
from the analysis. We used the GRCh38 assembly with
some short sequences filtered out (see Additional file 1:
Note 4) as our human reference, except where other-
wise noted. Qtip ran on Python v2.7.12 and used scikit-
learn v0.18.

Plots and measures
Let A be a vector of n alignments ag,aj,...,a,—1. Let
correct(a;) = 1 if a; is correct and 0 otherwise. Let
incorrect(a;) = 1 — correct(a;). An alignment is consid-
ered correct if the leftmost base involved in the alignment
is within 30 nucleotides (nt) of the leftmost base in the
simulated substring, with appropriate adjustments for soft
clipping. Let Q = 40,41, -..,q,—1 be mapping qualities
corresponding to ag, a1, . . ., ay—1, as predicted by the read
aligner, and let P = pog,p1,...,pn—1 be the correspond-
ing correctness probabilities, using the relationship that
q = —10log;;(1 — p). Q and P’ are defined similarly, but
for the mapping qualities predicted by Qtip.

We define plots (cumulative incorrect difference or CID
and cumulative squared-error difference or CSED) and
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measures (relative change in area under CID or RCA, and
relative change in sum of squared errors or RCE) that
characterize how Qtip’s predictions (Q’) compare to the
aligner’s (Q). CID and RCA capture how well Q' ranks
alignments from most to least likely to be correct rela-
tive to Q. CID and RCA are invariant under monotonic
transformations of P and P’; they are concerned only with
how well alignments are ranked, not with probabilities per
se. CSED and RCE capture how closely P’ matches the
the true correctness relative to P; i.e., CSED and RCE are
concerned with how well P’ and P fit their probabilistic
interpretation.

Cumulative incorrect difference
Let A be A sorted in descending order by Q, and likewise
for A’ and Q'. The cumulative incorrect vector C is the

vector cg, c1, . . ., Cy—1 such that ¢; = Z;':o incorrect(&/).1

C' is defined similarly for A’. Let D be the element-wise
difference C' — C. When d; < 0, Qtip’s mapping qual-
ities yield a better segregation of correct from incorrect
alignments about the pivot i. When d; > 0, the aligner’s
mapping qualities give the better segregation. A CID plot
draws a line representing the d;’s (vertical axis) for i = 0
to n — 1 (horizontal axis), and we judge Qtip’s efficacy
according to the line’s tendency to stay below y = 0.

Cumulative squared-error difference

Let A and P be A and P sorted in descending order by
P, and likewise for A’ and P'. The cumulative squared
error vector E is the vector eg, e, .. .,e;—1 such that ¢; =
Z}zo(correct(&,) — foj)z, with E’ defined similarly for A
and P’ .2 Let S be the element-wise difference E' — E. When
s; < 0, Qtip’s mapping qualities yield a lower squared
error up to the ith alignment.

The CSED plot draws a line representing the s;’s (verti-
cal axis) for i = 0 to n — 1 (horizontal axis). Like for the
CID plot, we judge Qtip’s efficacy according to the line’s
tendency to stay below y = 0.

Relative change in area under CID

RCA is defined as <Z?=_01 ¢ -3 ci> /"4 ci. Neg-
ative values indicate that a better overall ranking is
achieved using Qtip’s predictions.

Relative change in sum of squared errors

RCE is defined as (SSE(P’) — SSE(P))/SSE(P), where
SSE(P) = ;’;01 (correct(a;) — p;)?. Negative values indi-
cate that Qtip’s predictions yield a lower total squared
error.

The distinction between the rank-based (CID and RCA)
and probabilistic (CSED and RCE) metrics relates to how
downstream tools, e.g. variant callers, use mapping qual-
ities. Freebayes [18] and the Genome Analysis Toolkit
(GATK) [19] ignore an alignment if its mapping quality is
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below a threshold. In this case, CID and RCA are relevant
as they directly evaluate how well various thresholds sep-
arate correct from incorrect alignments. Other methods,
such as the consensus genotype calling method described
in the MAQ study [2], interpret a mapping quality as a
probability. Alignments are weighted according to their
probability, with no alignments excluded. Here, CSED and
RCE are relevant since they directly evaluate how well the
probabilities match the actual correctness status.

