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Abstract

Background: The daily gene expression oscillations that underlie mammalian circadian rhythms show striking
differences between tissues and involve post-transcriptional regulation. Both aspects remain poorly understood.
We have used ribosome profiling to explore the contribution of translation efficiency to temporal gene expression
in kidney and contrasted our findings with liver data available from the same mice.

Results: Rhythmic translation of constantly abundant messenger RNAs (mRNAs) affects largely non-overlapping
transcript sets with distinct phase clustering in the two organs. Moreover, tissue differences in translation efficiency
modulate the timing and amount of protein biosynthesis from rhythmic mRNAs, consistent with organ specificity
in clock output gene repertoires and rhythmicity parameters. Our comprehensive datasets provided insights into
translational control beyond temporal regulation. Between tissues, many transcripts show differences in translation
efficiency, which are, however, of markedly smaller scale than mRNA abundance differences. Tissue-specific changes
in translation efficiency are associated with specific transcript features and, intriguingly, globally counteracted and
compensated transcript abundance variations, leading to higher similarity at the level of protein biosynthesis
between both tissues.

Conclusions: We show that tissue specificity in rhythmic gene expression extends to the translatome and contributes
to define the identities, the phases and the expression levels of rhythmic protein biosynthesis. Moreover, translational
compensation of transcript abundance divergence leads to overall higher similarity at the level of protein production
across organs. The unique resources provided through our study will serve to address fundamental questions of
post-transcriptional control and differential gene expression in vivo.
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Background
Circadian clocks serve organisms to synchronise behav-
iour, physiology and gene expression according to time of
day. The mammalian circadian system consists of a master
clock in the brain’s suprachiasmatic nuclei (SCN) that
receives photic inputs from the retina and synchronises
peripheral clocks present in most cells throughout the
body. The molecular timekeeping mechanism—the core
clock—consists of a network of transcriptional activators
and repressors interacting in negative feedback loops
(reviewed in [1, 2]). In the core loop, the heterodimeric

transcription factor ARNTL:CLOCK (also known as
BMAL1:CLOCK) drives the expression of its own re-
pressors, encoded by the Period (Per1, Per2, Per3) and
Cryptochrome (Cry1, Cry2) genes—a configuration also
known as the positive and negative limbs of the oscillator.
Additional feedback—in particular, an interconnecting
limb involving nuclear receptors of the REV-ERB
(encoded by genes Nr1d1, Nr1d2) and ROR (Rora, Rorb,
Rorc) family—intersects with the core loop and numerous
post-translational modifications of clock proteins further
add to the complexity of the circuitry. The final out-
come is a set of robustly cycling transcriptional activ-
ities peaking at different phases around the day that drive
the rhythmic expression of hundreds to thousands of
other genes, termed the clock output or clock-controlled
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genes (CCGs). It is noteworthy that, despite the prob-
ably (near-)identical molecular makeup of the core
clock across cell types, CCGs show considerable tissue
specificity [3]. The co-regulation by core clock and
tissue-specific (non-rhythmic) transcription factors may
engender such cell type-specific rhythmic expression
patterns, as shown to occur in Drosophila [4]. Overall,
however, the origins of tissue specificity in rhythmic
gene output (and even in certain core clock parameters
[5]) are poorly understood. Mechanisms that act at the
post-transcriptional level and that impact daily messen-
ger RNA (mRNA) and protein accumulation kinetics
are plausible players in the generation of cell-type dif-
ferences as well.
Rhythmic gene expression has been mainly investi-

gated at the transcriptome level, i.e. using mRNA abun-
dances as a primary readout. However, comparison of
mRNA levels with datasets of genome-wide transcrip-
tional activity and of protein abundances that have
become available recently, has suggested that a surpris-
ingly large fraction of gene expression oscillations may
have post-transcriptional origins (reviewed in [6]). The
many cases of protein rhythms that are independent of
an underlying oscillating transcript (initially reported in
a low-throughput mass-spectrometric study from mouse
liver ten years ago [7] and recently confirmed at a com-
prehensive scale [8, 9]) point to important roles for
translation, protein degradation and protein secretion
in shaping time of day-dependent proteomes. We [10]
and others [11] have recently used ribosome profiling, a
genome-wide method that assesses translation effi-
ciency through the deep sequencing of ribosome-protected
mRNA fragments, to chart the contribution of translational
control to daily protein biosynthesis in mouse liver. One
conclusion that emerged from the identified cases of
translationally generated oscillations was that circadian
clock activity and feeding rhythms both contribute to
regulating rhythmic gene expression outputs [10, 11].
Notably, the most abundant group of transcripts sub-
ject to rhythmic translation, i.e. mRNAs encoding ribo-
somal proteins and other components of the translation
machinery that all contain 5′-terminal oligopyrimidine
tract (5′-TOP) sequences regulated by the mammalian
target of rapamycin (mTOR) [12], appear to be under
the dominant control of feeding [11].
We have now performed ribosome profiling using a

second organ from the same cohort of animals, the kid-
ney, which is an emerging circadian model organ with
distinct rhythmic functions [13]. By contrasting kidney
and liver datasets, we comprehensively assessed com-
monalities and differences in their translatomes and we
evaluated how far the regulation of translation efficiency
contributed to tissue specificity in rhythmic and consti-
tutive protein biosynthesis.

