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Background: Targeted deep sequencing is increasingly used to detect low-allelic fraction variants; it is therefore
essential that errors that constitute baseline noise and impose a practical limit on detection are characterized. In the
present study, we systematically evaluate the extent to which errors are incurred during specific steps of the

Results: We removed most sequencing artifacts by filtering out low-quality bases and then analyze the
remaining background noise. By recognizing that plasma DNA is naturally fragmented to be of a size
comparable to that of mono-nucleosomal DNA, we were able to identify and characterize errors that are
specifically associated with acoustic shearing. Two-thirds of C:G > AT errors and one quarter of C:G> G:.C
errors were attributed to the oxidation of guanine during acoustic shearing, and this was further validated
by comparative experiments conducted under different shearing conditions. The acoustic shearing step also
causes A>G and A>T substitutions localized to the end bases of sheared DNA fragments, indicating a
probable association of these errors with DNA breakage. Finally, the hybrid selection step contributes to
one-third of the remaining C:G > AT and one-fifth of the C>T errors.

Conclusions: The results of this study provide a comprehensive summary of various errors incurred during targeted
deep sequencing, and their underlying causes. This information will be invaluable to drive technical improvements in
this sequencing method, and may increase the future usage of targeted deep sequencing methods for low-allelic
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Background

Tens of thousands of tumors of varying types have been
analyzed using next-generation sequencing (NGS) for
systematic variant discovery [1, 2]. This has resulted in
the comprehensive characterization of many cancer
genomes and we are thus now able to identify genetic
alterations that are common to a variety of human
tumor types [1, 3]. Having identified these genetic alter-
ations, targeted sequencing techniques can now be used
in clinical settings to analyze the cancer-related genomic
regions in which they are enriched, thus enabling the
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cost-effective genomic profiling of somatic variants in
tumor specimens [4—6]. However, tumor heterogeneity
is common, and often various somatic mutations only
occur in a small fraction of cells in a given tumor; hence,
there is a growing need for technologies capable of iden-
tifying subclonal variants [7, 8]. These variants, particu-
larly at a stage before they become dominant in a given
tumor cell population, are likely to be primary factors,
contributing to both cancer recurrence and the rapid ac-
quisition of resistance to targeted therapies [9, 10]. Thus,
detection of subclonal variants may be essential to
optimize therapy outcomes for patients via the selection
of timely and appropriate treatment options [9]. Further-
more, it is vital that methods enabling the detection of
low-allelic fraction variants be developed and optimized
so that, in the clinical setting, standard genetic profiling
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techniques can be replaced with noninvasive methods to
detect and profile tumor variants in plasma and other
bodily fluids [11, 12]. Such noninvasive methods are
widely applicable, and can be used to monitor minimal
residual disease after therapy, to follow disease progres-
sion and patient response during therapy, and to identify
cancer patients within healthy populations at early and
curable stages of disease progression [13—15]. Further-
more, noninvasive methods are not limited to neoplastic
diseases, but are also applicable to trauma [16], stroke
[17], organ transplantation [18], prenatal screening for
fetal aneuploidy [19], etc.

While detection of small DNA subpopulations requires
deep sequencing a sufficient number of molecules, a prac-
tical limit of detection is also imposed by errors that occur
during sample preparation and sequencing [20-22]. A
thorough characterization of such errors may facilitate the
detection of method-dependent systematic errors, and fur-
thermore allow true variants to be distinguished from
these errors. For example, errors caused by Illumina HiSeq
sequencer chemistry are relatively well understood, and
therefore appropriate data filtering criteria based on this
knowledge are routinely applied to generated data to
remove them [23]. This filtering includes the removal
of parts of reads, or entire reads containing numerous
low-quality bases, to minimize downstream analysis
artifacts [24].

Nevertheless, it is not clear what fraction of errors are
incurred during the sequencing run itself, since technical
errors are also likely to be introduced during sample
preparation, library preparation, target enrichment, and/
or amplification of DNA samples. The fidelity of
polymerases routinely used in the construction of se-
quencing libraries is well characterized [25, 26]; however,
it is difficult to quantify the error rate induced by DNA
damage during library construction. For example, heat-
induced cytosine deamination during PCR thermocy-
cling has been suggested as a possible cause of baseline
noise in ion torrent semiconductor sequencing data [27].
Moreover, cytosine deamination occurs not only during
experimental procedures such as PCR amplification [27]
and formalin fixation [6, 28], but also prior to sample
preparation (i.e., intrinsically or biologically) in the
original DNA templates [29]. To determine during
which step, and to what extent, a given type of error is
introduced during sequencing, comparative experiments
under different experimental conditions have been rec-
ommended, but are rarely performed due to practical
reasons [23]. Thus, no systematic analysis of the errors
introduced during capture-based targeted deep sequen-
cing has yet been conducted.

However, because our study is not the first to investi-
gate the etiologies of sequencing errors, some of our
findings are also supported by previous studies reporting
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similar sources of artifacts. To compare our findings
with the previous studies, we summarize the artifactual
changes identified in different studies and key analytical
parameters in Additional file 1: Table S1, which is fur-
ther described in the “Discussion” section. In the present
study, we analyzed non-reference alleles in ultra-deep
coverage targeted capture sequencing data from both
plasma and peripheral blood leukocyte (PBL) DNA sam-
ples. From this analysis, we could estimate the rate of
sequencing-artifact substitutions incurred during specific
steps of the capture-based targeted sequencing process,
including DNA fragmentation, hybrid selection, and se-
quencing run. Based on our results, we recommend the
use of mild acoustic shearing for genomic DNA (gDNA)
fragmentation to minimize C:G>A:T and C:G>G:C
transversion errors. Finally, we estimated the effect of
coverage depth on the number of false positives incurred
at a constant error rate.

