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controlling the gene-level false discovery rate
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Abstract

RNA sequencing studies with complex designs and transcript-resolution analyses involve multiple hypotheses per
gene; however, conventional approaches fail to control the false discovery rate (FDR) at gene level. We propose
stageR, a two-stage testing paradigm that leverages the increased power of aggregated gene-level tests and allows
post hoc assessment for significant genes. This method provides gene-level FDR control and boosts power for testing
interaction effects. In transcript-level analysis, it provides a framework that performs powerful gene-level tests while
maintaining biological interpretation at transcript-level resolution. The procedure is applicable whenever individual
hypotheses can be aggregated, providing a unified framework for complex high-throughput experiments.
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Background
High-throughput sequencing (HTS) technology has
become the dominant platform for transcriptome pro-
filing. It is agnostic of genomic annotation, has a broad
dynamic range and allows data aggregation on different
biological levels (basepair, exon, gene) [1–4]. Recent
developments in read alignment provide fast transcript-
level quantification [3, 5, 6], opening the way to assess
differential transcript expression (DTE) and differential
transcript usage (DTU), which for instance has been
shown to be associated with Parkinson’s disease [7] and
resistance to prostate cancer treatment [8]. In DTE,
differential expression between conditions is assessed at
the individual transcript level, while in DTU the rela-
tive expression of the isoforms of a gene are compared
between conditions; i.e. a DTU analysis aims at discov-
ering differences in the proportions of the expressed
isoforms of a gene.
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The dramatic sequencing cost reduction has also
enabled researchers to set up studies with complex exper-
imental designs involving many samples [9]. Analysis of
DTU, DTE or traditional RNA-seq studies with complex
designs typically involves multiple hypotheses of interest
for each gene, e.g. for each transcript in a DTU and DTE
context or for every treatment effect at each timepoint and
the treatment-time interactions in time course differential
gene expression (DGE) studies. The current consensus is
to control the false discovery rate (FDR) on the hypoth-
esis level, which we argue to be suboptimal with respect
to statistical power and the downstream biological inter-
pretation and validation that typically occur on a gene
level. Soneson et al. [10] have shown that DTE analysis has
higher performance when evidence on all individual tran-
scripts is aggregated at the gene level due to the different
null hypothesis and the larger amount of data that is avail-
able than for tests at the individual hypothesis level. This
also occurs for DTU (see Fig. 1). Inference using p values
of a DEXSeq [2] analysis on transcript counts also has a
lower power than aggregating transcript-level p values to
the gene level prior to FDR calculation. But, the latter does
not provide identification of the specific transcripts that
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Fig. 1 Performance curves for DTU analysis based on two simulation studies. The false discovery proportion (FDP, x-axis) is the fraction of false
positive hypotheses over all rejected hypotheses. The true positive rate (TPR, y-axis) represents the fraction of false null hypotheses that have indeed
been rejected. The three points on each curve represent working points on a nominal 1%, 5% and 10% FDR. The left panel a shows the results from a
simulation performed in Soneson et al. (2016) [24] based on the Drosophila melanogaster transcriptome and clearly shows the increased sensitivity
for tests that aggregate all transcript hypotheses on a gene level (green curve) in comparison to transcript-level tests (blue curve). The right panel
b shows the results from a simulation based on the human transcriptome used in Soneson et al. (2016) [10]. Here, aggregated hypothesis tests show
an even larger increase in sensitivity, possibly due to the higher complexity of the human transcriptome and thus a higher expected number of
transcripts per gene for human

are differentially used; thus, higher sensitivity comes at the
cost of a lower biological resolution.
In differential expression (DE) studies with complex

designs, it is common practice to adopt multiple testing
at the hypothesis level. This results in low power for dis-
covering interaction effects since their standard error is
typically much larger than for the main effects. Testing the
treatment-time interaction effect in the cross-sectional
time-series RNA-seq study from Hammer et al. (2010)
[11] with limma-voom [12], for instance, returns no sig-
nificant genes at a 5% FDR level, while more than 6000
genes are flagged when testing for treatment effects within
a particular timepoint. Hence, the higher resolution on
the hypothesis level comes at the expense of a low power
for the interaction effect. In addition, FDR control on the
hypothesis level does not guarantee FDR control on the
gene level, because multiple hypotheses are assessed per
gene, and the expected ratio of the number of genes with
at least one false positive (false positive genes) to all pos-
itive genes in the union across hypotheses will be larger
than the target FDR. For example, if three hypotheses are
assessed with 5% false positives in the top-list for every
contrast, then the aggregated top-lists will still contain 5%
false positives. However, since the false positives in the
different contrasts may be derived from different genes,
the number of genes with false positives will increase with
the number of hypotheses tested, while the total number
of genes remains fixed. Thus, the gene-level FDR will be
inflated if multiple hypotheses are of interest. This can
lead to lower success rates of subsequent validation, since

many genes without true treatment effects may be con-
sidered significant. In the RNA-seq literature, however,
there is no consensus on how to combine the enhanced
power of aggregation with an adequate resolution for the
biological problem at hand. We argue that the multiple
hypotheses at the gene level can be exploited in a two-
stage testing procedure (Fig. 2) [13–15]. In the screening
stage, genes with effects of interest are prioritised using an
omnibus test, e.g. a global F test, a global likelihood ratio
test or by aggregating p values. Assessing the aggregated
null hypothesis has the advantages of (1) high sensitivity
in a DTU/DTE context; (2) enriching for genes with sig-
nificant interaction effects in complex DE studies, thereby
boosting power; and (3) providing gene-level FDR con-
trol. In the confirmation stage, individual hypotheses are
assessed for genes that pass the screening stage. Hence,
it has the merit to combine the high power of aggre-
gated hypothesis tests in stage I with the high resolution
of individual hypothesis testing in stage II.
The suggested strategy positions itself in the larger