We note that the problem of evaluating and plotting the
relative quality of two sets of mapping-quality predictions
is not specifically addressed in past studies. Receiver oper-
ating curve (ROC)-like plots are used for the related task
of comparing aligners [4, 5], where the axes represent false
and true positives and a line follows points corresponding
to increasingly permissive mapping-quality thresholds.
However, the two-dimensionality of these plots makes it
hard to find comparable points, that is points on two
curves where the threshold allows same number of align-
ments. A similar problem exists for comparisons exam-
ining particular thresholds (>10, >20, etc.); for two sets
of predictions, the thresholds might allow very different
numbers of alignments, impeding interpretation. CID and
CSED plots are inspired by accuracy versus drop rate plots
[20] and are related to ROC-like plots, except (a) two
lines are represented more concisely as a single line giv-
ing the difference and (b) at a given horizontal point, we
are comparing thresholds that allow the same number of
alignments (the same drop rate).

Simulation experiments

We conducted simulation experiments to show how Qtip’s
mapping-quality predictions compare to those made by
the read aligners. We vary several experimental condi-
tions, including (a) read length, (b) aligner parameteriza-
tion, (c) reference genome, (d) read alignment tool, and
(e) read simulator. The simulator encodes the read’s true
point of origin in the read name, allowing Qtip to check
later whether an alignment is correct.

Simulated samples

We used Mason to simulate five Illumina-like samples
with unpaired reads of length 50, 100, 150, 250, and
500, respectively. We simulated five paired-end samples
with the same lengths, with most fragment lengths being
between 2L and 4L nt, where L is the read length. We
simulated 4 million reads/pairs for each sample. Align-
ers were configured to consider fragment lengths in the
2L—-4L range as concordant. Thus, most simulated pairs
aligned concordantly (consistent with paired-end con-
straints) whereas some aligned discordantly. Simulator
commands, and implications for fragment lengths, are
discussed in Additional file 1: Note 4. Alignment com-
mands are in Additional file 1: Note 5.
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Varying read length

We used Qtip together with Bowtie 2 to align and pre-
dict mapping qualities for each Mason-simulated sample.
We rounded Qtip’s predictions to the nearest integer per
the SAM/BAM format. For each alignment, we parsed
aligner-predicted and Qtip-predicted mapping qualities,
as well as the read’s true point of origin as provided by
Mason. We calculated RCA and RCE (Table 1) and plot-
ted CSED (Fig. 1). CSED y values were scaled with ypjot =
sign(Yorig) 10g10(|y0rig| +1).

To measure the variability of Qtip’s predictions, we
repeated each experiment ten times starting from step 2
onward, seeding the pseudo-random number generator
differently in each trial. RCA and RCE tables describe all
ten trials whereas, for clarity, the CSED plot describes only
the first trial.

Qtip’s mapping qualities are, overall, superior to those
predicted by Bowtie 2, as indicated by the negative RCAs
and RCEs (Table 1). This is true across all samples tested,
and in both end-to-end and local alignment mode. The
improvement is larger for samples with longer reads and
for paired-end samples. Variability is modest overall but
somewhat higher for longer reads. See “Discussion” for
further comments on variability.

There are portions of the CSED plots (Fig. 1) where the
plot rises above y = 0, indicating the aligner-reported
mapping qualities exhibit a lower cumulative squared
error at those thresholds. This is most prominent in the
unpaired experiments, particularly for 50 nt reads. How-
ever, Qtip’s superior predictions at other g thresholds —
especially low ones — help bring the overall RCE below
zero in all cases. For paired-end samples, CSEDs show
Qtip’s predictions are superior at nearly all g thresholds.

Varying the reference genome and alignment tool
To study how genomes of varying length and repetitive-
ness influence Qtip’s performance, we experimented with
four reference genome assemblies spanning three species:
human GRCh37, human GRCh38, mouse GRCm38, and
Zea mays AGPv4. The human GRCh38 primary assem-
bly is 3.10 Gbp long (2.95 Gbp excluding N’s) with 50% of
the genome annotated as repetitive according to Repeat-
Masker [21]. GRCh37 is 3.10 Gbp long (2.86 Gbp exclud-
ing N’s) with 47% of the genome annotated as repetitive.
GRCm38 is 2.73 Gbp long (2.65 Gbp excluding N’s), with
44% of the genome annotated as repetitive. AGPv4 is
2.13 Gbp long (2.10 Gbp excluding N’s). Though no offi-
cial RepeatMasker annotation is available, past studies
report that 85% of the genome consists of transposable
element sequences [22], making it the most repetitive of
the genomes tested. We used the Mason-simulated 100
and 250 nt samples, both unpaired and paired-end.