Results

Targeted deep sequencing on plasma and peripheral
lymphocyte DNA

We previously reported an efficient library construction
method that was specifically designed to mitigate the ef-
fects of the low amount of sample input DNA available
during targeted deep sequencing, via optimized ligation
conditions including reaction duration, temperature, and
adaptor concentration [30]. Using this method, we
profiled paired plasma and PBL DNA samples from 19
human subjects, including two healthy adults and 17 pa-
tients with pancreatic cancer. To cost-effectively achieve
a mean sequencing depth of ~10,000x (before de-
duplication), we designed a pool of RNA baits covering a
total of ~499 kb of the human genome, including 83
cancer-related genes (Additional file 2: Table S2). To
construct sequencing libraries, 200 ng of DNA was used
to construct sequencing libraries for PBL DNA, and 37.3
ng of plasma DNA was used on average (Additional file
2: Table S3). The generated DNA libraries were se-
quenced using the Illumina HiSeq2500. The average
total reads generated from the plasma and PBL DNA
samples was 56.3 and 20.0 million reads, respectively.
The average read alignment rate was 87.3% for plasma
and 93.7% for PBL DNA samples. After excluding PCR
duplication from sequencing data, the unique coverage
depths for plasma DNA and PBL DNA samples were
1964x (1210 - 3069x) and 1717x (1042 - 2361x) on
average, respectively (Additional file 2: Table S3). To ex-
clude the possibility of systemic bias affecting either the
library or sequencing data of the different sample types,
the allele frequencies of single nucleotide polymor-
phisms (SNPs) between matched plasma and PBL sam-
ples were compared. The results of this analysis showed
a strong correlation between SNP allele frequencies in
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plasma and PBL samples (R=0.9913, p value < 0.0001;
Additional file 3: Figure S1).

Errors introduced by the sequencing reaction

After excluding tumor-derived single nucleotide variants
(SNVs) and germline SNPs (“Methods”), we investigated
the extent to which background error was introduced
during the sequencing run by graphing the Phred base
quality scores of non-reference background alleles. Our
results show that while most background alleles
displayed base quality scores of less than 20, a small
fraction of background alleles exhibited a quality score
distribution indistinguishable from that of the reference
alleles (Fig. 1a). Based on the biphasic distribution of the
background allele quality scores, we excluded bases with
a quality score <30 to remove the majority of sequencing
errors for all downstream analyses. In the raw sequen-
cing data, the fraction of bases with a quality score 230
was 87 +3.3% (mean + standard deviation (SD)) for PBL
and 87 + 2.5% for plasma DNA samples. After the exclu-
sion of bases with a quality score <30, the overall distri-
bution of base quality scores was observed to be not
notably different between background and reference
alleles (Fig. 1b, c¢). This suggests that errors incurred
during the sequencing run were largely irrelevant with
regards to the background alleles.

Although the overall base quality scores of the back-
ground alleles did not significantly differ from those of the
reference alleles, the greatest differences between the two
groups were observed in the base quality scores for C and
G residues, which arose predominantly as a result of A >C
and T > G transversions (Additional file 3: Figure S2). This
is supported by previous error profile studies of Illumina
platforms, which show the frequencies of base substitutions
to vary by a factor of between 10- and 11-fold, with A>C
and T > G conversions being the most frequent errors ob-
served [31-33]. Similarly, Minoche et al. [24] reported that
these substitutions comprised approximately 29 and 27% of
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all substitutions in generated HiSeq data, respectively.
However, A>C and T>G transversions in our data
showed the lowest background error rates amongst all the
substitution classes (as described below), indicating the
limited effect of these errors after excluding low quality
bases. Taken together, our data indicate that the majority of
background alleles observed after filtering of bases with a
quality score <30 were not likely to have occurred due to
errors introduced during the sequencing run in either
plasma or PBL DNA samples.

Next, we utilized overlapping regions between paired
reads 1 and 2 to estimate the extent to which errors
incurred during the sequencing run persist after the filtra-
tion of low quality bases. If an error occurred prior to the
sequencing run, it should be consistently present in both
reads 1 and 2, whereas an error incurred during the
sequencing run is likely to be inconsistently identified be-
tween reads 1 and 2. By analyzing overlapping sequences,
we found that the average fraction of inconsistent errors
was 18.1% for plasma and 23.6% for PBL DNA samples
(Additional file 3: Figure S3). Considering that the over-
lapping regions represent the end section of reads where
errors are more likely to occur during the sequencing run,
this result may overestimate the overall fraction of errors
incurred during the sequencing run. Nonetheless, our re-
sults suggest that the majority of errors with high quality
base scores occurred prior to the sequencing run.

Errors observed after base quality filtration

Based on the distribution of base quality scores, we
focused our subsequent analyses on background noise
remaining after base quality filtration and thus restricted
our analysis of background errors to bases with a quality
score >30. Initially, we calculated the average allele-
specific background rates for the 19 human samples
across the entire target regions, and resultantly esti-
mated the overall mean background allele frequency to
be 0.007 and 0.008% in plasma and PBL DNA samples,
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respectively (Fig. 2a). Error-free positions were shown to
occur at a frequency of 77.2+1.4% (mean+SD) for
plasma and 78.7 + 1.0% for PBL DNA samples across the
entire target regions (Fig. 2b). Next, we examined errors
across all 12 nucleotide substitution classes (Fig. 2c) and
combined these data with information regarding the
bases located immediately 5° and 3" to each mutated
base to reveal context dependencies. While the back-
ground frequency of each substitution class significantly
varied with context, the overall patterns of background
frequency variation associated with specific sequence
contexts were similar between plasma and PBL DNAs
(Additional file 3: Figure S4). Nevertheless, various sub-
stitution classes showed obvious differences between
plasma and PBL DNA samples (as described in the
following sections).