framework of stage-wise testing procedures for high-
throughput experiments. Lu et al. [16] previously pro-
posed a two-stage strategy for microarrays based on
mixed models, which is inapplicable to HTS data due
to the violation of the distributional assumptions. Jiang
and Doerge [13] proposed a generic two-stage DE anal-
ysis procedure where the first stage corresponds to test-
ing a global null hypothesis, i.e. testing whether at least
one hypothesis is false, after which post hoc tests are
considered only for the significant genes. Their algorithm,
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Fig. 2 The stage-wise testing paradigm. ng hypotheses are of interest for gene g. In the screening stage, evidence across the hypotheses is
aggregated, and an omnibus test is performed that controls the FDR across all genes. Genes significant in the screening stage proceed to the
confirmation stage, where every hypothesis is assessed separately, and the FWER within a gene is controlled at the adjusted significance level from
the screening stage

however, relies on either distributional assumptions,
providing a procedure for Gaussian distributed data, or
computer intensive resampling-based techniques. For
complex designs with a limited number of samples, how-
ever, the resampling-based techniques are not feasible.
Under the condition that a gene with a true effect has
a high probability to be rejected in the first stage, they
also provide a method to guarantee an upper bound on
the total FDR where the total FDR α ≤ α1 + α2 with α1
and α2 the FDR levels of the first and the second stage,
respectively. Due to the high level of noise in an RNA-seq
context, this condition is not always fulfilled and the upper
bound on the FDR is not guaranteed, but we would have to
resort to the latter approach for a typical RNA-seq experi-
ment with small sample sizes. Heller et al. [14] proposed a
two-stage procedure in the context of gene set enrichment
analysis (GSEA) for microarray data: in the screening
stage, the global null hypothesis is tested for each gene
set, and the procedure then tests for DE of individual
genes within discovered gene sets. It was shown that their
procedure controls the overall FDR (OFDR) [17], which
provides error rate control on falsely discovered gene sets
(Box 1) under independence, positive regression depen-
dency and dependencies that are typically occurring in
microarrays [14, 18, 19]. In this contribution, we port the
ideas developed in Heller et al. [14] to the DTU, DTE and
DE problem inHTS experiments with simple and complex
designs by (1) replacing “a gene set” in their procedure
by “a gene”, (2) aggregating evidence across all individual
hypotheses per gene in the screening stage and (3) assess-
ing each individual hypothesis on the discovered genes.
In our context, the OFDR thus controls the FDR at the
gene level, and we argue this to be the most appropriate
error rate in complex high-throughput experiments due
to its link with subsequent gene-level interpretation and
biological validation.We further improve the power in the

second stage of the Heller method by developing multiple
testing procedures specifically tailored to the problem at
hand. Similar to Meijer and Goeman [20, 21], our meth-
ods exploit the logical relations between the hypotheses
that have to be assessed within each gene to reduce the
multiple testing burden in the second stage. The proce-
dure is powerful and easy to implement, and we will show
that it provides an optimal middle ground between sta-
tistical power and resolution on the biological research
questions for DGE, DTE and DTU analyses. It has been
successfully applied in Moeys et al. [22], where a com-
plex RNA-seq experiment assisted in the discovery of
a pheromone-mediated sexual reproduction cycle of the
diatom Seminavis robusta. The method has been imple-
mented in an R package stageR available at https://
github.com/statOmics/stageR.

Results
We evaluate the stage-wise testing procedure in DGE,
DTE and DTU applications on both synthetic and real
data. The results of the two-stage method are compared
to the current consensus of a data analysis workflow
in the specific applications (i.e. standard/conventional
approach). First, we verify the gene-level FDR control
and power for complex DGE experiments on simulated
data upon which we confirm the simulation results on
real data. We use the simulations to also compare to the
stage-wise method from Jiang and Doerge [13], hereafter
also referred to as the Jiang method. For DTE and DTU
analyses, we show how the proposed stage-wise testing
procedure maintains high sensitivity on the gene level
while simultaneously providing a high resolution on the
biological results. Additionally, we show that performance
on the transcript level is at least as good as with a regular
transcript-level analysis. By analysing a real prostate
cancer dataset, we illustrate how the combination of gene

https://github.com/statOmics/stageR
https://github.com/statOmics/stageR
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Box 1. OFDR and gene-level FDR

The overall FDR, or OFDR, was first defined in
Benjamini and Heller (2008) [17]. It defines an
FDR-like measure for error rate control if multiple
hypotheses are assessed for every feature (e.g. gene or
gene set). It controls the FDR at the feature level, i.e.
over all hypotheses that are assessed for every feature.
The OFDR is defined for stage-wise testing procedures
that first discover interesting features using a screening
hypothesis and assess the discovered features in a
subsequent confirmation stage. Heller et al. (2009) [14]
introduced the OFDR in the context of gene sets and
define the OFDR as follows: “Let a discovered gene set
be a gene set for which the screening hypothesis has
been rejected, and let a falsely discovered gene set be a
discovered gene set for which at least one null
hypothesis (including possibly the screening
hypothesis) was incorrectly rejected. The OFDR is the
expected proportion of falsely discovered gene sets out
of all discovered gene sets.” In this contribution we
develop a stage-wise testing procedure for
multi-factorial experiments or transcript-level analyses
involving the assessment of multiple hypotheses per
gene. By controlling the OFDR, we thus control the
proportion of genes with at least one false null
hypothesis over the total number of significant genes.

and transcript-level results provides a rich resource for
follow-up biological interpretation and validation.