We tested three aligners — Bowtie 2, BWA-MEM, and
SNAP - with each genome. The changes made to each
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Table 1 Relative change in area under CID (RCA) and relative change in sum of squared error (RCE) when running Qtip and Bowtie 2

on Mason-simulated lllumina-like samples of various lengths

End-to-end Local
RCA RCE RCA RCE
Read length Mean SD Mean SD Mean SD Mean SD
Unpaired 50 —9.03 0.26 —24.61 0.19 —249 047 —15.30 0.57
100 —743 1.82 —1853 261 —10.26 1.52 —27.87 1.59
150 —9.11 1.15 —16.22 0.62 —14.77 2.15 —29.27 1.03
250 —16.82 201 —19.97 044 —22.51 1.77 —28.385 0.62
500 —33.77 0.60 —27.26 0.37 —37.75 132 —31.65 1.01
Paired 50 —13.11 0.44 —19.60 0.44 —18.60 0.28 —33.63 0.24
100 —15.80 1.29 —21.79 033 —36.84 0.69 —4542 0.53
150 —22.39 1.74 —25.94 0.28 —46.87 0.54 —52.76 0.56
250 —37.65 0.97 —3348 022 —5839 091 —58.75 1.38
500 —54.59 0.58 —44.91 0.34 —68.54 0.95 —70.37 345

Relative change is expressed as a percentage. Each sample consists of 4 million reads/pairs. Samples are either unpaired or paired-end, and Bowtie 2 is run in either
end-to-end or local alignment mode as indicated. Results are means and standard deviations over ten random trials, repeated starting from the input modeling step

CID cumulative incorrect difference

RCA relative change in area under CID

RCE relative change in sum of squared errors
SD standard deviation

aligner for it to work with Qtip are detailed in Additional
file 1: Note 6. We calculated RCA and RCE for the ten
trials and plotted CSED for only the first trial.

Qtip-predicted mapping qualities are superior in nearly
all scenarios, as indicated by negative RCAs and RCEs
(Table 2). The exceptions are three of the human paired-
end SNAP experiments (GRCh37 100 nt, GRCh37 250
nt, and GRCh38 250 nt), which have negative RCA but
positive RCE. The variability of RCAs and RCEs across
trials is generally modest, but tool dependent, with SNAP
exhibiting the highest variabilities. BWA-MEM’s standard
deviations are small, all below 0.6. Bowtie 2’s range up to
2.61 and SNAP’s up to 4.44. See “Discussion” for further
comments on variability.

CSED curves (Fig. 2) again show that for some thresh-
olds, aligner-reported mapping qualities are superior in
terms of minimizing the cumulative squared error, i.e.,
where the CSED rises above y = 0. Qtip’s mapping
qualities seem to perform worse for many thresholds
in the BWA-MEM unpaired experiments, especially for
Zea mays. However, Qtip’s qualities consistently perform
better at very low thresholds. Qtip’s mapping qualities
perform particularly well for the Bowtie 2 Zea mays exper-
iments, and for all the paired-end experiments.

To assess how the greater incidence of category 1 errors
affects the results, we repeated the human experiments,
expanding the simulation to include reads both from
the reference genome and from sequences in the CHM1
hydatidiform mole assembly not present in the refer-
ence. We used Assemblytics [23] to obtain CHM1-specific
sequences as detailed in Additional file 1: Note 3. The

results show this has little effect on the accuracy of Qtip’s
predictions (Additional file 1: Table S2).

Other simulation experiments

We also conducted simulation experiments varying the
sensitivity level of the aligner (described in Additional
file 1: Note 7, Table S3, and Figure S1) and varying the soft-
ware tool used to generate the simulated reads (described
in Additional file 1: Note 8, Table S4, and Figure S2).

Variant calling

To demonstrate Qtip’s effect on downstream results,
we evaluated variant-calling accuracy with and without
Qtip’s predictions. We used paired-end human 100 x 100
[lumina HiSeq reads from the Platinum Genomes project
[24] (ERR194147) and gold-standard Platinum variants
[24] for the sequenced individual (NA12878). The Plat-
inum variants are high-confidence pedigree-validated
calls supported by multiple bioinformatics pipelines and
sequencing technologies. The analysis is limited to areas
of the genome called with high confidence by Platinum
Genomes.