Errors incurred during the DNA fragmentation step

Since plasma DNA is predominantly fragmented to a
length comparable to that of mono-nucleosomal DNA,
it is not necessary to shear plasma DNA to enable li-
brary construction. Thus, we were able to exploit the
naturally fragmented state of plasma DNA to estimate
and characterize technical errors introduced during
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DNA fragmentation. Given that the only difference be-
tween the protocols employed for plasma and PBL DNA
samples was the fragmentation of DNA by adaptive fo-
cused acoustic technology (Covaris), we assumed that
any observed PBL-specific errors were due to DNA
damage incurred during the fragmentation step. When
we performed a statistical test to compare background
errors between plasma and PBL DNAs across all substi-
tution classes, we found that C:G > A:T (the colon sepa-
rates complementary bases written in a 5 —3’
direction) and C:G > G:C transversion errors were sig-
nificantly elevated in PBL compared to plasma DNA
samples (Bonferroni adjusted p value <10™* for both
transversions; Fig. 2d). In fact, C:G > A:T transversions
were the most frequent errors identified in PBL DNA
samples and, on average, 64% of C:G > A:T transversions
occurred seemingly as a result of DNA damage incurred
during the fragmentation step. Although the frequency
of C:G>G:C transversions was relatively low, it was
similarly increased by 39% in PBL compared to plasma
DNA samples.

Based on these results, we hypothesized that the eleva-
tion of C:G>A:T and C:G> G:C transversion rates in
PBL DNA was caused by DNA damage incurred during
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the acoustic shearing step. To test this hypothesis, we
varied the acoustic shearing conditions and thus esti-
mated their effects on DNA damage and induced tech-
nical errors. The ultrasonic acoustic energy was lowered
by adjusting the intensity and/or shortening the duration
of acoustic shearing to lengthen the median fragment
size of sheared genomic DNA samples (Fig. 3; Additional
file 2: Table S4). When we performed an enzyme-linked
immunosorbent assay (ELISA) to measure the formation
of 8-0x0-7,8-dihydroguanine (8-oxo-G), which is a typ-
ical oxidative base lesion that leads to C:G > A:T errors,
we found that lowering the utilized ultrasonic acoustic
energy significantly attenuated the 8-oxo-G level
(ANOVA p value = 6.0 x 107; Additional file 3: Figure
S5a). Furthermore, it also dramatically decreased the rate
of C:G > A:T and C:G > G:C transversion in PBL DNA to
match those observed in plasma DNA, without affecting
the other substitution classes (Fig. 3a). Thus, our data
show that the standard DNA fragmentation protocol
caused C:G > A:T and C:G > G:C transversions via DNA
damage, and that this source of error was alleviated
under mild acoustic shearing conditions.

By analyzing the frequencies of these errors with regard
to specific sequence context, we found that both C:G >
A:T and C:G > G:C transversion errors due to acoustic
shearing were most frequently induced in the specific
sequence context, NCG:CGN. The fact that this specific
sequence context was shared by the two transversion er-
rors implies potential commonality of their underlying
mechanisms (as discussed in subsequent sections).

Errors at the break point of DNA fragments
Next, we considered whether errors introduced during
DNA fragmentation might be associated with mechano-
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chemical breakage of DNA. This association would be
expected to produce an accumulation of errors in close
proximity to DNA break points, although notably, sev-
eral other sources of error are likely to confound the
analysis of any such accumulation. For example, the Illu-
mina sequencing platform is known to accumulate all
types of substitutions in the first 10 bp of reads [33, 34].
Consistent with previous reports, we found base quality
scores in the first four consecutive bases of reads to be
deceased when low-quality score bases were not ex-
cluded from analysis (Fig. 4b). We examined whether
background errors with high base quality scores were
more likely to arise near the end of a given DNA frag-
ment. From our results, we observed an increase in the
rate of errors induced across most substitution classes to
occur specifically at the first base of a read (Fig. 4a;
Additional file 3: Figure S6a). This dramatic increase in
the error rate at the first base was virtually abolished at
the second base, as demonstrated via analysis of both PBL
and plasma DNA samples (Additional file 3: Figure S6b).
To distinguish error associated with acoustic shearing,
we again took advantage of naturally fragmented plasma
DNA. We found that the substitution rate of A with ei-
ther G or T (i.e, A >K) at the first base was significantly
elevated in PBL compared to plasma DNA samples
(Fig. 4a; Additional file 3: Figure S6). Since the overall
A >K substitution rate was not affected by acoustic
shearing, we were able to determine that fragmentation-
induced A > K substitutions were localized to the end re-
gions of analyzed fragments, suggesting that there may
be a strong association between this type of substitution
and mechano-chemical breakage of DNA. In contrast,
we observed that neither C:G > A:T nor C:G > G:C errors
(these being the most common errors induced by
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acoustic shearing) were significantly elevated in PBL
compared to plasma DNA samples, suggesting that such
errors are not associated with mechano-chemical break-
age of DNA. Although the first-base G>T error rate
was observed to be higher in PBL than plasma samples,
it was not clear whether the G > T errors were associated
with mechano-chemical breakage of DNA because we
also observed an overall elevation of these errors in the
reads from PBL DNA samples.