Differential gene expression
Simulation study
The simulation study is set up according to the Hammer
study [11], a full factorial design with factors time (time-
point 1, timepoint 2) and treatment (control, spinal nerve
ligation (SNL)) with two levels each. RNA-seq counts for
13,000 genes are simulated, 2000 genes have a constant
fold change between treatment groups over time (main
effect contrast), 2000 genes show DE in only one time-
point (1000 genes for every timepoint) and 1000 genes
are differentially expressed in both timepoints with a dif-
ferent fold change between the timepoints (interaction
effect). Thirty datasets are simulated with either five or
three biological replicates in every treatment x time com-
bination. The hypotheses of interest are DE at timepoint 1
and/or timepoint 2 (5000 genes) and testing for a change
in DE between timepoints 1 and 2 (3000 genes with a real
treatment × time interaction: 1000 genes with only DE
in timepoint 1, 1000 genes with only DE in timepoint 2
and 1000 interaction genes with DE in both timepoints
but with a differential fold change between them). A
conventional approach assesses each of these hypotheses

separately. Our two-stage approach, however, considers a
test with an aggregated null hypothesis in the screening
stage, i.e. that there is no effect of the treatment what-
soever. The individual hypotheses are only assessed in
the confirmation stage for genes that passed the screen-
ing stage, i.e. for genes showing evidence for a treatment
effect. The Jiang method assesses the same screening
hypothesis in the first step, but it has the disadvantage that
it must control the FDR on a lower level compared to our
method, typically 80% of the total FDR as suggested by
the authors [13], leading to a lower number of discovered
genes. In the second step of the Jiang method, FDR is con-
trolled on the union over all hypotheses on the remaining
20% level of the total FDR. We model the read counts
by (generalised) linear models with a treatment effect,
time effect and treatment x time interaction using the
limma-voom (edgeR) [12, 23] framework, and a compar-
ison is made in terms of FDR control, OFDR control and
power.
Figure 3 shows the results for the limma-voom analy-

sis of the simulated datasets with five biological replicates.
All approaches control the FDR on the hypothesis level
(i.e. across all returned hypotheses). This is expected for
the conventional and Jiang methods, but is generally not
guaranteed for our stage-wise approach since the latter is
designed to control the OFDR. All methods have equiva-
lent sensitivity for the individual hypotheses within each
timepoint, but the Jiang method provides too conserva-
tive FDR control (Additional file 1: Figures S1 and S2).
Since our proposed stage-wise testing procedure finds
fewer genes (Additional file 1: Figures S3 and S4) with
an equivalent (main effects) or higher (interaction) power
combined with a lower OFDR, it enriches for genes with
multiple effects. Moreover, the standard analysis leads to
poor OFDR control, while the proposed stage-wise anal-
ysis controls the OFDR at its nominal level, indicating
the superiority of a stage-wise testing approach to pri-
oritise candidate genes for further analysis. In contrast,
the Jiang method seems to be overly conservative. Biolog-
ical validation and interpretation using tools like GSEA
often occur at the gene level, which motivated us to com-
pare the fraction of null genes (i.e. genes where all null
hypotheses are true) in both candidate gene lists. When
decomposing the OFDR false positive genes into (1) null
genes and (2) genes with a treatment effect but where one
of the true null hypotheses has been falsely rejected, we
observe that the decrease in the fraction of false positives
is more pronounced for the proposed stage-wise method
than for the conventional analysis (Fig. 3, Additional file 1:
Figure S5). Again, the Jiang method is too conservative.
Thus, in addition to providing gene-level FDR control,
the fraction of null genes among the false positive list is
also lower for our method compared to the conventional
approach, which will eventually limit resources wasted
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Fig. 3 DGE simulation study results for the limma-voom analysis with five replicates in every treatment × time combination. a FDR and OFDR
control for the conventional approach (blue), the stage-wise method proposed in this manuscript (green) and the stage-wise method from Jiang
and Doerge [13] (orange). The false discovery proportion (FDP) is assessed in 30 simulations, which allows us to evaluate the FDR as the mean over
all FDPs. The conventional method controls the FDR over all hypotheses but is too liberal on the OFDR, and the Jiang and Doerge method seems to
be overly conservative in all scenarios. The stage-wise procedure we propose controls the FDR over all hypotheses; however, this is generally not
guaranteed. As expected, it controls the OFDR on all significance levels. Compared to the conventional approach, the fraction of null genes (genes
with no effect whatsoever) among the OFDR false positive list is lower for the stage-wise testing procedure proposed in this manuscript, which
shows that it is advantageous in terms of efficient biological validation of the results. b False discovery proportion-true positive rate (FDP-TPR)
performance curves for the treatment × time interaction effect based on the first simulation. The three points on the curves represent nominal FDR
cut-offs at 1%, 5% and 10% and are filled if the empirical level is below its nominal level. The proposed stage-wise method boosts power for the
interaction effect through the enrichment of interaction genes in the screening stage. The Jiang and Doerge method enriches for fewer genes as
compared to the Heller method, because it has to split the FDR between its two stages. Furthermore, the Jiang and Doerge method is very
conservative since it only allows control on the upper bound of the FDR across the hypotheses

towards the validation of false positive genes in follow-up
experiments.
In the introduction, we illustrated the low power of the

conventional method for discovering interaction effects
in RNA-seq experiments, and we observe a similar
behaviour in the simulation study. Our two-stage method,
however, enriches for genes with interaction effects by
aggregating evidence across hypotheses in the screen-
ing step. In the simulation study with five replicates,
this results in a power boost that can be observed for
every fixed empirical false discovery proportion (FDP)
(Figure 3b, Additional file 1: Figure S6). Moreover, our
stage-wise method, which is designed to control the
OFDR, also controls the conventional FDR for the interac-
tion effect (Additional file 1: Figure S7). The power boost
at every FDP is even more pronounced in the 3 vs. 3
comparison (Additional file 1: Figure S6). The conven-
tional FDR on the interaction effect, however, appears to
be slightly too liberal in this comparison.
The results of the negative binomial edgeR analysis

are qualitatively similar to the limma-voom analysis with
the exception that FDR control can be rather liberal for
edgeR, especially for small sample sizes (Additional file 1:

Figures S8–S12). Hence, the proposed stage-wise anal-
ysis (1) returns a lower number of false positive genes
and false positive null genes and (2) provides a higher
power for interaction effects while (3) maintaining the
same performance for the main effects.