We used Freebayes v1.1.0 [18] to call single-nucleotide
variants (SNVs) once for the alignments with the origi-
nal mapping qualities and again for the same alignments
but with Qtip-predicted mapping qualities. Following past
studies [25], we filtered out variant calls with read depth
greater than four Poisson standard deviations above the
mean. We defined a true positive as an SNV call made
from ERR194147 data that matched a Platinum call, a
false positive as a call made from ERR194147 that did not
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Fig. 1 CSED for various lengths. Cumulative squared-error difference plot from running Qtip and Bowtie 2 on Mason-simulated lllumina-like samples
of various lengths. Each sample consists of 4 million reads or pairs. The horizontal axis indicates the cumulative number of reads/ends passing the
threshold, with the left-hand extreme corresponding to a high mapping-quality threshold and the right-hand extreme corresponding to a low
threshold. Results for unpaired samples are on top, paired on bottom. Bowtie 2 is run in its (default) end-to-end alignment mode for the left-hand
plots, and in local alignment mode for the right-hand plots. CSED cumulative squared-error difference

match any Platinum call, and a false negative as a Platinum
call that did not match any ERR194147 call. We calcu-
lated Fg for various B’s. F1 (8 = 1) is the typical F1 score,
related to the harmonic mean of precision and recall. Set-
ting B > 1 gives recall more weight than precision and
setting B < 1 gives precision more weight than recall. We
tried values of 8 ranging from 0.25 to 4 to cover a range
of precision—recall tradeoffs. Further details on alignment
and variant calling are given in Additional file 1: Note 9.
Like other variant callers and downstream tools, Free-
bayes uses thresholds for mapping quality (Q) to elimi-
nate some alignments prior to variant calling, eliminating
alignments with Q < 1 by default. Since we are con-
cerned with the overall accuracy of mapping qualities and
not with any particular threshold, we reran Freebayes with
various integer Q thresholds: 0-12, 15, 20, and 30. Free-
bayes also associates a genotype quality value with each

called variant, given in the VCF file’s QUAL field. We
used the vefroc tool from vef11ib (https://github.com/
vcflib/vcflib) to evaluate all possible QUAL thresholds for
all possible Q thresholds, ultimately selecting Q and QUAL
thresholds maximizing Fg.

The results are presented in Table 3. For all 8’s examined
except the lowest (8 = 0.25), Qtip-predicted mapping
qualities yielded superior Fg. For > 1, Qtip’s predic-
tions yielded more true positives and fewer false positives
than the original predictions. For 0.25 < g8 < 0.5,
Qtip’s predictions yielded around 15,000-20,000 more
true positives at the cost of around 300-1,500 more false
positives. Notably, these improvements were achieved
simply by changing the mapping qualities; the align-
ments are the same and the variant caller has not been
modified or tuned in any way. We also note that Qtip’s
improved performance is obtained using a smaller range
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Table 2 Relative change in area under CID (RCA) and relative change in sum of squared error (RCE) for various aligners and reference

genomes, expressed as percentage change

100 nt 250 nt
RCA RCE RCA RCE
Mean SD Mean SD Mean SD Mean SD
Unpaired GRCh37 Bowtie 2 —11.22 1.08 —24.43 0.66 —15.02 0.39 —2837 0.38
BWA-MEM —14.49 2.29 —49.54 043 —9.14 2.09 —52.31 0.38
SNAP —15.94 032 —36.86 0.23 —9.53 3.88 —2857 047
GRCh38 Bowtie 2 —743 1.82 —1853 261 —16.82 201 —19.97 044
BWA-MEM —15.49 0.58 —47.42 037 —15.78 0.57 —51.14 0.31
SNAP —19.58 0.18 —36.58 047 —14.74 0.27 —2547 032
Mouse Bowtie 2 —5.60 0.24 —17.19 045 —7.05 033 —17.73 0.37
BWA-MEM —13.50 0.15 —46.25 0.27 —16.39 0.38 —51.12 0.30
SNAP —9.02 017 —31.07 033 —10.61 0.20 —31.78 043
Zeamays Bowtie 2 —6.63 032 —19.56 0.25 —17.09 0.38 —25.89 044
BWA-MEM —19.26 0.1 —58.32 0.26 —25.14 0.19 —66.76 0.23
SNAP —13.02 0.24 —3848 0.53 —24.01 043 —53.80 042
Paired GRCh37 Bowtie 2 —25.86 033 —30.26 0.50 —36.31 2.16 —38.29 0.60
BWA-MEM —1333 0.23 —45.70 0.27 —10.08 0.75 —47.58 0.31
SNAP —56.53 1.99 1.39 2.34 —42.89 7.63 13.17 3.95
GRCh38 Bowtie 2 —15.80 1.29 —21.79 033 —3822 031 —33.63 0.30
BWA-MEM —14.19 0.16 —41.35 0.19 —12.36 0.46 —42.78 0.29
SNAP —51.36 0.98 —11.16 1.12 —51.32 145 434 2.29
Mouse Bowtie 2 —10.10 0.26 —1893 031 —19.03 0.21 —29.07 032
BWA-MEM —11.86 0.12 —36.18 037 —13.30 0.19 —39.91 0.21
SNAP —29.90 0.67 —17.04 0.76 —-30.16 0.30 —15.79 047
Zeamays Bowtie 2 —17.92 0.21 —26.95 0.27 —43.19 0.18 —51.69 0.38
BWA-MEM —17.04 0.15 —47.48 0.29 —21.45 0.20 —56.58 0.08
SNAP —36.28 0.55 —17.08 0.79 —26.45 4.44 —20.05 0.52