To analyze mononucleotide frequency around DNA
break points, we aligned generated sequencing reads to
the reference human genome to obtain sequencing in-
formation pertaining to these regions. We observed
mononucleotide frequencies to significantly fluctuate
near the break point, and also found that the first base
of sequencing reads displayed a significant enrichment
in A residues (Fig. 4c; Additional file 3: Figure S7).
When we examined the cleavage frequencies of
phosphodiester bonds in 16 dinucleotides by calculating
their frequencies around DNA break points, we identi-
fied CA, TA, and GA to be susceptible to cleavage
(Additional file 3: Figures S8 and S9), such that the
cleavage rate of phosphodiester bonds diminished ac-
cording to the following order: CG>CA >TA ~GA.
Thus, our data suggest that acoustic shearing preferen-
tially cleaves the phosphodiester bond at the 5" side of A
nucleotide residues, and furthermore that A > K substi-
tution may be strongly associated with this cleavage.

Errors at the hybrid selection step

A recent report by Newman et al. [35] indicated that
G > T transversions predominated amongst all substitu-
tion classes, and occurred much more frequently than
reciprocal C > A transversions, in their experiments with
NimbleGen SeqCap baits targeting the plus strand. The
results of the study suggested that G> T transversions
were primarily caused by oxidative damage that occurred
during the hybrid capture step [35]. Since we used Agi-
lent SureSelect baits that targeted the minus strand, such
DNA damage (if present) might be expected to result in
predominant C> A transversions and an imbalance in
the ratio of C>A to G>T transversion errors. In fact,
we calculated the ratio of C>A to G>T transversions
to be 1.67 +0.10 (mean + SD) and 1.44 +0.24 in plasma
and PBL DNA samples, respectively, indicating the oc-
currence of guanine residue oxidative damage on the
minus strand (Fig. 2e). Compared to the C:G>A:T
transversion errors due to acoustic shearing, errors in-
curred during the hybrid selection step constituted a
relatively small fraction. The frequency of C> A trans-
versions (0.0087%) was only 1.7-fold higher than that of
G >T transversions (0.0054%), and only slightly greater
than the overall substitution rate (0.007%) in plasma
DNA, indicating that limited oxidative DNA damage
was incurred by the use of Agilent baits (Fig. 2b). The
difference in the ratio between plasma and PBL DNAs
was likely due to the elevation of C:G > A:T error rate in
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PBL samples caused by acoustic shearing of genomic
DNA. In addition, our data show an imbalance in the ra-
tio of C>T to G > A errors, indicating that cytosine resi-
dues were deaminated on the minus strand during the
capture hybridization step (Fig. 2e). Although Newman
et al. previously reported that C>T substitutions oc-
curred during hybrid selection with NimbleGen SeqCap
baits targeting the plus strand, they did not observe the
same phenomenon to affect their use of baits to target
the minus strand; notably, however, they only analyzed a
limited number of data sets [35]. In the present study,
our data indicate the occurrence of similar C > T transi-
tions during the hybrid selection step, despite our use of
a different hybridization condition comprising minus
strand-specific baits. The identified imbalances between
complementary substitution classes (i.e., G>T to C>A
and C > T to G > A) were consistent between plasma and
PBL DNA samples (Fig. 2e).

The false positive rate

Although the mean error rates observed across the entire
target regions were relatively low in all analyzed samples,
the allelic frequency calculated for each background allele
in a given sample varied significantly. This observation is
likely to be due in part to significant stochastic variations of
rare events, but also to the large variability between allele-
specific error rates (Fig. 5a; Additional file 3: Figure S10).
Since sample size exerted a profound impact on the magni-
tude of stochastic variations, the distribution of background
allele frequencies changed dependent on the depth of
coverage. Our in silico down-sampling analysis showed that
a decrease in the depth of coverage improved the fraction
of error-free genomic positions but also increased the
chance of high-frequency errors (Fig. 4a). For example, the
chance of a background allele being present at a frequency
greater than 1% was increased by more than an order mag-
nitude as the depth of unique coverage after de-duplication
lowered from >1000x to <500x. Thus, at a constant error
rate, our data show that low-depth sequencing data were
more likely to result in false positives (Fig. 5b).

Next, we estimated how significantly errors caused by
DNA shearing influenced the false positive rate, by
down-sampling the data from Fig. 3 (which was
generated using various DNA shearing conditions) and
comparing false positive rates. Compared to the standard
condition, the mild shearing condition that attenuated
background errors significantly reduced the false positive
rate (Fig. 5c¢). This finding was also supported by a
comparison of plasma and PBL samples which showed
that, at a given depth of coverage, PBL DNA samples
fragmented by the standard acoustic shearing condition
were affected by a higher false-positive rate than plasma
DNA samples (Fig. 5d).
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designated size of total reads in a range between 2.5 and 50 M. The x-axis
denotes the frequency of background alleles, and the y-axis denotes the
fraction of alleles with the designated background rate on the x-axis. b-d
The fraction of background alleles present at a frequency greater than a
given threshold is plotted against the depth of coverage after de-
duplication (x-axis). b The effect of coverage depth on the false positive
rate is shown in the down-sampled data set generated from 19 plasma
DNA samples. ¢ The effect of each DNA shearing condition on the false
positive rate was estimated using the down-sampled data set from Fig. 3.
a-d indicate the fragmentation conditions, as described in Fig. 3. d A
comparison of plasma and fragmented PBL DNA samples