Results
Around-the-clock ribosome profiling datasets from two
organs
For our recent study of the liver translatome around-the-
clock [10], we had used ribosome profiling [14] (RPF-seq)
on a time series of organs collected from mice sacrificed
every 2 h over the 24-h day (12 timepoints in duplicate;
Fig. 1a). To generate a complementary dataset from a
second organ, we chose the kidneys from the same cohort
of animals. Liver and kidney express thousands of genes in
common [3, 15], thus providing a particularly suitable set-
ting for a cross-organ comparison of gene expression.
Applying the same experimental and computational

methods as for liver RPF-seq [10, 16], we obtained com-
parable high-quality data for kidney (see Additional file 1:
Figure S1A–C and Additional file 2 for details on sequen-
cing and mapping outcomes). Briefly, ribosome footprints
from both organs showed similar enrichment for protein
coding sequences (CDS) of mRNAs and depletion of
untranslated regions (UTRs) (Fig. 1b). Like the footprints
from liver, those from kidney also exhibited excellent
reading frame preference, which allowed resolving the
3-nt periodicity of coding sequences transcriptome-
wide (Fig. 1c and Additional file 1: Figure S2A, B).
Moreover, the high correlation coefficients seen across
replicates of the kidney time series for both RNA-seq
and RPF-seq data indicated excellent biological and
technical reproducibility (Additional file 1: Figure S3A, B).
We also used a recently developed tool, termed Ribo-seq
Unit Step Transformation (RUST) [17], to confirm high
technical similarity of datasets between organs (Additional
file 1: Figure S2C, D). Finally, principal component ana-
lysis (PCA) on all available datasets (96 libraries, i.e.
RPF-seq and RNA-seq from two organs, 12 timepoints,
in duplicate) segregated the data according to the main
experimental and biological covariates. PC1 (explaining
64.2% of variation) thus separated libraries according to
organ, indicating that tissue origin represented the
major source of divergence, followed by PC2 (28.4%)
that separated RNA-seq (mRNA abundance) and RPF-seq
(footprints/translation) (Fig. 1d). The cyclic nature of the
data was resolved in the representation PC3 versus PC5
(together 12.5%), in which timepoints assembled to a
near-perfect clock (Fig. 1e). The larger circular arrange-
ment of the liver versus kidney time series suggested that
rhythmic gene expression from liver contributed more
strongly to overall variation than did kidney rhythms. This
observation is in line with the notion that there are more
and higher amplitude rhythms in liver than in kidney [3].
Taken together, we concluded that the kidney data were of
similarly high quality as our previous liver datasets [10].
Together, they would be suitable for comparative analyses
of time of day-dependent and constitutive translation
across two tissues.
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Fig. 1 (See legend on next page.)
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Cross-organ differences in translation efficiency are
widespread, of moderate scale and partially compensate
RNA abundance differences
To what extent do differences in translation efficiency
contribute to different gene expression outputs across or-
gans? We addressed this question using the set of 10,289
genes whose expression was detectable in kidney and in
liver at both RPF and RNA level (Fig. 2a). From the ratio
of CDS-mapping normalised read counts for RPF-seq
relative to RNA-seq, we first calculated relative translation
efficiencies (TEs) per transcript and for each organ. TEs
were overall rather similar between tissues, with 95% of
genes falling into a less than threefold range for the kid-
ney/liver TE ratio, as compared with a greater than 100-
fold range for the transcript abundance ratio (Fig. 2b).
This observation was coherent with the considerably
broader spread of mRNA abundances versus TEs across
genes within each organ (greater than 500-fold versus just
over tenfold, respectively; Additional file 1: Figure S5A, B)
and is in line with a dominant role for the regulation of
mRNA levels (i.e., transcription and mRNA decay) in con-
trolling quantitative differences in gene output.
Intuitively, we had expected that RNA levels that were

