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Abstract

Through RNA-Seq analyses, we identified 137 genes that
are missing in chicken, including the long-sought-after
nephrin and tumor necrosis factor genes. These genes
tended to cluster in GC-rich regions that have poor
coverage in genome sequence databases. Hence, the
occurrence of syntenic groups of vertebrate genes that
have not been observed in Aves does not prove the
evolutionary loss of such genes.

A recent paper reported that 274 protein-encoding genes
were missing from sequencing data from 60 bird species
[1]. Most of them were organized in conserved syntenic
clusters in non-avian vertebrates, suggesting that their loss
in the avian lineage had occurred through genomic
deletions of gene blocks. This hypothesis was supported by
another study reporting that 640 protein-encoding genes
were missing from 48 bird genomes [2]; the authors of this
second study made a similar suggestion that large segmen-
tally deleted regions had been lost during microchromo-
some evolution in birds. However, our recent discovery of
leptin genes with ~70% GC content in chicken and
duck [3], and the new identification of 89 GC-rich
genes [4], suggested an alternative hypothesis of a tech-
nical barrier to explain the ‘missing genes’. To further
explore this, RNA-Seq data from visceral fat, hypothal-
amus, and pituitary tissues from two types of chickens,
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broilers and layers (Additional file 1: Table S1), were
used for de novo transcriptome assembly and identifi-
cation of novel genes.
The initial set of 588,683 transcripts obtained using

Trinity [5] was reduced to 257,700 after removing tran-
scripts that were expressed at low levels. We mapped
the transcripts to the chicken reference genome build
consistent with the previous studies [1, 2] using Blat and
Blast, and retained 8395 sequences without alignments.
These transcripts were then characterized on the basis of
sequence similarity to known genes in other vertebrates
using the Trinotate pipeline (https://trinotate.github.io),
which searches for sequences encoding known protein
domains, transmembrane domains, and signal peptides
(Additional file 1: Tables S2 and S3a). Genes that were
already known in chicken were removed by comparing
their gene symbols with those in Ensembl (release 80),
RefSeq, and Entrez Gene, resulting in 1878 novel
gene-candidate transcripts representing 1063 genes
(Additional file 1: Tables S3b and S4).
To increase specificity and to remove multiple transcript

isoforms, we tested each transcript by reciprocal Blastn
against the full transcriptome assembly (588,683 tran-
scripts), and Blastx against the set of coding sequences pre-
dicted by TransDecoder (https://transdecoder.github.io),
consisting of 111,457 sequences. The remaining set yielded
194 transcripts encompassing 190 distinct high-confidence
genes (Additional file 1: Table S5). Through Blastn, we
found that 55 loci had already been recovered as annotated
genes in an updated genome build (Galgal5) released
after the previous studies. In addition, 47 genes
mapped to the genome but lacked annotations, while
another 51 genes were annotated as uncharacterized
or putative proteins (Additional file 1: Table S6). One
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discrepancy in annotation between our genes and
Galgal5 was observed for the RSAD1 transcript, which
was annotated as MYCBPAP in Galgal5. Closer ins-
pection revealed that these two genes, which are close
neighbors in the human genome, have been mistakenly
merged into MYCBPAP in Galgal5. Therefore, we
considered RSAD1 as a novel annotation (Additional
file 1: Table S6).
Among the remaining 38 genes (Additional file 1:

Table S6) with no sequence similarity to any genome
build are the tumor necrosis factor (TNF) and nephrin
(NPHS1), which have been reported as missing from
birds in several studies (Table 1) but which are critically
important in vertebrate biology and have extensively
been studied in non-avian vertebrates (there are more
than 130,000 publications in PubMed on TNF and
1300 on NPHS1). These genes were subjected to full-
cDNA-sequence determination, exon characterization,
RT-PCR validation, and expression profiling using
RNA-Seq data from red junglefowl (Additional file 2:
Figures S1 and S2; Additional file 2: Tables S9 to S12).
The similarity in sequences, exon–intron junctions, and
characteristic expression profiles confirmed the identifi-
cation of chicken NPHS1 and TNF, thus resolving the
long discussion as to why these genes have been miss-
ing from the genome assembly despite their established
essential biological function in other species (for
examples, see [6–12]).

