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Increasing mapping precision of genome-
wide association studies: to genotype and
impute, sequence, or both?
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Abstract

Fine-mapping to identify causal variants in genome-
wide association studies remains challenging. A recent
study provides guidance for future research.
imputation and WGS through simulation experiments
Introduction
Genome-wide association studies (GWAS) search for
marker variants indirectly associated with certain diseases
and/or traits. They assume that markers are in linkage dis-
equilibrium (LD) with underlying causal variants. Compared
to the initial discovery of associations, the fine-mapping ef-
fort required to identify causal variants—whether statistical
or functional—remains challenging in this post-GWAS era.
Reference panels such as those from the HapMap and

1000 Genome projects have improved, with better genome
coverage including tens of millions of catalogued variants.
Availability of these resources has led to methods for geno-
type imputation, in which genotypes for all variants in the
reference are statistically inferred. Subsequent association
analysis on imputed variants might allow refinement of
the association hits originally discovered through array-
based GWAS. However, fine-mapping through imputation
is limited by the poor accuracy of imputed genotypes for
rare variants, and the existence of underlying rare causal
variants in reference panels cannot be guaranteed.
Theoretically, with the application of whole-genome se-

quencing (WGS) in GWAS, all variants—including under-
lying causal variants—can be directly genotyped and
tested to achieve the simultaneous goal of both discovery
and fine-mapping. However, it is expensive to perform
WGS on large numbers of samples, so it is unlikely to be
adopted as a main approach for GWAS anytime soon. A
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key question is, what is the best strategy to increase map-
ping precision: to genotype and impute, sequence, or
both?
In a recent elegant paper, Wu et al. [1] attempted to

statistically quantify the mapping precision of GWAS

based on empirical WGS data from 3642 individuals
who took part in the 1000 UK Genomes study. Their
findings provide guidance for future study designs and
suggest that alternative ways of mapping the common
and rare causal variants underlying GWAS associations
should be sought.
Rejecting the synthetic association hypothesis
In the “synthetic association” hypothesis, the association
underlying a common variant is driven by many rare
causal variants residing in a neighboring genomic region
in LD with one particular allele of the common variant
[2]. However, the authors showed that the causal vari-
ants underlying associations detected through common
variants, which comprise the majority of loci discovered
by GWAS to date, are generally also common. This find-
ing concurs with those of many targeted re-sequencing
studies, which have been largely unsuccessful in identify-
ing rare and functional variants in GWAS-associated
loci. One important caveat to note, however, is the
authors’ presumption that only one causal variant exists
in their simulation analysis, whether rare or common.
Precision of fine-mapping approaches
The authors measured the proportion of GWAS hits ex-
pected within a given physical distance from selected
causal variants. They did this by simulating and compar-
ing three typical study designs involving single nucleotide
polymorphism (SNP) microarray genotyping, followed by
imputation (into HapMap2, the 1000 Genomes Project
Phase 1, and 1000 Genomes Project Phase 3 (1KGP3)), as
well as the WGS-based approach. For the three
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imputation-based strategies, over 94% of GWAS hits fall
within 100 kb of causal variants with a minor allele fre-
quency >0.01. The proportion increased slightly to 98%
with the WGS-based approach. The authors deduced that
GWAS followed by imputation has comparable precision
to WGS, and the latter is cost-ineffective for fine-mapping
common variants.
However, for rare variants, mapping precision for the

best imputed dataset using 1KGP3 as a reference was
substantially lower than that for WGS. Simulation stud-
ies showed that 98% of WGS-based GWAS hits fell
within 100 kb of the causal variants with a minor allele
frequency <0.01, whereas only 68% met the criteria for
1KGP3-based imputation. Underlying this finding is the
fact that most of the rare variants in the 1000 UK
Genomes study were not present in the imputation
reference set. A limited number of LD surrogates also
exist within a small genomic region harboring each rare
causal variant.