widely dissimilar between kidney and liver and subse-
quently further modulated by organ-specific TEs, would
probably give rise to even greater cross-organ divergence
at the RPF level. Intriguingly, however, the global correl-
ation between kidney and liver was better for footprint
abundances than for transcript abundances (Spearman ρ
[RPF]: mean 0.784 vs. ρ [RNA]: mean 0.736; p < 2.2e-16;
paired t-test of Fisher-transformed correlation coeffi-
cients, n = 24) (Fig. 2c; Additional file 1: Figure S3C, D).
This phenomenon was observed irrespective of whether
the genes expressed only one dominant protein-coding
transcript isoform (‘single isoform genes’ in the

following) that was common to both organs, or whether
they gave rise to different (including tissue-specific)
mRNA variants (‘multiple isoform genes’) (Fig. 2d). The
observed higher cross-organ concordance of RPFs
could have simply had technical reasons, e.g. if the
RPF-seq protocol gave more reproducible results than
the RNA-seq protocol. We addressed this caveat by
comparing measurement errors (MEs) for RNA and
RPF data using a similar approach as in a recent publi-
cation [18]. We found that MEs scaled inversely with
expression levels, as expected, and showed some vari-
ation due to organ (Additional file 1: Figure S6A, B, F,
G). Especially in liver and among low expressed tran-
scripts, a tendency towards smaller MEs for RPF than
for RNA was indeed visible (differences statistically
non-significant). In most other cases, however, meas-
urement errors were (in part significantly) higher for
the transcripts’ RPF counts than for their RNA counts.
Of note, the better cross-organ correlation of RPF vs.
RNA levels seen in the full transcript set (Fig. 2c) was
also evident within various transcript subsets (Add-
itional file 1: Figure S6C–E, H–L), including such sub-
sets for which RPF MEs were higher than RNA MEs
(Additional file 1: Figure S6E, L). It is thus unlikely that
technical bias was the reason for the higher RPF correl-
ation. Finally, an analysis that we performed on independ-
ent ribosome profiling datasets from rat liver and heart
[19] allowed us to confirm the phenomenon of higher
concordance of RPF versus RNA abundance also be-
tween these organs (Additional file 1: Figure S7A–C).
Taken together, these findings are suggestive of a po-
tentially broader biological phenomenon that consists
in the partial compensation of differences in a gene’s
mRNA expression through counteracting effects
exerted through its TE, resulting in the convergence at

(See figure on previous page.)
Fig. 1 Ribosome profiling around-the-clock in mouse liver and kidney. a Overview of the experimental design. Livers and kidneys for ribosome
profiling were collected every 2 h for two daily cycles. Each timepoint sample was a pool of organs from two animals. Mice were kept under
12 h:12 h light-dark conditions, with Zeitgeber times ZT00 corresponding to lights-on and ZT12 to lights-off. b Read distribution to transcript
features. RPF-seq (left; kidney in orange, liver in green) and RNA sequencing (RNA-seq) (right; blue and red for kidney and liver, respectively)
compared with a distribution expected from the relative feature sizes (grey; the distributions based on feature sizes were highly similar for both
organs, thus only that for kidney is shown). Note that RPF-seq footprints were enriched on the CDS and depleted from UTRs, whereas RNA-seq
reads distributed more homogeneously along transcripts, according to feature size. Of note, the higher level of 3′ UTR footprints in kidney resulted
mainly from differences in the efficiency with which stop codon footprints were captured, as described in (c). c Predicted position of the ribosome’s
aminoacyl tRNA-site (A-site) of reads relative to the CDS start and stop codons. Read density at each position was averaged across single protein
coding isoform genes (i.e., genes with one main expressed transcript isoform) that had an average RPF RPKM > 5, a CDS > 400 nt in length and were
expressed in both organs (n = 3037 genes). This analysis revealed the trinucleotide periodicity of RPF-seq (but not RNA-seq) reads in both organs. Inset:
frame analysis of CDS reads showed preference for the annotated reading frame (frame 1, the same frame as the start codon) in RPF but not in RNA
reads. Violin plots extend to the range of the data (n = 3694 genes for liver, n = 4602 genes for kidney). A separate analysis of the higher level of stop
codon footprints in kidney, that also led to the differences in 3′ UTR reads in B, can be found in Additional file 1: Figure S2A, B. d Principal component
analysis (PCA) of kidney and liver RPF-seq and RNA-seq datasets, using the 4000 most variable genes. The first two components reflected the variability
coming from organ (PC1, 64.21%) and from RPF/RNA origin of datasets (PC2, 28.35%). e PC3 vs. PC5 (together 12.5% of variation) resolved the factor
time within each dataset, leading to a representation that resembled the face of a clock. Each dot represents one sample, timepoint replicates are
joined by a line and timepoints within each dataset are sequentially coloured. The circular arrangement was larger for liver than kidney, suggesting a
higher contribution of hepatic rhythmic genes to overall variability. Additional file 1: Figure S4 shows the scree plot for the ten first components
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the level of protein biosynthetic output (footprints,
RPF) across tissues.