The experiments used 100 or 250 nt reads, and unpaired or paired-end reads, as indicated. Results are means and standard deviations over ten random trials, repeated

starting from the input modeling step

CID cumulative incorrect difference

RCA relative change in area under CID

RCE relative change in sum of squared errors
SD standard deviation

of mapping-quality values. Qtip-predicted mapping qual-
ities in this experiment ranged from O to 36, whereas
Bowtie 2 mapping qualities ranged from 0 to 42.

Efficiency and overhead

The tandem simulation framework adds an overhead
to the alignment process. We measured Qtip’s over-
head when analyzing public datasets ERR050082 and
ERR050083. Specifically, we measured how the running
time and the peak memory footprint grew when Qtip
ran alongside the aligner, versus when the aligner ran by
itself. The running-time overhead is modest for Bowtie 2
and BWA-MEM, ranging from 5 to 10% (Table 4). For
SNAP, the running-time overhead is larger, 12 to 14% for

unpaired and 23 to 28% for paired-end alignment. The
peak memory footprint added by Qtip was 200-400 MB
in all cases, substantially smaller than the footprint of
the aligners themselves, which must keep a copy of the
reference genome index in memory. For SNAP, the peak
memory footprint increased by less than 1.15%. For BWA-
MEM, the increase was always less than 5% and for Bowtie
2 less than 13%.

Methods

Tandem simulation

The user specifies a collection of input reads (R =
ro,71,.-.,"m—1), @ read aligner, alignment parameters, a
reference genome in FASTA format, and any other files
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Fig. 2 CSED for various aligners and references. Cumulative squared-error difference plot from running Qtip with various reference genomes and
read aligners. The input reads are Mason-simulated lllumina-like 100 nt (left) and 250 nt (right) samples, each consisting of 4 million reads/pairs. The
horizontal axis indicates the cumulative number of reads/ends passing the threshold, with the left-hand extreme corresponding to a high
mapping-quality threshold and the right-hand extreme corresponding to a low threshold. Results for unpaired samples are shown on top, and paired

on bottom. CSED cumulative squared-error difference

required, such as a genome index. The tandem simulation
framework (Fig. 3) aligns the input reads to the reference
genome and predicts a mapping quality g; for each aligned
read. In step 1, input reads are aligned to the reference
genome using the specified aligner and parameters. In
step 2, the SAM-formatted [3] alignments are parsed and
an input model, capturing information about the input
reads and their alignments, is built. In step 3, the input
model and reference genome are used to simulate a new
set of reads, called tandem reads since they originate from
tandem simulation. Each tandem read is from a random
location in the genome and is labeled with its true point
of origin. In step 4, tandem reads are aligned to the ref-
erence genome using the same aligner and parameters as
in step 1. In step 5, the alignments produced in step 4
are parsed and converted to training records. Because the
true point of origin is known, each training record can be
labeled as correct or incorrect. In step 6, a model is trained
on the records from step 5. In step 7, SAM alignments

from step 1 are parsed. For each aligned read, a test record,
like the training record from step 5, is constructed. Based
on the test record, the trained model is applied to predict
g;. The alignment’s SAM record is then rewritten substi-
tuting g; in the MAPQ field. New predictions for all input
alignments are written in this way.