Case study
We also re-analyse the Hammer dataset [11] with the two-
stage method using limma-voom. We only compare the
conventional and proposed stage-wise procedure, since
the Jiang method was shown to have suboptimal per-
formances in the simulation study. The results are very
similar to those of the DGE simulation study, suggest-
ing good quality of the simulated data: contrasts involving
main effects have a similar number of significant genes
between standard and stage-wise procedures, while the
latter again finds many more significant genes when test-
ing for the interaction effect (Table 1). While the con-
ventional analysis did not find any genes when testing for
the interaction effect, the stage-wise method retrieves 665
significant genes. The results of negative binomial count
regression with edgeR are in line with the limma-voom
analysis (Additional file 1: Table S1). Note, however, that
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Table 1 Number of genes found in the Hammer dataset on a 5%
FDR level in the limma-voom analysis

Procedure t1 t2 Interaction Stage I only Unique genes

Standard 7125 6589 0 NA 8199

Stage-wise 6890 6574 665 85 7901

We considered 12,893 genes in the analysis

edgeR does find 51 significant genes for the interaction
test in a conventional analysis, which however may be a
result of the higher power associated with edgeR’s rather
liberal FDR control for experiments with small sample
sizes (Additional file 1: Figure S12).
Eighty-five genes had only passed the screening stage,

while none of them had a significant effect in the confir-
mation stage or by the standard analysis. Their expression
profile reveals a moderate fold change with respect to
the treatment that remains stable over time (Additional
file 1: Figures S13 and S14), again indicating the higher
sensitivity of the overall test in the screening stage. All
genes, however, could be retrieved when testing for a con-
trast that quantifies the average fold change (i.e. average
DE between SNL and control over time), confirming the
biological relevance of the stage-wise testing approach,
even for the genes without significant effects in the sec-
ond stage. Note that incorporating the test for the aver-
age fold change does not alter the family-wise error rate
(FWER) correction of the Shaffer method (see Methods)
and can be adopted in the confirmation stage with-
out compromising the power on the other contrasts of
interest.

Differential transcript usage and differential transcript
expression
Simulation study
We adopt the Drosophila melanogaster andHomo sapiens
simulation studies from Soneson et al. [24] for both DTE
and DTU analyses. In the original simulation study DTU
was simulated by flipping the proportions of the two
most abundant transcripts, while in real data we often
observe more than two significant transcripts per gene
(see, e.g. Fig. 4). Hence, we have extended the simulation
study to accommodate alternative splicing patterns across
multiple transcripts per gene, and we also allow low-
expressed genes to be simulated as differentially expressed
or used. We compare the performance of the standard
and stage-wise procedures both on the transcript and gene
level by performing transcript-level tests or aggregating
transcript-level p values, respectively. We did not con-
sider analyses based on gene-level aggregated counts in
the screening stage, because this approach would fail to
find DTU for genes with constant output between con-
ditions. The gene-level test is superior to the transcript-

level test in terms of sensitivity for both DTE (Fig. 5)
and DTU (Additional file 1: Figure S15), which motivates
the stage-wise testing procedure. Furthermore, by lever-
aging the power in the gene-level test to the transcript-
level analysis in the confirmation stage, the stage-wise
analysis also has higher performance on the transcript
level in a DTE analysis (Fig. 5) and is at least on par in
a DTU analysis (Additional file 1: Figure S15) compared
to a regular transcript-level approach. The stage-wise
transcript-level tests do not only result in increased per-
formance but additionally provide a better FDR control
on the transcript level. Due to the better FDR control,
the stage-wise analysis will not necessarily find more tran-
scripts as compared to a transcript-level analysis, but the
number of true positive transcripts for a fixed fraction
of false positive transcripts in the rejected set should be
at least identical or higher in the stage-wise analysis. We
confirm the observation made in Soneson et al. [24] that
FDR control deteriorates severely in human as compared
to fruit fly and support their hypothesis that this is related
to transcriptome complexity.

Case study
We analysed a prostate cancer dataset [25] from 14
Chinese tumour-normal matched samples for DTU and
DTE. First, we use the case study dataset to evaluate the
stage-wise testing procedure on real data. We only select
the control samples and randomly assign group status
resulting in a two-group 7 vs. 7 comparison. In order to
simulate DTE/DTU, we randomly sample 1000 genes and
a random number of transcripts within those genes (see
“Methods” section for details). In the second group, we
then swap expression values within the gene in the sec-
ond condition. The performance results are qualitatively
similar to the human simulation study, suggesting good
quality of the simulated data (Additional file 1: Figure
S16). Next, we evaluate DTU and DTE based on the orig-
inal dataset. We use DEXSeq [2] for assessing DTU by
providing transcript-level expression estimates instead of
exon bin quantifications; hence, we fit transcript-level
negative binomial models. In the screening stage, infer-
ence is based on transcript-level p values aggregated to
the gene level, and transcripts of significant genes are con-
firmed using individual transcript-level tests. In the DTU
analysis, we filter genes with only one transcript, which
leaves 18,479 genes with a median of 6 transcripts per
gene. On a 5% target OFDR level, the stage-wise testing
analysis finds 4752 significant genes in the screening stage
and confirms 6772 significant transcripts in the confirma-
tion stage. Similarly, DTE is assessed using transcript-level
negative binomial models implemented in edgeR [26], and
gene-level tests are performed by aggregating transcript-
level p values. For DTE, no filtering is required, so we
consider 32,499 genes with a median of 2 transcripts per
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Fig. 4 Expression pattern of the PDLIM5 gene in the case study. The used fraction for every transcript is relative to the total expression of the
genomic locus for a respective sample. Black points represent normal tissue, and red points represent tumoural tissue. The left panel (original scale)
shows the dominant transcript that is additionally upregulated in tumoural tissue. The right panel shows the usage pattern on the log scale for all
transcripts and shows that the upregulation of the dominant transcript is compensated for by a downregulation of multiple other transcripts.
Significantly differentially used transcripts according to the stage-wise analysis are indicated with an S at the top of the plot

gene, although the analysis may benefit from independent
low abundance filtering [27]. The stage-wise analysis finds
4842 significant genes in the screening stage and con-
firms 5236 transcripts in the second stage on a 5% target
OFDR level.