Transcript features associated with cross-organ differ-
ences in translation efficiency
Do particular transcript features have predictive value for
organ-specific differences in translation efficiency? To

investigate this question, we selected the genes with sig-
nificantly different TEs between tissues (n = 5013; Wil-
coxon signed rank test; FDR < 0.01) and implemented a
1.5-fold cutoff on TE ratio between the organs to retrieve
the most pronounced cases (n = 960) (Fig. 2e;
Additional file 3). Of these, 533 represented ‘single iso-
form genes’ with no (or negligible amounts of )
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Fig. 2 Cross-organ differences in translation efficiency partially compensate RNA abundance differences and show association with transcript features.
a Venn diagram showing the gene expression overlap (i.e. genes detected at both RPF and RNA level) between kidney (yellow, n = 12,423 genes)
and liver (green, n = 10,676 genes). Same cutoffs on RPKM (reads per kilobase of transcript per million mapped reads) were used for both
organs. b Scatterplot of kidney-to-liver ratio of mRNA abundance versus translation efficiency (TE) for all expressed genes (n = 10,289), averaged
over all timepoints. Corresponding density curves are plotted on the margins. Dashed red lines represent the 2.5 and 97.5 percentiles of each
variable and the corresponding fold-change is indicated. Linear regression line is depicted in blue (R2 = 0.0009, p = 0.0009). While 95% of genes
spanned a 114-fold range in mRNA abundance differences across organs, the same number of genes changed less than threefold in TE, underlining
that transcript abundance was the main contributor to divergent gene expression. c Inter-organ Spearman correlation for RNA-seq and RPF-seq
samples. Each dot represents the correlation coefficient between kidney and liver for a timepoint and replicate sample. Note that RPF-seq
samples consistently correlated significantly better than RNA-seq samples (p < 2.2e-16, n = 24, paired t-test of Fisher-transformed correlation
coefficients). d Scatterplot of inter-organ RNA vs. RPF correlation coefficients for each sample separately calculated from all (blue, n = 10,289), from
single isoform (red, n = 5815), and from multiple isoform (pink, n = 4474) genes. Consistently better RPF correlation was evident in all cases. e Relative
TE in liver vs. kidney (data centred and averaged over all timepoints for all expressed genes, n = 10,289) showed an overall strong inter-organ
correlation. Differential TE—defined as having false discovery rate (FDR)-corrected p < 0.01 (Wilcoxon signed rank test on TE) and > 1.5 difference in
TE across organs—was apparent for ca. 9% of genes (yellow and green show cases where TE is higher in kidney and liver, respectively, n = 960).
f Cumulative distribution of Hellinger distances for genes showing differential TE (red, n = 960), or not (grey, n = 9329), as detected in (e).
Hellinger distance was used as a quantitative measure for relative transcript isoform diversity across organs, as described in ‘Results’ and
‘Methods’. The analysis shows that divergent TE correlated with larger diversity in transcript isoform expression (D = 0.0702, p = 3.74e-04, two-
sample Kolmogorov–Smirnov [KS] test). g Cumulative distribution of the kidney-to-liver TE ratio for genes whose transcript diversity originated
exclusively from the 5′ UTR (identical CDS and 3' UTR, light blue, n = 216; these genes show more TE differences across organs) and genes
whose transcripts had identical 5′ UTR (and divergent CDS and/or 3′ UTR, purple, n = 314; these genes show less TE differences across organs).
The vertical dashed grey line marks the 1.5-fold difference used to define differential TE (as in (e)). These results suggested that tissue specificity
in TE was partially achieved by expressing transcript isoforms that differed in their 5′ UTRs (note the significant shift towards smaller TE differences for
genes with identical 5' UTRs). See also Additional file 1: Figure S9
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expression of tissue-specific mRNA variants. For these
genes, we examined whether a higher TE in kidney (n
= 193) or in liver (n = 340) was associated with specific
transcript characteristics. Of several features tested, we
found that CDS and transcript lengths showed the most
significant association with differential TE (Additional
file 1: Figure S8A, B). Of note, we had previously seen
in liver that shorter coding sequences, i.e., transcripts
encoding smaller proteins, are more efficiently trans-
lated [10]. Our present analyses suggest that such tran-
scripts are also more prone to tissue-specific regulation
at the translational level. Other sequence features
showed some bias within the differential TE gene sets
as well, although the effects were overall weaker and
less consistent. Briefly, the 5′ UTRs of genes with higher
TEs in liver were longer and predicted to fold more
strongly. By contrast, transcripts with higher kidney TEs
were associated with lower 5′ UTR GC content and
slightly shorter 3′ UTRs. No association with differential
TE was found for the Kozak sequence context score.
We also investigated two functional classes of sequence