Importantly, the mapping-quality model trained in step
6 is tailored to the alignment scenario at hand. The aligner
and parameters from step 1 are reused in step 4, and
tandem reads generated in step 3 mimic the input reads.

To work with the tandem simulation framework, the
aligner must report feature data — how well the read
aligned, what other alignments were found, what heuris-
tics were used, etc. — used to train and apply the model.
This requires modifications to the alignment software.
The modifications are not complex and do not affect the
efficiency or accuracy of the aligner. However, making
appropriate modifications requires knowledge of how the
aligner works and of which intermediate alignment results
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Table 3 Single-nucleotide variant (SNV) Fg scores for various 8's with original mapping qualities and with Qtip-generated qualities

Original Qtip A (Qtip — Orig)

B Fg QUAL Q Fg QUAL Q Fg TP FP
0.250 0.9925 194 2 0.9924 213 2 -2.2e-05 +20,189 +1505
0333 0.9906 150 3 0.9908 178 2 +2.6e-04 +16,001 +911
0.500 0.9872 87 3 0.9881 125 3 +8.3e-04 +15,143 +311
0.750 0.9843 10.6 3 0.9854 70.1 4 +1.1e-03 -413 -6537
1.000 0.9835 0.0158 3 0.9845 136 4 +9.4e-04 +3999 -2745
1.500 0.9846 1.79e-06 3 0.9856 0.000675 5 +1.0e-03 +4392 -1832
2.000 0.9860 5.06e-08 3 0.9870 1.38e-05 5 +1.0e-03 +3110 -5692
3.000 0.9880 1.16e-09 3 0.9889 8.64e-08 +8.6e-04 +2583 -7937
4.000 0.9892 1.06e-10 3 0.9899 6.58e-09 4 +7.1e-04 +1891 -13,600

Paired-end reads from ERR194147, a female, were aligned with Bowtie 2 together with Qtip. SNV variants were called with Freebayes for chromosomes 1-22 and X.
Variant-quality (QUAL) and mapping-quality (Q) thresholds yielding the greatest Fg score are reported. Platinum variants were used as the true callset. Before calculating Fg,
calls outside Platinum Genomes high-confidence regions were excluded. The three rightmost columns show differences in Fg, the number of true positive SNVs, and the

number of false positive SNVs
FP false positive
SNV single-nucleotide variant
TP true positive

constitute informative features. For this study, we adapted
three tools: Bowtie 2 v2.3.2, BWA-MEM v0.7.15, and
SNAP v1.0beta.18. Additional file 1: Note 6 provides links
to our modifications and details about the modifications
made and how features were chosen.

We chose these three aligners both because of their pop-
ularity and because they together support a breadth of
alignment scenarios. For example, Bowtie 2 and BWA-
MEM support local alignment, Bowtie 2 and SNAP sup-
port end-to-end alignment, and all three tools support
both unpaired and paired-end alignment. Also, all three
tools produce their own mapping-quality predictions.

Table 4 Overhead of the Qtip tool

Read and alignment categories

When predicting mapping quality, Qtip uses a different
model depending on whether the alignment is unpaired
(unp), paired-end and concordantly aligned (conc), paired-
end and discordantly aligned (disc), or paired-end with
the opposite end having failed to align (bad-end). Qtip
trains each model with alignments of the same cate-
gory. Qtip parameters control the minimum number of
tandem reads or pairs of each category to generate. The
default number for each category is 45./x, where x is the
number of input alignments of that category. Both the
scaling factor and the function are configurable via Qtip’s

Time (minutes) Peak memory (gigabytes)
Time +Qtip % inc Memory +Qtip % inc
ERR050082 Unpaired Bowtie 2 23.58 25.20 6.89 3.26 3.52 825
BWA-MEM 2218 23.75 7.08 7.53 7.79 340
SNAP 1213 13.75 1332 29.26 29.51 0.85
Paired Bowtie 2 57.52 6135 6.67 3.27 3.66 12.02
BWA-MEM 57.93 63.38 941 7.87 826 4.87
SNAP 11.28 14.42 27.69 30.21 30.55 1.14
ERR050083 Unpaired Bowtie 2 23.02 24.75 7.55 326 353 8.28
BWA-MEM 24.60 26.08 6.03 7.75 8.01 333
SNAP 12.23 13.73 1231 29.26 29.51 0.85
Paired Bowtie 2 63.60 67.40 6.00 3.27 3.66 11.96
BWA-MEM 61.58 67.52 9.62 7.92 831 4.83
SNAP 11.95 14.68 22.86 30.21 30.55 1.14