Discussion

In the present study, we show that the rates of C:G >
A:T and C:G > G:C transversion errors were significantly
increased in PBL compared to plasma DNA samples as a
result of the acoustic shearing of gDNA. In cells, a pleth-
ora of studies have reported the predominance of C:G >
AT and C:G > G:C substitutions induced by DNA ex-
posure to oxidants [36—39]. Relative to the other DNA
nucleobases, guanine is more susceptible to the forma-
tion of oxidation lesions owing to its low oxidation
potential [40, 41]. One such guanine oxidation lesion
comprises the formation of 8-oxo-G, which is known to
cause G to T transversion substitutions via the dA:8-
ox0-G pair [42]. Previously, Costello et al. [43] showed
C:G > A:T artifact substitutions to be caused by 8-oxo-G
lesions generated during DNA shearing, and also
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demonstrated that these were reduced by antioxidants.
Notably, the C:G > A:T errors analyzed in this study
were markedly different from those characterized by the
previous study. First, the substitution allele fraction was
much smaller in our study compared to that observed
previously, such that when the previous study reported
C:G > A:T errors to be present at allelic fractions of up
to 20%, we found errors with allelic fractions of >1% to
be very rare. The previous study analyzed affected
samples containing reactive contaminants from the ex-
traction process and showed that the high rates of
C:G > A:T errors were not caused by sonication alone,
but rather by a combination of sonication and contamin-
ation. Second, the predominant sequence-specific con-
text for substitution errors was identified in the previous
study to be CCG:CGG > CAG:CTG (where the target
base is bolded), whereas we determined it to be
NCG:CGN > NAG:CTN  according to our data
(Additional file 3: Figure S4). Moreover, in addition to
previously observed C:G>A:T transversions, we ob-
served C:G > G:C transversions to be caused by acoustic
shearing of gDNA. Whilst the typical oxidative lesion
product 8-oxo-G is established to directly induce C:G >
A:T transversions, secondary oxidative lesion products of
8-0x0-G, including imidazolone, guanidinohydantoin, and
spiroiminodihydantoin, may be responsible for causing
C:G > G:C transversions [41, 44]. Thus, the oxidation of
guanine residues may cause both C:G>A:T and C:G>
G:C errors in response to the acoustic shearing of gDNA.
Recently, Chen et al. [45] showed that DNA damage
accounts for the majority of erroneously identified
variants reported to occur at frequencies ranging from
1-5% in public data sets, such as the 1000 Genomes
Project and The Cancer Genome Atlas. Among these
false negative results, the most prevalent substitution
was C:G > A:T, followed by A:T>T:A. In contrast to
Costello et al. [43], Chen et al. not only reported a mod-
erate error frequency, but also asserted the limited effect
of EDTA and/or nucleotide context specificity on DNA
damage, indicating that the identified errors were not
caused by reactive contaminants during purification.
Chen et al. also demonstrated that observed C:G > A:T
and A:T > T:A errors were virtually abolished by the use
of a 1x TE (comprising 10 mM Tris (pH 8) and 1 mM
EDTA) shearing buffer. Presumably, because we used
the same 1x TE buffer for DNA shearing, the error rate
in the present study was lower than that identified
previously. In addition, the present study systematically
analyzed errors (not limited to C:G > A:T transversions)
that were found to persist after the removal of those errors
induced by problematic and/or suboptimal conditions,
which were discussed by previous studies. Thus, while
previous studies significantly contributed to the identifica-
tion and reduction of artifactual errors induced by DNA
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fragmentation, the present study provides additional
valuable information that may enable the continued
improvement of targeted deep sequencing methods.

The acoustic shearing condition we used in the
present study was recommended by the manufacturer
for fragmentation of input DNA with a median size of
150-200 bp. Whereas previous studies used DNA repair
to specifically eliminate oxidative damage, we instead
proposed a mild shearing condition to minimize the oc-
currence of such DNA damage in the first place. Given
that our results show that the rate of C:G>A:T and
C:G > G:C errors was attenuated by replacing the stand-
ard with mild shearing conditions, it may be beneficial
to increase the input DNA fragment size to minimize in-
duced errors. Moreover, since the maximum read length
possible using the Illumina NGS platform has increased,
and the produced base quality at the end of reads has
improved, it may be more efficient to produce a greater
data output in a single run by using longer DNA input
fragments. On the other hand, a potential disadvantage
of increasing DNA input fragment size is the broad dis-
tribution of fragment size, which may compromise the
recovery rate of input DNA to a sequencing library. In
addition, since DNA fragments longer than their corre-
sponding target regions compromise the on-target rate,
we observed that DNA fragmentation under the mild
condition decreased the on-target capture rate by 15—
25% compared to that achieved under the standard
shearing condition. Thus, it may be more beneficial to
produce a slightly greater amount of raw sequencing
data than to compromise the depth of unique coverage
when DNA fragmented under the mild condition is used
as the input for capture-based targeted sequencing.