The literature concerning alternative splicing has often
focussed on isoform dominance, where it is hypothesised
that many genes have dominant isoforms and a major
mechanism of DTU would be a switch of dominance
between two transcripts [28]. We find that two out of five

A B

Fig. 5 FDP-TPR performance curves for DTE analysis of the simulated data. Blue curves represent transcript-level tests, and green curves represent
tests based on p values aggregated at the gene level. The orange curve represents the stage-wise transcript-level analysis. The three open circles on
the curves represent working points for a target FDR of 1%, 5% and 10%. a Performance curve for the Drosophila simulation shows an inflated FDR
for both the aggregated analysis on the gene level and a transcript-level analysis. The stage-wise transcript-level analysis has increased performance
and additionally provides a better FDR control. b Performance curve for the human simulation shows even worse FDR control on all levels, which is
in line with previous publications [24]. Similar to the Drosophila simulation, the transcript-level stage-wise analysis shows somewhat higher
performance and provides a better FDR control



Van den Berge et al. Genome Biology  (2017) 18:151 Page 8 of 14

genes (CYP3A5 and LPIN1) with a gene-wise q value equal
to zero have previously been associated with prostate can-
cer [29, 30], and indeed both genes seem to correspond
to a switch in the dominant isoforms (Additional file 1:
Figure S17). However, for both genes the association with
prostate cancer was based on DE analysis, while we show
that instead the underlying pattern of the previous results
is due to DTU. We also observe that complex genes with
many transcripts are much more likely to be flagged in
a DTU analysis as compared to genes with a low num-
ber of isoforms (Additional file 1: Figure S18). Out of
all significant genes with at least three transcripts, 10%
have three or more transcripts confirmed as differentially
used in the confirmation stage, providing accumulating
evidence of more complex biological splicing patterns.
According to the stage-wise testing method, two genes
have seven or more differentially used transcripts on a
5% target OFDR level. The transcript usage pattern for
one of them, the PDLIM5 gene, corresponds to an upreg-
ulation for a dominant transcript that is compensated
for by a downregulation of multiple others (Fig. 4, Addi-
tional file 1: Figure S19). Remarkably, a single nucleotide
polymorphism (SNP) (rs17021918) in this gene was also
found to be associated with prostate cancer in previ-
ous studies [31, 32], among which was a large-scale
multi-stage genome-wide association study (GWAS) that
provided robust associations across multiple populations
[31]. When compared to a log-additive model, which is
the most commonmodel for association of SNPs with dis-
ease and assumes an additive effect of the log-odds on
disease for each copy of the allele, the effect of rs17021918
exceptionally showed no difference in risk on prostate
cancer between heterozygotes and homozygotes. Further-
more, the SNP lies in the intronic region of the PDLIM5
gene and could contribute to alternative splicing patterns
observed in prostate cancer cells as compared to normal
cells instead of providing allele dosage effects on prostate
cancer risk.

Discussion
We adapted the two-stage procedure of Heller et al.
[14] as a general inference paradigm to provide pow-
erful statistical testing and FDR control for problems
that allow hypotheses to be aggregated. We tailored it
towards modern RNA-seq applications assessing multi-
ple hypotheses per gene and showed that it is superior
in terms of interpretation, sensitivity and specificity. The
screening stage considers an omnibus test aggregating evi-
dence across all hypotheses for every gene. This boosts
the sensitivity for effects that have a relatively low power,
e.g. interactions in studies with complex designs, and for
picking up genes with differential transcript expression
and transcript usage. Note that screening also results in a
shift of the type of genes that are returned. The omnibus

test might dilute the evidence of genes with a moderate
effect for a single contrast (transcript) by aggregating it
with the true null hypotheses for the remaining contrasts
(transcripts). The loss of these genes, however, is compen-
sated by the discovery of additional genes with moderate
effect sizes for multiple contrasts of interest (transcripts)
in studies with complex designs (DTE/DTU applications),
e.g. the genes picked up in the Hammer study with a stable
andmoderate differential expression over time in rats with
SNL compared to controls. Upon screening, individual
effects/transcripts are further explored for the discov-
ered genes. For RNA-seq applications, we also optimised
the power of the confirmation stage by accounting for
logical relations between the hypotheses that have to be
assessed within each gene. In the confirmation stage, the
proposed method is at least equivalent or slightly superior
to the Jiang and Doerge method [13] in terms of sensi-
tivity and specificity, while providing much better FDR
control. In real applications, however, the Jiang method
will always lead to suboptimal results for several reasons:
(1) For RNA-seq experiments only an upper bound on the
FDR can be guaranteed under the condition that genes
with a true effect have a very high probability to pass the
screening stage, which leads to very conservative results
in our simulation studies. Note that this assumption, how-
ever, also might be violated, e.g. if many hypotheses are
of interest due to dilution of the effects. (2) The screen-
ing stage is also bound to be less powerful than that of
the Heller method, because the nominal FDR level has to
be split over both stages. (3) It is unclear how the FDR is
controlled for at the gene level.
We have focussed on time-series data in the applica-

tion of the two-stage method on DGE analysis. However,
the two-stage procedure is generic and can be applied to
any design. For example, a DGE study that compares three
drugs (e.g. a new drug, the current state of the art and
a placebo) would require exactly the same data analysis
paradigm as theHammer dataset: three different hypothe-
ses of interest (mean differential expression between the
drugs) and, according to Shaffer’s modified sequentially
rejective Bonferroni (MSRB) procedure, no correction is
needed in stage II for FWER control. The extension to
more complex designs is trivial when Holm’s method is
used in stage II. However, a good understanding of the
logical relations among the hypotheses is required for
implementing Shaffer’s MSRB procedure so as to obtain
maximal power.
The standard transcript-level and gene-level approaches

for DTU/DTE analysis show an inflated FDR in all sim-
ulations. The stage-wise transcript-level analysis provides
better FDR control, although it is often still inflated,
especially for the human simulations. Indeed, the distri-
bution of human transcript-level p-values is non-uniform
for the higher p values (Additional file 1: Figure S20),
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suggesting invalid statistical inference, while a proper
p-value distribution is observed for the Drosophila simu-
lation (Additional file 1: Figure S20). Soneson et al. [24]
suggested that the inflated FDR is related to transcriptome
complexity and have shown that FDR control can become
problematic for genes with many transcripts, which is
partly due to the uncertainty associated with read attri-
bution to similar transcripts. In addition, recent work has
shown that transcript abundance estimates are infested
with systematic errors as a result of a failure to model
fragment GC content bias [33], leading to false positive
transcript abundance results. Despite the computational
advantage of light-weight algorithms like Salmon and
kallisto [3, 6], many problems remain for correct estima-
tion of transcript abundances, all of which may contribute
to inflated FDR in transcript-level analyses. Even if the
true transcript abundances could be obtained, the statis-
tical inference engine of DEXSeq relies on large sample
assumptions that are often not met in reality, and further
method development is required to provide correct FDR
control in a DTE/DTU context. Note, however, that our
method is very general and can be easily adopted as new
frameworks for DTE and DTU become available.
The DTU case study highlights the biological relevance