features, micro RNA (miRNA) binding sites and upstream
open reading frames (uORFs), for association with differ-
ential TE. Of note, the 960 ‘TE different’ transcripts were
not enriched for any predicted miRNA binding sites,
making it unlikely that this class of post-transcriptional
regulators is a major player in establishing tissue-specific
TEs (data not shown). We had previously observed that in
the liver the presence of a translated uORF in the 5′ UTR
was strongly predictive of low TE at the main ORF [10].
An analogous relationship was also evident in kidney
(Additional file 1: Figure S5C). To assess whether uORF
translation was associated with TE differences across or-
gans, we compared how the identified uORF-containing
transcripts (i.e. single isoform genes showing translated
uORFs in at least one organ; n = 1377) distributed to the
differential versus non-differential TE gene sets. The
group of genes with higher TE in liver was significantly
enriched for transcripts with translated uORFs (p = 6.08e-
04; Fisher’s exact test) and there was slight depletion
among genes with higher TE in kidney (not significant)
(Additional file 1: Figure S8C). Only few differential TE
genes exhibited uORF translation that was exclusive to
one organ, but there was a tendency for kidney-specific
translation of uORFs to be associated with higher TE
on the CDS in liver and vice versa (Additional file 1:
Figure S8D). For the genes with uORFs translated in
both tissues, we expected that cross-organ differences
in the strength of uORF usage would negatively correl-
ate with TE differences at the CDS. However, such a
trend was only visible for liver differential TE genes
(Additional file 1: Figure S8E); and globally, uORF and
CDS TEs even showed slightly positive correlation. In
summary, these analyses suggested that uORF

translation contributed to some extent (and especially
for genes that were more efficiently translated in the
liver) to cross-organ differences in TE; however, the
overall impact appeared limited (see ‘Discussion’).
We next included the ‘multiple isoform genes’ in the

analyses and asked whether transcript isoform diversity
between the two organs—i.e. the occurrence of tissue-
specific mRNA variants generated by alternative tran-
scriptional start sites, splicing and 3′ processing—had
any relationship to differential TE. Briefly, using our
RNA-seq data we first compiled an inventory of all an-
notated, protein-coding transcript isoforms and their
estimated relative expression levels per gene and tissue.
We then used the Hellinger distance [20] as a measure
of dissimilarity in isoform expression levels between
kidney and liver. A value of 0 for this metric indicates
that a gene has identical isoform distribution in both
tissues (i.e. these are essentially the ‘single isoform
genes’ described above), while a value of 1 denotes a
lack of overlap in expressed isoforms. Globally, the 960
genes with differential TE showed significantly higher
Hellinger distances than the remainder of the expressed
genes (p = 3.74e-04; Kolmogorov–Smirnov test) (Fig. 2f ).
Molecularly, the term ‘transcript isoform’ comprises varia-
tions affecting 5′ UTR, CDS and 3′ UTR. By comparing
the genes for which all expressed variants affected exclu-
sively one single feature or for which this particular fea-
ture was not affected at all, it became apparent that
transcript diversity in the 5′ UTR was particularly strongly
associated with differential TE (Fig. 2g). By contrast,
variation in the CDS showed significantly less association
with cross-organ differences in translation efficiency
(Additional file 1: Figure S9A, B). Although the low num-
ber of available transcripts bearing exclusively 3′ UTR
differences precluded a rigorous interpretation, 3′ UTR
variation did not appear to be associated with differential
TE either (Additional file 1: Figure S9C). Altogether, we
thus concluded that TE differences between tissues may,
at least in part, have their origin in tissue-specific tran-
script variants, especially through alternative 5′ UTRs.
Finally, we were interested in whether cross-organ dif-

ferences in translation efficiency affected specific path-
ways. For the 640 ‘TE different’ genes that showed
increased TE in liver (Fig. 2d), gene ontology (GO) -
analyses revealed significant enrichment for categories re-
lated to transcription (Additional file 3). Conceivably,
tissue-specific translational control of transcriptional regu-
lators may thus impact also on the organs’ transcriptomes.
The 320 ‘TE different’ genes that were translated better in
kidney did not show any significant enrichment.