This is measured as the increase in running time (left) and peak memory footprint (right) from when the aligner runs by itself (Time) to when the aligner runs in combination
with Qtip (+Qtip). % inc columns give the percentage increase. Times are in minutes and memory footprints are in gigabytes
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Fig. 3 Stages of the Qtip pipeline. Computational steps and
intermediate results in Qtip. Numbers denote ordering of steps and
arrows denote the flow of data. The input (upper left) is a collection of
sequencing reads and the ultimate output (upper right) is a SAM file
containing alignments, where each aligned read’s MAPQ field is set
according to Qtip's prediction

-sim-function and -sim-factor parameters. Qtip
enforces a minimum of 30,000 tandem reads for the conc
and unp categories and 10,000 for the disc and bad-end
categories. The formula for the number of training records
is discussed further in Additional file 1: Note 10, with
alternatives explored in Additional file 1: Figure S3.

Input model and simulation of tandem reads

The input model built in step 2 of Qtip (Fig. 3) captures
information about the input reads and alignments. Qtip
uses this to simulate new tandem reads that are from
random genomic locations but are like the input reads
in key ways, mimicking their read length distribution,
quality strings, and patterns of gaps and mismatches. Tan-
dem paired-end reads additionally mimic the input’s frag-
ment length distribution and relative orientation of the
two ends.

To accomplish this, Qtip takes the following approach.
For each aligned unpaired read, a template data record is
created. The template consists of the strand aligned to,
the read’s quality string, and the pattern of mismatches
and gaps in the alignment as defined by the CIGAR and
MD:Z SAM fields. For each aligned pair, the template
additionally stores the pair’s inferred fragment length and
a flag indicating which end aligned upstream with respect
to the genome. Since templates for large datasets can
quickly exhaust memory, Qtip uses reservoir sampling to
keep a configurable-sized subsample of the templates. The
default sample size is 10,000.

In step 3, Qtip uses the input model to simulate tandem
reads. To simulate an unpaired tandem read, Qtip ran-
domly draws an unpaired template, with replacement and
uniform probability, from those collected in step 2. A new
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read is constructed from the template by (a) drawing an
appropriate-length substring from the reference genome
uniformly at random, (b) possibly reverse-complementing
it, according to the template strand, (c) mutating the
extracted sequence according to the template pattern of
mismatches and gaps, and (d) setting the new read’s qual-
ity string equal to the template’s. The simulated read’s
point of origin is encoded in the read name, allowing later
steps to check whether an alignment is correct. The pro-
cess for simulating a paired tandem read is similar, with
fragment length determined by the template. More details
are given in Additional file 1: Note 11.

Importantly, some aspects of the input data are hard
to mimic. For example, errors made by 454 and Ion
Torrent sequencing technologies can manifest as spu-
rious extensions or retractions of homopolymers. Since
genome substrings are matched with templates randomly,
homopolymer errors in the template will often fail to line
up with homopolymers in the substring. Other aspects
of the input data are not as difficult to mimic, but hap-
pen not to be captured in Qtip’s simulation. For example,
if a dataset is enriched or depleted for reads drawn from
a particular genomic feature (e.g., coding regions), Qtip’s
simulation, which draws reads uniformly at random from
across the genome, will not exhibit that pattern. While
we demonstrate Qtip performs well despite these defi-
ciencies, they nonetheless illustrate that it is difficult to
construct tandem reads that truly mimic input reads in all
ways. We return to this in the “Discussion”.

Mapping-quality model

Given training records derived from tandem reads aligned
in step 4, we train a model in steps 5 and 6 that is
later used to predict ¢’s for the input alignments. Qtip
trains separate models for each alignment category: unp,
conc, disc, and bad-end. The particular features used
to train a model vary depending on the alignment cat-
egory and read aligner. We briefly summarize these
here, but more details are provided in Additional file 1:
Note 6.

These features are included regardless of aligner or
alignment category: (a) the alignment score of the best
alignment, (b) the difference between the alignment score
of the best alignment and that of the second-best align-
ment if one was found, (c) the length of the aligned read,
(d) the sum of the base qualities of the aligned bases,
and (e) the sum of the base qualities of the soft-clipped
bases. For a concordantly aligned pair, the inferred frag-
ment length (from the SAM TLEN field) is also included
as a feature.