Mass spectrometry analysis of fat tissue from the
same chickens confirmed the identification of MEPCE,
NPC1L1, PHF1, MRPS18, and SF3B2 at P < 0.01, and
the expression of AMIGO1, CYAB, FKBP11, MGAT1,
MOGS, MRI1, MTX1, POLR3D, PEA15, and TXNIP at
P < 0.05 (Additional file 1: Tables S4, S5, and S8). To
further validate the novel genes in the context of spe-
cies phylogeny, we selected 11 genes with complete
coding sequences predicted by TransDecoder (Additional
file 3: Table S13) and at least four reported orthologous
protein sequences in the NCBI protein database, for
analysis of protein identity with the predicted chicken
amino acid sequence using pBlast. As expected, the
relative degrees of sequence identity were inversely
correlated with evolutionary distance for most transcripts
(r = –1 to –0.7), with three exceptions resulting from high
conservation.
Comparing these genes to the genes previously re-

ported as missing [1, 2, 6] recovered 74 overlapping
gene symbols (Table 1). A higher proportion of the
genes reported missing only in chickens was identified
compared to those reported missing in all avian spe-
cies (15% and 3–4.5%, respectively). The recovered
transcripts had very high GC content (68%; Additional
file 3: Figure S3b), further supporting the hypothesis
that many of the genes that are currently missing from
the draft genome eluded previous identification be-
cause of their high GC content [3, 4].

Table 1 Characterization of the novel genes reported missing in previous studies

Previously reported list No. of missing
genes

Found in our
intermediate set

Found in our
high-confidence list

Gene symbols

Predicted absent in
birds [1]

274 36 (13%) 8 (3%) FLT3LG, LPPR2, NPHS1, PLCB3a, PRSS8, RCN3, TRMT1, TSPAN31

Predicted missing in
chickens but not in
all birds [1]b

336 152 (45%) 50 (15%) ALKBH7, ASB16, ATAT1, ATG4D, B9D2, CACNG7, CACNG8, CAMSAP3,
CARM1, CCDC106, CCDC120, CCDC22, CIC, CLASRP, CLPP, COPZ1,
CYTH2, ESYT1, GEMIN7, GPKOW, GTF2F1, JOSD2, KRI1, LMTK3, MAP2K7,
METTL1, METTL3, MRPS18B, NDUFB7, PIH1D1, POU6F1, PPP1R12C,
PPP1R18, PPP5C, PRKCSH, PRPF31, PRR12, SAMD1, SCAF1, SEMA4C,
SLC39A7, SMG9, SSR4, TFPT, TRAPPC1, TSR2, U2AF2, UXT, YIF1B, ZNF653

Predicted absent in
birds [2]

640 100 (16%) 29 (4.5%) ADAT3, ALKBH7, C11ORF95, C2ORF68, CCDC22, CDIPT, CGREF1, CIC,
CXXC1, FRMD8, HUWE1, IKBKG, KRI1, LMTK3, MBD1, MUS81, NPHS1,
OPA3, PHF1, PIH1D1, PLCB3a, PPP1R12C, PRKCSH, RCE1, SSSCA1, TFPT,
TNFd, UXT, ZNF653

Predicted absent by
both studies [1, 2]

99 7 (7%) 2 (2%) NPHS1c, PLCB3a

Lost adipokines [6] 4 1 (25%) 1 (25%) TNFd

Eleven genes are shared between row 2 (Lovell et al. [1]) and row 3 (Zhang et al. [2]): ALKBH7, CCDC22, CIC, KRI1, LMTK3, PIHID1, PPP1R12C,
PRKCSH, TFPT, UXT, and ZNF653
aPLCB3 was selected manually from the intermediate list of novel genes as a dropout due to misannotation of its quail (Coturnix japonica) ortholog
(LOC107307599), demonstrating that the intermediate gene list (Additional file 1: Table S4) may contain additional novel genes
bBased on the genes listed in Tables S4a, S4b, S6a, and S6b in Lovell et al. [1]
cAlso reported missing in other publications (e.g. [7, 14])
dAlso reported missing also in Zhang et al. [2] and in additional publications (e.g. [10, 15])
(i) Bold and underlined, (ii) underlined, (iii) underlined by dashed line, and (iv) non-underlined symbols represent (i) novel sequences with no
sequence similarity in any genome build, (ii) sequences present in Galgal5 but lacking annotation, (iii) sequences present in Galgal5 as uncharacterized or
putative, or (iv) sequences present and annotated in Galgal5, respectively
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When exploring the location of novel genes recov-
ered by the updated genome build, we observed that
most genes (76%) were located on unplaced scaf-
folds, probably representing uncharacterized micro-
chromosomes. Among those that mapped to known
chromosomes, the majority (80%) were localized to
microchromosomes, which are estimated to contain
50% of protein-coding genes in chickens [13]. Sur-
prisingly, many of the mapped genes appeared in
clusters. Mapping positions of the human orthologs
demonstrated that the organization of 80% of the
mapped novel genes was in syntenic clusters
(Table 2). The strong tendency of these novel genes
to cluster indicated their location in recalcitrant
chromosomal regions with high GC content, primar-
ily on microchromosomes. The methods used in this
study are detailed in Additional file 4: Detailed ma-
terials and methods.