Translational modulation of phase of oscillation in kidney
We next turned to the analysis of factor time across the
datasets. We annotated rhythmic events in kidney with
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the same methodology as previously for liver, including
a 1.5-fold cutoff on peak-to-trough amplitudes [10]. A
list of the detected RNA and RPF rhythms and
genome-wide gene expression plots are provided in
Additional file 4 and Additional file 5 under (https://
doi.org/10.6084/m9.figshare.4903193), respectively. Our

analyses yielded 1338 and 977 genes that cycled at the
RNA abundance and footprint level, respectively, with
an overlap of 542 genes (Fig. 3a). As discussed later,
this relatively modest overlap (542 genes corresponds
to 41% and 55% of all ‘RNA rhythmic’ and ‘footprint
rhythmic’ cases, respectively) likely underestimates the
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Fig. 3 Rhythmicity analyses across organs reveals phase modulation by translation in kidney. a Venn diagram showing rhythmic genes in kidney.
Of the 12,423 expressed genes, 1338 showed 24-h oscillations of > 1.5-fold amplitude in mRNA abundance (RNA-seq, 10.7%) and 977 in footprint
abundance (RPF-seq, 7.9%). A total of 542 genes (4.3%) were identified as rhythmic at both levels. b Cumulative distribution of phase differences
(RPF peak – RNA peak, in hours) for genes rhythmic at both RNA-seq and RPF-seq in liver (green, n = 1178) and kidney (yellow, n = 542). The two
distributions were significantly different (p < 1e-04, permutation test) and reflected that maximal footprint abundance frequently preceded mRNA
abundance peaks in kidney (note that the two distributions differed mostly in their negative tail). c Four-way Venn diagram of rhythmicity sets for
genes expressed in both tissues (n = 10,289). Of all genes, 364 and 238 were detected as rhythmic in both organs at the RNA-seq and RPF-seq
levels, respectively, and 178 genes were detected as rhythmic throughout (i.e. RNA-seq and RPF-seq, in kidney and liver). d Cumulative phase
difference distribution in liver (green) and kidney (yellow) for the 178 common rhythmic genes. As in (b), the distributions were significantly
different (p = 0.007, permutation test) and corroborated that even when comparing the same set of genes, footprint peaks frequently preceded
mRNA abundance maxima in kidney. e Cross-correlation in kidney (yellow) and liver (green) of time-resolved RPF-seq profiles relative to the RNA-
seq profiles of the n = 178 common rhythmic genes. The analysis showed that profile correlations for negative lags (i.e. RPF peaking before RNA)
were significantly higher in kidney than liver (* indicate p < 0.05, Wilcoxon signed rank test). Boxplots represent the interquartile range and
whiskers extend to the minimum and maximum expression within 1.5 times the interquartile range. f Examples for genes with maxima in RPF
(blue) preceding those in RNA (orange) by several hours in kidney (top) but not, or less so, in liver (bottom). Arrowheads indicate the peaks in footprint
and mRNA abundance as estimated from the rhythmic fits. g Cross-correlation analyses of RPF-seq relative to RNA-seq profiles (kidney in yellow, liver
in green) for the genes in (f). Maximal correlations of the profiles in kidney were found to be shifted to the left (more negative RPF-to-RNA lags) as
compared with liver. For liver, there was no case with a maximal correlation value in negative RPF-to-RNA lags
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full extent of shared rhythmicity and only contains the
most robustly oscillating gene expression events, which
we further explored in the following.
Interestingly, the analysis of rhythmicity parameters

across the 542 genes revealed that the timing of their
RPF peaks relative to their RNA peaks had a significantly
different and broader distribution than the correspond-
ing set from liver (p < 1.0e-04; permutation test) (Fig. 3b).
This observation suggested that the phase of protein
biosynthesis rhythms was subject to marked translational
modulation in kidney. In liver, by contrast, RPF peaks
were more tightly gated by RNA abundance peaks. Sur-
prisingly, maximal translation tended to precede max-
imal RNA abundance in kidney (Additional file 1: Figure
S10A), as globally the mean RPF peak phase was ad-
vanced (–0.123 h) and also RPF rhythms were enriched
for phase advances (282) versus delays (260), albeit nei-
ther reaching statistical significance (p = 0.16, Wilcoxon
rank sum test).
The above analyses used different rhythmic gene sets

for kidney than for liver, potentially compromising
comparability. The observed differences in the RPF-
RNA phase relationships could thus have simply arisen
from transcript-specific rather than from tissue-specific
differences in the timing of translation. We thus ana-
lysed the group of 178 genes whose RNA and RPF pro-
files were rhythmic in both organs (Fig. 3c; Additional
file 6 and Additional file 7 (https://doi.org/10.6084/
m9.figshare.4903193)). Again, the distribution of RPF-
RNA offsets was significantly broader in kidney than in
liver (Fig. 3d; p = 0.007, permutation test) with an RPF
peak phase advance in kidney (mean –0.143 h) and a
phase delay in liver (mean 0.036 h) (Additional file 1:
Figure S10B, C). We next calculated the gene-wise
RPF-RNA peak phase difference in kidney relative to
that in liver. More genes showed their RPF maxima
earlier (96) than later (82) in kidney versus liver, with a
mean advance of –0.178 h (Additional file 1: Figure
S10D), but again without passing statistical significance
(p = 0.152, Wilcoxon rank sum test).
Conceivably, we lost statistical power and introduced