of differential transcript usage in oncology research. It
shows that prioritising genes in a first stage and subse-
quently confirming transcripts for the significant genes
provides an elegant approach to DTU analysis, upon
which biological interpretation of the results may follow.
We confirm that a switch between dominant isoforms
is a common pattern in DTU, but additionally provide
evidence that the field may benefit from considering
more complex splicing mechanisms as was shown for the
PDLIM5 gene. The stage-wise testing method provides an
optimal data analysis strategy for discovering genes with
dominant isoform switches as well as genes with more
subtle changes in differential transcripts.
It is also important to stress that the stage-wise test-

ing procedure has the merit to control the FDR at a gene
level, which we claim to be beneficial over FDR control at a
hypothesis level in experiments involving many hypothe-
ses per gene. The gene is the natural level for downstream
analysis, e.g. GSEAs and subsequent biological validation
experiments. These might be compromised when using
traditional hypothesis-level FDR control since the union
of all genes found across hypotheses tends to be enriched
for false positive genes for which all null hypotheses are
true and that are not of interest to the biologist.
The Heller method controls the expected fraction of

rejected genes with at least one false positive hypothesis
and uses a FWER correction within a gene in the con-
firmation stage. Benjamini and Bogomolov [15] provide a
general framework for such hierarchical stage-wise testing
procedures. The method we propose could be considered

as a special case of this general framework, where an FDR-
based selection rule on the screening hypothesis is applied
in the first stage and a FWER correction is applied in the
second stage. However, the frameworks still differ in their
FDR calculation. In the Benjamini and Bogomolov proce-
dure, a false rejection of the screening hypothesis does not
contribute to the FDR if there are no false rejections in the
confirmation stage, while it does contribute in the Heller
procedure. We propose the latter to be more relevant for
the proposed applications since it incorporates false rejec-
tions across all hypotheses on the genes, and genes that
were only rejected in the screening stage also provided
meaningful biological results, as shown in the DGE case
study. However, if many hypotheses are of interest over
many genes (for example, a large-scale multi-trait GWAS
[34]), then the framework from Benjamini and Bogomolov
can be used to define a less stringent error measure, e.g.
by using FDR control across the hypotheses within a gene
in the confirmation stage.
In this contribution, we have deliberately chosen a

stage-wise approach with nested hypothesis tests in the
screening and confirmation stage. The method of Heller,
however, does not imply the use of an omnibus test in the
screening stage. In a DTE context, for instance, we also
might opt to aggregate the transcript-level counts at a gene
level instead of aggregating evidence over transcript-level
hypotheses. We, however, feel that this will obscure the
interpretation. In the latter approach, it is unclear how the
screening step will enrich for the hypotheses of interest at
a transcript level. For instance, genes with DTU and equal
overall expression can exhibit a very clear DTE signal but
are bound to fly under the radar when aggregating counts.
The null hypothesis of the omnibus test in the screening
stage has a natural interpretation that none of the effects
of interest occur for a particular gene, vs. the alternative
that at least one effect is present. Hence, the screening
stage will enrich for genes with effects that will be further
explored in the confirmation stage.

Conclusions
We have introduced two-stage testing as a general
paradigm for assessing high-throughput experiments
involving multiple hypotheses that can be aggregated,
which is implemented in the R package stageR (https://
github.com/statOmics/stageR). We optimised the proce-
dure towards RNA-seq applications: DTE, DTU and DGE
analysis with simple and complex experimental designs.
We have shown that the procedure controls the OFDR,
which we argue to be the natural error rate in high-
throughput studies: in our context the OFDR gets the
interpretation of a gene-level FDR and shares a close link
with the subsequent biological validation experiments and
interpretation of the results, e.g. GSEAs. The omnibus
test in the first stage boosts the power when testing for

https://github.com/statOmics/stageR
https://github.com/statOmics/stageR
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interaction effects in DE studies with complex designs,
without compromising power on the remaining contrasts.
For DTU and DTE analyses, the two-stage method gains
from the high performance of FDR control upon aggre-
gating transcript-level p values to the gene level. Specific
transcripts can be identified in the subsequent confirma-
tion stage for genes passing the screening stage. Hence,
the two-stage procedure naturally unites the highest level
of resolution on the biological problem with the supe-
rior power of aggregated hypothesis tests. In addition,
the two-stage transcript-level analysis is on par (DTU)
or has higher performances (DTE) than a conventional
transcript-level analysis while providing better FDR con-
trol. We have used the two-stage testing procedure to
prioritise interesting genes in a case study on prostate can-
cer, and we illustrated the potential of DTU analyses in the
context of cancer research.

Methods
Two-stage testing procedure
The two-stage testing procedure that is proposed in this
contribution was introduced by Heller et al. [14] for
assessing GSEA. We adapt the procedure and formulate
it more generally. Suppose we have a dataset that con-
sists of G genes. For every gene g, we are interested in
testing ng null hypotheses H1g , . . . ,Hngg . In the screening
stage the global null hypothesis HS

g is assessed, i.e. that all
H1g , . . . ,Hngg are true against the alternative hypothesis
that at least one hypothesis Hig is false. The confirma-
tion stage consists of assessing all individual hypotheses
H1g , . . . ,Hngg for each gene that passed the screening
stage. The procedure proceeds as follows:

1. Screening stage:

• Assess the screening hypothesis HS
g for all genes

g = 1, . . . ,G.
• Let pS1, . . . , p

S
G be the unadjusted p values from

the screening stage test.
• Apply the Benjamini-Hochberg (BH) FDR

procedure [35] to pS1, . . . , p
S
G at FDR level αI . Let

R be the number of rejected screening
hypotheses.