By default, Qtip uses an implementation of random
forests [26] from the scikit-learn [27] library to model and
predict mapping qualities. The random forest consists of
many decision trees, each trained on a bootstrap sample of
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the training (tandem) data. Each tree contributes a vote on
the probability for whether the given alignment is correct,
and the final prediction is the average of the votes. This
model is invariant under scaling transformations of fea-
tures. Training is also efficient, which is important since
models are tailored to the scenario at hand, and must be
rebuilt anew each time Qtip runs. Finally, it is capable
of reporting feature importances, which we examine in
more detail in the context of our simulation experiments
(Additional file 1: Note 12 and Figures S4-S9). Further
details on the model are in Additional file 1: Note 13.

Discussion

Qtip’s predictions are accurate in various scenarios: vari-
ous read lengths, unpaired or paired reads, various align-
ment tools and parameters, etc. We defined novel mea-
sures (RCA and RCE) and plots (CID and CSED) for
evaluating and plotting mapping-quality predictions. The
framework is easy to adapt to other aligners; the aligner
must be modified to output feature data in an extra SAM
field. Nor is it difficult to add new features to an already-
adapted read aligner. Since Qtip’s ensemble tree model is
scale-agnostic, scaling guesswork it not necessary when
adding a feature.

This framework is also applicable to specialized align-
ment settings, such as spliced RNA-seq alignment. In that
case, a nuanced notion of correctness is needed; we care
not only where an alignment lands on the reference but
also whether it includes the correct splice junctions. There
is room for improvement in predicting mapping quali-
ties for spliced alignments. Popular tools use simplistic
prediction functions drawing quality values from a small
range of possibilities. TopHat [28] and STAR [29] report
a mapping quality of either 0 or 255 (repetitive versus
unique) depending on the number of alignments found.
Qtip’s approach would produce a full spectrum of values,
potentially with large downstream benefits.

Tandem simulation works to the degree that tandem
reads can be sampled from the same distribution as input
reads. In reality, sampling from the same distribution is
not possible. Qtip mimics some aspects of the input data
but not others. Homopolymer extensions and retractions
are not captured, for example, creating a fundamental dif-
ference between tandem and input reads. A tradeoff exists
here: Qtip’s simple model mimics some aspects of the
input without sacrificing efficiency, whereas a more com-
plex and less efficient model could improve accuracy by
mimicking more aspects. A task for future work is to mea-
sure various points in this tradeoff space, and to define
measures for characterizing how and to what extent a set
of tandem reads differs from the input reads.

A question for future work is whether Qtip’s sam-
pling strategy can be improved. A strategy using impor-
tance sampling, for example, might favor tandem reads
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originating from more difficult-to-predict portions of the
sample space. Importance might originate from repeti-
tive elements, or from certain patterns of mismatches
and gaps. Together with appropriate weighting during
model training, this could achieve comparable accuracy
while reducing the number of tandem reads required.
It could also reduce the prediction variability we see in
experiments involving longer reads and more repetitive
genomes.

Conclusion

We presented the tandem simulation framework and the
Qtip software tool implementing the framework. To date,
strategies for predicting mapping qualities have either
been ad hoc or required the user to prepare training data
tailored to the scenario at hand. Qtip runs alongside a
read aligner and builds an input model, simulates tandem
reads, aligns those using the same aligner and parameters,
then uses the trained model to predict mapping qualities.
The model and training data are produced automatically
and are tailored to the scenario at hand. While Qtip adds
an overhead to the read alignment process, it is reason-
able, with the time overhead in the 6—-28% range and the
memory overhead in the 1-10% range. This framework,
its improved predictions, and the evaluation performed
here should make authors of downstream software tools
more confident that mapping qualities can be treated
as the probabilities they claim to be, and to integrate
those probabilities into their models rather than simply
thresholding.

Endnotes

1For a group of alignments sharing the same Q, the
penalty is averaged across the group’s elements in C and
C'. That is, if a, axs1,...,4; is a maximal stretch of
alignments sharing the same quality, then ¢; = c¢;—1 +
le-:k incorrect(a)/(l —k+ 1) fork <i <.

2For a group of alignments sharing the same Q, the cor-
responding elements of E and E’ equal the mean squared
error of the group. That is, if ag, dax,1,...,4; is a maxi-
mal stretch of alignments sharing the same quality, then

e =e_1 +Z;:k(correct(&j) —faj)z/(l—k+1) fork <i<l
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