error in the above analyses by restricting the phase com-
parisons merely to the peaks of the rhythmic curve fits.
We thus sought a method that would take into account
phase differences between RPF and RNA profiles over all
data points. To this end, we used cross-correlation to
quantify the similarity between the RPF and RNA time
series as a function of sliding one series on the time axis
relative to the other. When the time series were not
shifted against each other at all (RPF-RNA lag = 0 h), the
RPF-RNA cross-correlation values were overall highest,
as expected, and they were significantly higher in liver,
in line with stronger gating of RPF rhythms relative to
RNA oscillations in this organ (Fig. 3e). Importantly,

when cross-correlation of RNA was calculated with earl-
ier RPF time points (negative RPF-RNA lags; see in par-
ticular lags of –2 h to –8 h in Fig. 3e), kidneys scored
significantly higher than livers. Sliding the series in the
other direction, however, rather led to overall better cor-
relations in the liver (see lags of +4 to +8 in Fig. 3e;
liver–kidney difference was non-significant). Taken to-
gether, these analyses underscored that there was asym-
metry in the data with RPF rhythms preceding RNA
rhythms specifically in the kidney.
We confirmed kidney-specific translational phase ad-

vances by visual inspection of individual gene expression
profiles. Figure 3f shows the profiles for the genes Hlf,
Nampt, Slc5a6, Tardbp, Dnajb4, Cgn and Etnk2, which all
show an RPF phase advance of up to several hours relative
to RNA. Cross-correlation analysis for the individual
genes also confirmed kidney-specific, phase-advanced
translation (Fig. 3g).
At first sight, translation that is phase-advanced to

mRNA abundance is counterintuitive. Conceivably, it
may occur when translation efficiency is not constant,
but decreases over the lifetime of an mRNA. TEs may
be higher on freshly synthesised messages that have
long poly(A) tails and decrease as a result of gradual
deadenylation even before transcript stability and abun-
dance are affected as well [21]. In keeping with the hy-
pothesis of cross-organ differences in poly(A) kinetics, we
have observed that most subunits of the major cytoplas-
mic deadenylase complex, CCR4-NOT, are significantly
more highly expressed in kidney than in liver (Additional
file 1: Figure S11A–C). Higher deadenylase activity in
kidney could provide an attractive molecular explanation
for the observed tissue-specific differences in RPF-RNA
phasing and for RPF rhythms that are phase-advanced to
RNA oscillations.

High tissue divergence in translationally driven rhythms
Rhythmicity detection algorithms are sensitive to false-
negatives, i.e. to classify gene expression profiles as
‘non-rhythmic’ (for example, because they fail imposed
thresholds on amplitude or FDR) although the underlying
temporal patterns may still be more similar to, and more
likely to be, rhythmic than invariable. Of note, the lack of
canonical methods to reliably determine true absence of
rhythms is a common problem in the field (see recent re-
view by [6] for discussion). Venn diagrams that simply
overlap rhythmic gene sets hence need to be interpreted
with caution. For these reasons, the extent of ‘RNA only’
and of ‘footprints only’ oscillations in Fig. 3a is likely not
reported reliably and subject to overestimation. The heat-
maps of the corresponding RNA and RPF profiles support
this notion as well (Additional file 1: Figure S12B, D).
In order to identify the true-positive ‘translation only’