In the present study, we showed that the standard
DNA shearing condition induced 8-oxo-G, which has
been previously shown to mediate C:G > A:T and C:G >
G:C errors. In addition to oxidative guanine, we also
used an ELISA to evaluate apurinic-apyrimidinic (AP)
sites in fragmented DNA, since depurination/depyrimi-
dination represents one of the most common mecha-
nisms underlying DNA damage [46]. We resultantly
found that the identified AP sites significantly correlated
with the ultrasonic acoustic energy level used during the
shearing step (ANOVA, p value = 4.7x 1077; Additional
file 3: Figure S5b). Nevertheless, an additional DNA
lesion-causing mechanism is likely active in this context,
since these common lesions do not explain the A >G or
A>T errors observed to occur at the end of DNA frag-
ments. We therefore hypothesized that the increase in
A >K errors at the end of fragments was likely associ-
ated with the mechano-chemical breakage of DNA. After
we found the fragmentation-induced errors in our data,
we analyzed additional paired PBL and plasma data sets
(n=3 for each) and consistently observed higher A >K
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error rates at the end of PBL DNA fragments than
plasma DNA fragments (Additional file 3: Figure S12a).
We further analyzed whole-exome sequence (WES) data
sets from two independent studies that fragmented input
DNA using acoustic shearing [47, 48]. We found the ele-
vation of A >K errors at DNA break points in the WES
data (Additional file 3: Figure S12b), but the degree of
the increase was less prominent than that observed in
our data. The quantitative difference might arise from
variations in library construction conditions especially
during end repair and adaptor ligation steps. For
example, T4 DNA polymerase and Klenow fragment
usually used for end repair have distinct characteristics
including error rate; 1x 107° bases for T4 DNA poly-
merase and 1 -4 x 10™* bases for Klenow fragment [49].
Both T4 DNA ligase and Taq ligase can be used for
adaptor ligation, but display different specificities [50].
The differences in fidelity during end repair and specifi-
city of DNA ligation might influence error rates at
around DNA break points. Despite these variables, by
comparing plasma and PBL DNA sequencing data
generated under the same library construction condition,
we were able to identify A > K error at the end of frag-
ments associated with acoustic shearing. Nonetheless,
the mechanism underlying the creation of A >K errors
by acoustic shearing remains to be elucidated.

Notably, one insight into potential mechanisms is
the preferential cleavage observed to occur at the 5’
phosphodiester bonds of A residues, which was con-
sistent with previous studies [51, 52]. The cleavage
preferences of PBL DNA fragmented by acoustic
shearing were markedly different to those of nuclease-
fragmented plasma DNA. We did not describe the
pattern of plasma DNA fragmentation in detail in the
present study, but we did note that the mono- and
dinucleotide frequencies around cleavage sites in
plasma DNA observed in the present study were
consistent with those reported by previous studies
(Additional file 3: Figures S9 and S11) [52, 53]. After
we identified fragmentation-induced A >K substitu-
tions to be localized at the end regions of the ana-
lyzed fragments in the present study, we analyzed
sequence datasets from independent studies that each
used acoustic shearing to fragment input DNA.
Consistent with the results of the present study, we
identified an elevated incidence of A >K errors at
DNA break points in these additional sequence
datasets (Additional file 3: Figure S12).

We estimated that after excluding errors induced by
DNA fragmentation, the strand-specific hybrid selection
step contributed to one-third of the remaining G > T and
one-fifth of the remaining C > T errors. Our results were
consistent with a previous report by Newman et al. [35]
that also identified G>T and C> T errors to have been
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incurred during the hybrid selection step, although,
using NimbleGen SeqCap as a capture reagent, Newman
et al. reported a greater degree of G > T substitution than
was observed in the present study. Since we estimated
the errors incurred during the hybrid selection step by
calculating the difference in error rates between comple-
mentary substitutions, it is possible that we may have
underestimated the impact if there was C> A error on
the minus strand during the hybrid selection step. Exam-
ining whole genome sequencing libraries generated
using the same protocol, but without hybrid selection,
would be a potential method to resolve this issue.

We next investigated whether biological background
(i.e., intrinsic to the sample prior to isolation) significantly
contributed to the error rate incurred during sequencing.
Newman et al. [54] reported a marginally higher mean
background rate to be present in plasma DNA “hotspot”
variants compared to entire target regions, indicating that,
in the absence of cancer, plasma DNA may carry somatic
variants as a result of contributions from normal or pre-
neoplastic cells. Since we observed that hotspot variants
in our target regions did not evenly distribute across all
substitution classes, and in fact biased toward classes with
higher background rates (Additional file 3: Figure S13a),
we selected data for a control group randomly, but pro-
portionally with respect to the fractions of the various
substitution classes observed in a given hotspot group.
From this analysis, we found that the background rate of
hotspots in both the plasma and PBL samples was not sig-
nificantly different from that observed in the control
group (Additional file 3: Figure S13b). We then assessed
the background rate at tumor protein p53 (TP53) hot-
spots, which comprise approximately 29% of the total
identified hotspots (52/189). TP53 is particularly relevant
in this context, since TP53 variants are found in ap-
proximately half of solid tumors of varying cancer types,
but occur less frequently in hematological malignancies
[2, 55]. If plasma DNA carries TP53 variants as a result of
contributions from pre-neoplastic cells of diverse tissues
other than hematopoietic lineage cells, the error rate at
TP53 hotspots in plasma samples should be elevated and
different from that observed in PBL samples. We observed
no difference in the background rate at TP53 hotspots be-
tween plasma and PBL DNA samples (Additional file 3:
Figure S13c), implying the minimal impact of biological
background at cancer hotspots. These data suggest that
biological background was a minimal source of error dur-
ing sequencing compared to that incurred as an artifact of
varjous technical processes.