Conclusions
Our RNA-Seq study, combined with extensive bio-
informatics analysis, recovered 191 novel genes that
were missing from previous chicken assemblies, 38 of
which are still not present in the most recent genome
build (Galgal5), as well as an additional 47 that are at
least partially present in Galgal5 but lacking proper
annotation. The high GC content (68% on average),
the microchromosomal location of the majority of the
novel genes (80%) covered by Galgal5, and their high
tendency to cluster into syntenic blocks (80%) suggest
that the novel genes were not found in earlier
analyses because of their position in GC-rich gene
clusters, rather than due to chromosomal frag-
mentation and loss. In addition, the identification and
characterization of NPHS1 and TNF, which are ex-
pected to be essential for avian physiology, and which
are still missing from the latest genome build,

Table 2 Overview of novel genes missing from the Galgal4 assembly but present in Galgal5

Trinity ID Predicted
gene

Galgal5 mapping Human ortholog (hg38) Clustera

Genes Chromosome Coordinates

c192514_g2_i1 RRS1 RRS1 chr2 115,487,692–115,488,635 chr8:66,429,028–66,430,733 –

c144374_g1_i1 KHK KHK chr3 104,952,675–104,954,000 chr2:27,086,747–27,100,751 1

c150768_g1_i3 CGREF1 CGREF1 chr3 104,955,106–104,955,990 chr2:27,100,594–27,119,103 1

c191309_g1_i2 ANKRD66 LOC101750448 chr3 110,320,024–110,320,850 chr6:46,746,917–46,759,506 –

c190219_g1_i1 ADO ADO chr6 8,089,943–8,090,591 chr10:62,804,857–62,808,483 –

c165457_g1_i6 ABHD14B LOC107056876 chr12random_Scaffold5645 10,835–12,580 chr3:51,968,510–51,983,409 –

c181867_g2_i3 RSAD1 MYCBPAP chr18 10,429,164–10,430,334 chr17:50,508,384–50,531,497 –

c160691_g1_i2 BOLA3 BOLA3 chr22 2,880,009–2,880,858 chr2:74,135,398–74,147,994 2

c178063_g1_i8 SEMA4C SEMA4C chr22random_Scaffold1011 444–4,447 chr2:96,859,716–96,869,971 2

c156624_g2_i1 CIART CIART chr25 2,384,775–2,385,633 chr1:150,282,543–150,287,093 3

c165802_g2_i1 CRTC2 CRTC2 chr25 2,075,046–2,076,072 chr1:153,947,675–153,958,625 3

c189493_g2_i1 C17orf96 LOC107055293 chr27 4,355,476–4,355,902 chr17:38,671,703–38,675,421 4

c151660_g2_i1 KRI1 LOC107055293 chr27 4,357,140–4,357,428 chr19:10,553,078–10,566,037 4

c167546_g1_i3 FBXW9 FBXW9 chr30random_Scaffold7361 448–2,027 chr19:12,688,917–12,696,643 5

c160528_g1_i2 DHPS DHPS,WDR83 chr30random_Scaffold7361 2,298–5,407 chr19:12,675,721–12,681,902 5

c150426_g1_i4 YIF1B YIF1B chr32random_Scaffold22667 160–217 chr19:38,305,118–38,315,963 6

c167964_g1_i2 B9D2 – chr32random_Scaffold15198 71–292 chr19:41,354,421–41,364,173 6

c164748_g1_i1 OPA3 OPA3 chr32random_Scaffold826 46,400–48,070 chr19:45,546,281–45,584,819 6

c148689_g1_i2 SNRPD2 SNRPD2 chr32random_Scaffold19601 235–1,401 chr19:45,687,454–45,692,333 6

c163802_g1_i1 GRASP GRASP chr33 1,916–6,474 chr12:52,006,940–52,015,864 7

c178972_g2_i2 ESYT1 ESYT1 chr33 679,134–685,279 chr12:56,128,056–56,144,671 7

c171696_g1_i1 APOF APOF chr33 776,046–776,629 chr12:56,360,569–56,362,823 7

c100851_g1_i1 HOXC4 HOXC4 chr33 1,095,140–1,096,547 chr12:54,016,931–54,055,327 7

c186414_g2_i1 COPZ1 COPZ1 chr33 1,170,192–1,174,833 chr12:54,325,127–54,351,849 7

c146677_g1_i1 DAZAP2 – chr33 1,573,156–1,573,299 chr12:51,238,292–51,243,933 7
aThis column indicates clusters of neighboring genes that are largely supported by the human orthologs
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emphasizes the importance of striving towards a rep-
ertoire of known and characterized genes that is as
complete as possible.
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