2. Confirmation stage: For all R genes that pass the
screening stage.

• Let αII = RαI/G be the BH-adjusted
significance level from the first stage.

• Let p1g , . . . , pngg be the p values from
H1g , . . . ,Hngg for gene g.• Adopt a multiple testing procedure to assess all
ng hypotheses while controlling the within-gene
family-wise error rate (FWER) at the adjusted
level αII .

Heller et al. [14] prove that the procedure controls the
OFDR under independence between genes, an assump-
tion that is required for the BH procedure. The BH pro-
cedure has been proven to be also valid under positive
regression dependency [18] and it has additionally been
shown to be valid under typical microarray dependencies
between the genes [19, 36].
Note that any FWER correction procedure can be used

in stage II. We, however, propose the use of the Shaffer
MSRB method [37] when logical relationships amongst
the hypotheses exist. The MSRB method is a modified
Bonferroni procedure that accounts for the logical rela-
tionships among the hypotheses. Like the regular Bon-
ferroni procedure, it is highly flexible and easily used in
nonstandard situations of dependency [37]. In brief, the
procedure works as follows. Suppose we have filtered the
genes that pass the screening stage. Let p(1)g , . . . , p(ng )g be
the sorted unadjusted p values in the confirmation stage
for gene g where p(1)g ≤ p(2)g ≤ . . . ≤ p(ng )g . The method
works sequentially over the sorted p values: suppose that
the first j − 1 hypotheses have been rejected, we then
compare p(j)g to αII/t(j) where t(j) equals the maximum
number of remaining hypotheses that still could be true
given that the first j − 1 hypotheses are false. t(j) is never
greater than ng − j+1, and therefore the MSRB procedure
uniformly outperforms the Holm [38] method.
In a standard setting, the first p value will be compared

to αII/t(1) = αII/ng . However, within a two-stage pro-
cedure, we know that for every gene in the confirmation
stage there is at least one effect, otherwise the screen-
ing hypothesis has been falsely rejected. Therefore, the
MSRB procedure can be further modified such that the
first p value can be compared to αII/(ng−1), hereby boost-
ing power for the most significant test. Below, we show
how t(j) might further reduce according to the specific
context.

Differential gene expression
Case study
The Hammer dataset [11] was downloaded from the
ReCount [39, 40] project website (http://bowtie-bio.
sourceforge.net/recount/). In this experiment, rats
were subjected to a spinal nerve ligation (SNL), and
transcriptome profiling occurred at 2 weeks and 2
months after treatment, for both the SNL group and
a control group. Two biological replicates are used for
every treatment × time combination. An independent
filtering step [27] is performed prior to the analysis, after
which we retain 12,893 genes with adequate expression
(counts per million larger than 2) in at least two sam-
ples. Data was normalised using trimmed mean of M
values (TMM) normalisation [23] to adjust for variations
in sequencing depth and mRNA population. We anal-
yse the data using a log-linear model implemented in

http://bowtie-bio.sourceforge.net/recount/
http://bowtie-bio.sourceforge.net/recount/
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limma-voom [12], and hypothesis testing is performed
through moderated t tests and F tests. Additionally, we
re-analyse the data using the negative binomial model
implemented in edgeR [26] where hypothesis testing is
performed through likelihood ratio tests. We assess (1)
the treatment effect at the first timepoint, (2) the treat-
ment effect at the second timepoint and (3) the treatment
× time interaction using a contrast for the differential
expression at the first and second timepoints and a
difference in fold change between the two timepoints,
respectively. For the standard analysis, every contrast
has been assessed on a 5% target FDR level as was the
screening hypothesis in the stage-wise analysis. When a
gene correctly passes the screening hypothesis, at most
one null hypothesis can still be true: there has to be DE at
timepoint 1 or timepoint 2; if the DE only occurs on one
timepoint, there also exists an interaction; if DE occurs
at both timepoints, the H0 of no interaction can still be
true. Of course, it is also possible that all null hypotheses
are false. If a gene incorrectly passes the screening stage,
it is a false positive by definition (see Box 1), no matter
the results of the confirmation stage; i.e. further false
positive rejections in the latter stage will not inflate the
OFDR. Hence, t(3), t(2) and t(1) = 1 in the Shaffer
MSRB method for the Hammer experiment, and no addi-
tional FWER correction is required in the confirmation
stage.

Simulation study
The simulation study is designed to mimic the Hammer
dataset [11]. The raw count table was downloaded from
the ReCount project [39, 40] website (http://bowtie-bio.
sourceforge.net/recount/). We simulated realistic RNA-
seq data based on the framework provided by [41] with
some minor adjustments which allow us to link a gene’s
characteristics over different timepoints, unlocking simu-
lation of cross-sectional time-series DGE data. Gene-wise
means μg and dispersions φg are estimated from the
larger Pickrell dataset [42] for more efficient estimation
and are jointly sampled for simulation, respecting the
mean-variance relationship of RNA-seq data.We simulate
13,000 genes (equivalent to the number of genes analysed
in the Hammer data) according to a negative binomial
model for two timepoints and two conditions. We con-
sidered two sample sizes: simulated datasets with either
five or three biological replicates for every treatment ×
time combination. We simulate 2000 genes with a con-
stant fold change between control and treatment for both
timepoints, 2000 genes with time-specific DE between
treatment and control (1000 genes for every timepoint)
and 1000 genes with a different fold change between
timepoints (i.e. significant treatment × time interaction
effect). All fold changes were set at 3 or 1/3, balanced in
every contrast.

Similar to the case study, we use limma-voom [12] and
edgeR [26] for DE analysis. As suggested by the authors
[13], we implement the Jiang and Doerge stage-wise test-
ing procedure by testing the screening hypothesis on a 4

5αI
FDR level, where αI refers to the screening stage FDR level
for our proposed method. For the second stage, all confir-
mation hypothesis p values are aggregated and corrected
for multiple testing on a 1

5αI FDR level. Following [14], we
define a false positive gene as a gene where at least one
of the null hypotheses (including the screening hypoth-
esis) is falsely rejected and use this criterion to define
the OFDR.