Notably, A:T > T:A and C:G > T:A transversion errors
were slightly but significantly elevated in plasma DNA
samples. It would be interesting to investigate whether
this reflects a specific set of errors induced by the release
of genomic DNA into the blood to form cell-free DNA
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(cfDNA), by the events that trigger this release, or by
DNA damage incurred during the circulation of cfDNA
in plasma. Further research is required to establish
whether plasma DNA contains more biological back-
ground errors than PBL DNA prior to isolation. This
would in turn reveal whether differing DNA isolation
techniques between plasma and cells creates technical
background errors.

Given that background errors are not entirely random,
and in fact display significant site-specific variations,
site-specific error rate distributions generated from real
sequencing data have been used to distinguish somatic
variants from background errors. For example, both
plasma and PBL DNA samples have been used as a con-
trol group to detect circulating tumor DNA (ctDNA).
However, the level of similarity between background
errors in plasma versus PBL DNA samples is not estab-
lished. Our results pertaining to the background rates
across substitution classes showed similar patterns de-
pending on sequence contexts between plasma and PBL
DNA samples. However, some significant differences
suggested that plasma samples from healthy donors
would be suitable for use as control samples for the de-
tection of ctDNA. If PBL samples are used as an alterna-
tive resource to estimate the site-specific error rate
distributions of plasma DNA in normal controls for
some practical reason, our results suggest that it should
be fragmented under a mild shearing condition to
minimize incurred errors.

Conclusions

Despite extremely low mean error rates, baseline
noise during sequencing can drastically compromise
the specific detection of low-allelic fraction variants
due to stochastic and site-specific variations in errors,
which may be mitigated by increasing the depth of
coverage. In the present study, we comprehensively
analyzed errors embedded in targeted deep sequen-
cing data to uncover their characteristics and identify
potential causes for background noise. Our results
provide information on error patterns and their
causes that may be invaluable in elucidating the limi-
tations of, and thus improving the use of, targeted
deep sequencing methods to detect low-allelic fraction
variants.

Methods

Plasma and PBL sample collection

Blood samples were collected in Cell-Free DNA™ BCT
tubes (Streck Inc., Omaha, NE, USA) [56] from two
healthy adults and 17 patients with pancreatic cancer
(Additional file 2: Table S5). Blood samples were proc-
essed within 6 h of collection via three graded centrifu-
gation steps (840 g for 10 min, 1040 g for 10 min, and
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5000 g for 10 min, at 25 °C). PBLs were drawn from the
initial centrifugation, and plasma was transferred to new
microcentrifuge tubes at each step. Plasma and PBL
samples were stored at —80 °C until cfDNA extraction.

DNA extraction

Germline DNAs from collected peripheral blood mono-
nuclear cells were isolated using a QIAamp DNA mini kit
(Qiagen, Santa Clarita, CA, USA). Circulating DNAs were
extracted from 1-5 mL of plasma using a QIAamp Circu-
lating Nucleic Acid Kit (Qiagen). DNA concentration and
purity were assessed by a PicoGreen fluorescence assay
using a Qubit 2.0 Fluorometer (Life Technologies, Grand
Island, NY, USA) with a Qubit dsDNA HS Assay Kit and a
BR Assay Kit (Thermo Fisher Scientific, Waltham, MA,
USA). DNA concentration and purity were quantified
using a Nanodrop 8000 UV-Vis spectrometer (Thermo
Fisher Scientific) and a Picogreen fluorescence assay using
a Qubit 2.0 Fluorometer (Life Technologies). The frag-
ment size distribution was measured using a 2200 TapeS-
tation Instrument (Agilent Technologies, Santa Clara, CA,
USA) and real-time PCR Mx3005p (Agilent Technologies)
according to the manufacturer’s instructions.

Library preparation

Genomic DNAs from PBL samples were fragmented to
150 — 200 bp using a Covaris S220 (6 min, 10% duty
factor, peak incident power =175 W, 200 cycles/burst;
Covaris Inc.,, Woburn, MA, USA). Plasma DNA was
prepared without fragmentation. The construction of se-
quencing libraries was achieved using 200 ng (for all
samples) of PBL and 37.3 ng (on average) of plasma
DNA. To test whether DNA fragmentation influenced
the background error rate, the intensity and/or duration
of DNA fragmentation was varied using 200 ng of initial
genomic DNA from HapMap samples (Additional file 2:
Table S4). The libraries for PBL and plasma DNAs were
constructed using a KAPA Hyper Prep Kit (Kapa Biosys-
tems, Woburn, MA, USA) as described previously [30].
Briefly, end repair, A-tailing, adapter ligation, and PCR
reactions (nine amplification cycles) prior to target
enrichment were performed according to the manufac-
turer’s recommended protocols. A purification step was
carried out using AMPure beads (Beckman Coulter,
Indiana, USA) after each step. Adaptor ligation was
performed using a pre-indexed PentAdapter™ (PentaBase
ApS, Denmark) at 4 °C overnight.