Genome coverage versus sample size
The authors noted that genome coverage is more im-
portant for fine-mapping precision than the sample size
of the imputation reference set. However, the latter is
important for imputation accuracy, and thus the statis-
tical power, in detecting associations for rare variants.
Particularly for rare variants, power loss caused by im-
putation is similar to sample size reduction and should
therefore affect the fine-mapping precision. A possible
explanation for the lack of observation of any remark-
able effect of the sample size of the imputation reference
set is that the simulated effect sizes were large. Thus,
the power for detecting underlying associations was suf-
ficiently high.
Researchers are now shifting from imputation based

on 1KGP3, which includes about 5000 haplotypes, to the
new Haplotype Reference Panel, which includes about
65,000 haplotypes [3]. The increase in sample size and
coverage will surely improve imputation accuracy for
lower allele frequency spectra, and thus the ability to
fine-map array-based GWAS for rare causal variants.

The case of multiple causal variants
The authors acknowledged that a weakness of their
paper is their failure to consider loci with multiple
causal variants, which may underlie some disease associ-
ations. For example, the best-known loci conferring
germline cancer susceptibility are 8q24 and 5p15.3,
which both include multiple independent signals and are
associated with several cancers. A fine-mapping study of
5p15.33 revealed at least six independent associations
with five different cancers [4]. When modeling multiple
rare casual variants, it may be important to apply burden
or aggregated tests in which the number of mutant
alleles within a gene or genomic region is counted for
association analysis. This would obtain better power to
detect associations compared to single variant tests.
However, investigation of the likely causal roles of indi-
vidual rare variants is not likely to be straightforward.

What is on the horizon?
Decreasing costs will make WGS-based GWAS for large
sample numbers more feasible. In the meantime, meta-
analyses based on imputation are being put to good use
to combine new and existing array-based GWAS studies,
including fine-mapping efforts. For example, using this
strategy, rare variants of moderately large effects in
BRCA2 and CHEK2 genes have been associated with
lung cancer risk [5]. To take advantage of such a strat-
egy, international consortia have come together to de-
sign custom arrays and conduct another wave of GWAS
discoveries through genotyping and imputation. One
such effort is the design of OncoArray [6]; this com-
prises a genome-wide backbone that tags most common
genetic variants, and variants for fine-mapping in
established cancer susceptibility loci, including rare
variants derived from sequencing studies. OncoArray
has already been used to genotype more than 450,000
samples around the world. Nevertheless, imputation-
based approaches remain limited. A WGS-based ap-
proach can overcome these limitations, and will be-
come the mainstream for rare variant association
studies in the near future.
Whether or not it is an advantage to employ WGS in

GWAS depends on the allelic spectrum or genetic archi-
tecture of the disease/trait under investigation. For ex-
ample, a recent WGS-based GWAS for type 2 diabetes [7]
found variants associated with the disease to be over-
whelmingly common, and that most fell within regions
previously discovered by SNP array-based GWAS. On the
other hand, a WGS-based GWAS for amyotrophic lateral
sclerosis [8] simultaneously detected and fine-mapped a
novel locus containing a rare functional variant; heritabil-
ity analysis indicated a disproportionate contribution of
low-frequency SNPs to disease predisposition.
An important consideration for the future is that

rare variants, which are mostly in weak LD with
neighboring variants, increase the number of inde-
pendent tests, and thus the multiple-testing burden to
control for false negative signals. In light of this, Wu
et al. recommend applying a more stringent threshold
of 5 × 10−9. Furthermore, functional annotations such
as epigenetic footprints, transcriptional factor binding
motifs, and expression quantitative trait loci could be
used to improve power to detect associations. For
example, a weighted Bonferroni adjustment based on
the enrichment of sequence annotations among asso-
ciation signals might be used [9].
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Rare variants, even if—in total—they contribute sub-
stantially to heritability, are likely to be distributed over
many thousands of loci, each with small effects [10]. Thus,
ultimately, the sample size for WGS needs to be very
large, possibly in the tens of thousands to hundreds of
thousands, to make a comparable number of discoveries
to those we have seen for array-based GWAS. Large-scale
international consortia are needed to combine genetic
data with full genome coverage (i.e., WGS) to increase dis-
covery power and fine-mapping precision to gain further
insights into the biological mechanisms underlying com-
plex diseases and traits.
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