Differential transcript usage and differential transcript
expression
Simulation study
The simulation study is adapted from Soneson et al.
[24]. In brief, RSEM [43] generates paired-end sequenc-
ing reads with a length of 101 bp based on parame-
ters that are estimated from real RNA-seq data. The
transcripts per million (TPM) expression levels and rel-
ative isoform abundances are estimated from real fastq
files with RSEM: as in the original simulation study,
we used sample SRR1501444 (http://www.ebi.ac.uk/ena/
data/view/SRR1501444) for the Drosophila simulation
and sample SRR493366 (http://www.ebi.ac.uk/ena/data/
view/SRR493366) for the human simulation. Based on
a mean-dispersion relationship derived from two real
datasets (Pickrell [42] and Cheung [44] datasets, see [45]),
every estimated expression level is matched with a cor-
responding negative binomial dispersion value for each
gene. We scale the TPM values according to the desired
library size to derive the gene-wise expected count and
simulate counts from a negative binomial distribution.
Two conditions were considered in the simulation study,
and five samples were simulated in each condition. A
Dirichlet distribution was used to simulate relative iso-
form abundances in each sample. We simulate 1000 genes
with DTU. The genes with DTU were selected randomly
from the subset of genes with expected gene count above
5 and at least two expressed isoforms. The number of
differentially used transcripts within the gene is sam-
pled ranging from a minimum of 2 up to a random
number drawn from a binomial distribution with size
equal to the number of transcripts and success proba-
bility 1/3. We introduce DTU by randomly flipping the
proportions between the differentially used transcripts.
In addition to the DTU genes we simulate 1000 DTE
genes, where all transcripts from a gene are differen-
tially expressed with fold changes drawn from a truncated
exponential distribution. The simulated fastq files were
mapped to the Drosophila melanogaster (Homo sapiens)
transcriptome derived from the BDGP5.70 (GRCh37.71)
primary genome assembly using kallisto [3].

http://bowtie-bio.sourceforge.net/recount/
http://bowtie-bio.sourceforge.net/recount/
http://www.ebi.ac.uk/ena/data/view/SRR1501444
http://www.ebi.ac.uk/ena/data/view/SRR1501444
http://www.ebi.ac.uk/ena/data/view/SRR493366
http://www.ebi.ac.uk/ena/data/view/SRR493366
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Differential transcript usage
Prior to the analysis, we round the estimated isoform-
level counts to the closest larger integer and discard genes
with only one transcript and transcripts with no expres-
sion over all samples. The count matrix was then used
as input to DEXSeq [2]. DEXSeq estimates size factors
as in DESeq [46] for data normalisation. A transcript-
wise negative binomial generalised linear model is fitted
and changes in relative usage between the conditions
are assessed by testing the transcript:condition
interaction effect, comparing the expression ratio of the
transcript over all other transcripts within a gene between
conditions [24]. For the gene-level test, the transcript-
level p values are aggregated to gene-level q values using
the perGeneQValue function from DEXSeq [2], which
amounts to controlling the FDR at level

q∗ =
∑G

g=1 1 − (1 − θ)ng

R
,

with G the number of genes, ng the number of transcripts
for gene g, θ the significance threshold and R the number
of rejections.
In the confirmation stage of the stage-wise analysis, we

use the Shaffer MSRB method [37]. Genes in the confir-
mation stage have passed the screening stage; hence, at
least one of the transcripts should be differentially used
between conditions. Since one transcript is differentially
used, the difference in usage must be compensated for
by at least one other transcript. Hence, all genes passing
the screening stage should at least have two, and possibly
more, DTU transcripts. According to the Shaffer method,
the two most significant transcripts can be tested at a sig-
nificance level of αII/(ng − 2), and from the third most
significant transcript onwards the procedure reduces to
the Holm method [38]. If a gene only consists of two tran-
scripts, both are always called significant as soon as the
gene passes the screening stage.

Differential transcript expression
Isoform-level estimated counts are rounded to the clos-
est larger integer, and transcripts with no expression over
all samples are discarded from the analysis. A negative
binomial model is fit for every transcript using edgeR
[23], and statistical inference is performed through like-
lihood ratio tests. For a transcript-level analysis the p
values are adjusted using BH correction, while for a gene-
level analysis they are aggregated to gene-level q values
as described in the previous section. Similar to the DTU
analysis, we account for the fact that genes in the con-
firmation stage must have at least one significant tran-
script; however, there is no further dependency between
the hypotheses for DTE. Therefore, the Shaffer MSRB

method only provides additional power for the most sig-
nificant transcript, i.e. by testing it at αII/(n−1), and from
the second transcript onwards it reduces to the Holm
[38] method.

Case study
The unfiltered, unnormalised kallisto processed data
was downloaded from The Lair project website (http://
pachterlab.github.io/lair/) [47]. For the evaluation of our
method using ground truth based on the case study
dataset, we round the kallisto estimated transcript counts
to the closest larger integer, only retain transcripts with 5
counts in at least 6 samples and remove genes with only
one remaining transcript. We only select the control sam-
ples and randomly assign condition status resulting in a
two-group 7 vs. 7 comparison. For a random sample of
1000 genes, the number of transcripts within a gene sim-
ulated to be differentially expressed/used is defined as
the maximum of 2 and a random number from a bino-
mial process with size equal to the number of isoforms
and success probability 1/3. We simulate DTE and DTU
by swapping the expression counts between the selected
transcripts within the gene in the second condition and
evaluate DTE/DTU as in the simulation study. For the
analysis of the original dataset, we rounded the kallisto
estimated transcript counts to the closest larger integer
and removed genes with only one transcript for DTU anal-
ysis and transcripts with no expression over all samples
for both DTU and DTE analysis. DTU was assessed using
DEXSeq [2], andDTE analysis was performed using edgeR
[23]. A patient block effect was added to account for the
correlation between control and tumoural tissue within
patients, and inference was performed as described in the
simulation study. Both analyses were performed on a tar-
get 5% OFDR level. FWER correction in the confirmation
stage of the stage-wise testing procedure was performed
using an adapted Holm-Shaffer method [37], as described
in the simulation study.
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