Target enrichment and sequencing for liquid biopsies

We designed unique RNA baits to target ~499 kb of the
human genome, including exons from 83 cancer-related
genes. Up to eight purified libraries were pooled and
adjusted to a total of 750 ng for each hybrid selection
reaction. Target enrichment was performed following
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the SureSelect bait hybridization protocol with the
modification of replacing the blocking oligonucleotide
with IDT xGen blocking oligonucleotide (IDT, Santa
Clara, CA, USA) for the pre-indexed adapter. After the
target enrichment step, the captured DNA fragments
were amplified via 13 PCR cycles using P5 and P7 oligo-
nucleotides. The amplified library was purified with
AMPure beads and quantified by Picogreen fluorescence
assay using a Qubit 2.0 Fluorometer (Life Technologies)
with a dsDNA HS Assay Kit (Thermo Fisher Scientific).
The size distribution was analyzed using a 2100 Bioanaly-
zer (Agilent Technologies). Based on DNA concentration
and average fragment size, the libraries were normalized
to an equal concentration of 2 nM and pooled by equal
volume. After denaturing using 0.2 N NaOH, the libraries
were diluted to 20 pM with a hybridization buffer
(Ilumina, San Diego, CA, USA). Cluster amplification of
denatured templates was performed according to the
manufacturer’s protocol (Illumina). Flow cells were se-
quenced in the 100-bp paired-end mode using the HiSeq
2500 v3 Sequencing-by-Synthesis Kits (Illumina) and then
analyzed using RTA software (v.1.12.4.2 or later).

Sequence data processing

Using BWA-mem (v0.7.5) [57], all raw data were aligned
to the hgl9 human reference to create BAM files. SAM-
TOOLS (v0.1.18) [58], Picard (v1.93), and GATK (v3.1.1)
[59] were used for sorting SAM/BAM files, local realign-
ments, and duplicate markings, respectively. Through
the process, we filtered reads to remove duplicates, dis-
cordant pairs, and off-target reads.

Background allele

For each paired set of PBL and plasma DNA samples,
we determined a base at a position across the entire tar-
get regions to be a background allele if the following
conditions were met: (1) the base was a non-reference
allele; (2) the position displayed sufficient depth of
coverage (i.e., >500x) in the paired PBL and plasma
DNA samples; and (3) the frequencies of the base in
both samples did not indicate a germline variant (ie.,
<5%). Since we used samples from cancer patients, we
also removed the candidate alleles for somatic cancer
variants. This was achieved by generating sequencing
data for matched fine-needle aspiration (FNA) biopsies
obtained from patients with cancer at a time close to
that of blood collection, prior to therapeutic treatments.
For example, KRAS variants (Additional file 2: Table S5)
were removed from the analysis if detected in the
matched FNA specimens. Sequencing libraries for the
primary tumors were generated using 200 ng of input
DNA and sequenced on the HiSeq2500 as described
above. The depth of coverage of sample DNA after re-
moval of duplication in FNA samples was on average
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987.15x (790.32 - 1476.55%). In a given paired set of
PBL and plasma samples, we excluded a position if the
depth of coverage at that position was below 250x in the
matched FNA biopsy and an allele if it was present at a
frequency greater than 2.5% in the FNA sample.

Analysis of nucleotide composition and substitution rate
in the vicinity of a DNA break point

To evaluate the frequency of mono- and dinucleotides at
positions around a DNA break point, the 5’ end position
of each mapped read was determined by alignment to
the human reference genome, and the sequence for the
region of 100 bp (+50 bp) around the DNA break point
was then obtained. For consistency, the collected se-
quences were displayed in the direction of the positive
strand of the reference genome. To accurately determine
the genomic positions of fragment ends, fragments that
displayed any clipping at their terminal section were ex-
cluded. Alignment data (BAM or SAM) were analyzed
via a Python (v2.7.6) script that we constructed using
the Pysam (v0.9.1.4) library. The frequencies of nucleo-
tides were calculated as the number of occurrences of a
given mono-/dinucleotide divided by the total number
of bases with a quality score >30 at positions relative to
the DNA break point. The frequencies were calculated
for each sample, and these frequency values from the 19
samples were then averaged. To estimation the fre-
quency of mononucleotides, we determined the position
as the number of nucleotides from the first 5 end nu-
cleotide of the read. For dinucleotides, the number of
nucleotides between the phosphodiester bond in a given
dinucleotide and the break point was used to indicate
the position relative to the DNA break point. For in-
stance, “distance zero” indicated that the first nucleotide
occurred immediately before the 5" end of the read, and
the second nucleotide coincided with the beginning of
the read.

Background error rates across all substitution classes
were also calculated at each position relative to the DNA
break point. The background alleles for each sample (de-
fined as described in the previous section) were used for
this analysis. For a comparison between PBL and plasma
DNA samples, the substitution rate was normalized
against the average rate of 1 -50 bp. To remove errors
incurred in the Illumina sequencing, we used only R1
reads whose initial sections showed relatively higher
quality scores than those of R2 reads.

Quantification of 8-oxo-G and AP sites by ELISA

The levels of 8-0xo-G in the samples were assessed using
an HT 8-oxo-dG ELISA Kit II (Trevigen, Gaithersburg,
MD, USA) according to the manufacturer’s instructions.
Fragmented DNA from each sample (500 ng) was used as
the input for all ELISAs. After optical density
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measurements were taken at 450 nm using a microplate
absorbance reader, concentrations were calculated on the
basis of a linear calibration curve generated for each
experiment using 8-oxo-G standard solutions. AP sites
were quantified using the OxiSelect™ Oxidative DNA
Damage Quantitation Kit (Cell biolabs, San Diego, CA,
USA) according to the manufacturer’s instructions. Briefly,
500 ng of genomic DNA was labeled with an aldehyde-
reactive probe (ARP) containing a biotin moiety, before
being immobilized in a micro-well and incubated with
streptavidin-conjugated HRP. The DNA was next incu-
bated with an HRP substrate and the resulting absorbance
measured at 450 nm. To infer the number of AP sites
from the measured absorbance units, a standard curve
was generated using serial dilutions of a stock standard
solution containing 40 ARP/105-bp of DNA.
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