cycling transcripts with higher reliability, we
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Fig. 4 High tissue divergence in translationally driven rhythms. a Venn diagram of rhythmic RPF-seq sets in kidney (yellow, n = 92) and liver (green,
n = 142) after the Babel analysis indicated strong tissue specificity of translational control. b Daily profiles of RPF-seq RPKM (blue) and RNA-seq
RPKM (orange) for the two genes detected as translationally regulated in both tissues in (a). c, d Circular phase histogram for the 92 (c, kidney)
and 142 (d, liver) genes showing footprint rhythmicity in the organs. Note that the translational upregulation of transcripts observed at the day-to-
night transition in liver was absent in kidney. e, f Heatmaps of RNA (left panels) and RPF (right panels) rhythms for the 92 and 142 genes translationally
regulated in kidney (e) and in liver (f), respectively. Genes are sorted by footprint phase and expression levels are standardized by row (gene). These
sets of genes showed rhythmicity in footprint abundance but no oscillation in mRNA. g, h Daily profiles of RPF-seq RPKM (blue) and RNA-seq RPKM
(orange) for representative examples of translationally generated rhythms specific for liver (g) and kidney (h). For each gene, the upper panel shows the
kidney data and the lower panel the liver data. Hoxd3 was not expressed in liver. i Translation efficiency (TE) around-the-clock for ribosomal protein (RP)
genes expressed in liver (green, n = 86) and in kidney (yellow, n = 89). For each timepoint (ZT) boxplots represent the interquartile range and whiskers
extend to the minimum and maximum TE within 1.5 times the interquantile range. Lines connect the median of each boxplot to ease visualization.
Note the global TE upregulation at ZT10 in liver, whereas TEs in kidney remain high over the day
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implemented the same methodology as in our previous
study [10]. Briefly, we used the analytical framework
Babel [22] to preselect all transcripts whose translation
efficiency changed significantly over the day (and/or
whose TEs deviated significantly from the global tran-
script population). Rhythmicity analyses were then per-
formed on this gene subset and yielded 92 cases with
the sought-after temporal profiles of rhythmic transla-
tion on non-rhythmic mRNAs (Fig. 4a). Comparison
with the 142 genes of the analogous set from liver re-
vealed near-perfect tissue specificity of translationally
driven oscillations. Only two genes, Abcd4 and Lypla2,
were shared between the organs; they were both among
the least compelling cases of ‘translation only rhythms’
that our method had identified, as judged by visual in-
spection (Fig. 4b).
Interestingly, not only the identity of rhythmically trans-

lated genes, but also the time-of-day at which the majority
of rhythmic translation events occurred, was highly tissue-
specific. The phase histograms thus showed striking differ-
ences in the peak time distributions between the organs
(Fig. 4c, d; difference in distributions: p = 1.66e-04; W=
17.403, df = 2; Watson–Wheeler test for homogeneity of
angles). Of note, the enrichment for translational maxima
at the light–dark transition (Zeitgeber time, ZT10-16;
ZT00 corresponds to lights-on and ZT12 to lights-off)
that dominated the distribution in liver (Fig. 4d, f ) was vir-
tually absent from kidney (Fig. 4c, e). Instead, kidney
showed enrichment for transcripts with maximal transla-
tion occurring around ZT4 and ZT16. Visual inspection
of individual examples confirmed the organ specificity of
RPF rhythms. The cases of robust translational oscillations
that we [10] and others [11, 12] had previously identified
in liver were thus absent or severely blunted in kidney.
This included mRNAs encoding ribosomal proteins (RPs),
which make up the bulk of genes showing a transla-
tional surge at the light–dark transition (e.g. Rps25,
Rpl23a), as well as transcripts encoding the transcrip-
tion factors Deaf1 (deformed epidermal autoregulatory
factor 1) and Mxi1 (MAX interactor 1), and mRNAs
containing iron-responsive elements in their 5′ UTRs
(e.g. Ferritin light chain 1, Ftl1) (Fig. 4g), all of which
we had previously reported as translationally rhythmic in
liver [10]. Rhythmic translation exclusive to kidney was
not significantly enriched for particular pathways (data
not shown) and the temporal profiles were overall of
lower amplitude than those seen for liver; Tma7 (transla-
tional machinery associated 7 homolog), Ddb2 (damage-
specific DNA binding protein 2), Actg1 (actin, gamma,
cytoplasmic 1) and Hoxd3 (homeobox D3; not expressed
in liver) were among the most distinct examples (Fig. 4h).
In summary, we concluded that temporal changes in

TE were strikingly tissue-specific and overall relatively
rare in kidney. Specifically for transcripts encoding RPs

and other components of the translation machinery,
which are the most prominent group of TE rhythmic
genes in liver, it has been suggested that feeding-
dependent mTOR-signalling underlies the translational
upsurge at the light–dark transition via a mechanism
involving the 5′-terminal oligopyrimidine (5′-TOP)
motifs that these transcripts carry [11, 12]. Interest-
ingly, the TE comparison between both tissues revealed
that kidney RP translation occurred at a relatively high
level throughout the day (Fig. 4i). The lack in rhythmi-
city for RP genes in this organ may thus result from an
absence of translational repression during the light
phase rather than a lack in activation in the dark phase.
It may indicate that the kidney is less sensitive to
systemic cues engendered by feeding and fasting (see
‘Discussion’).

Different degrees of tissue specificity in core clock gene
expression at the level of RNA abundance and protein
biosynthesis
Clocks exhibit functional differences across cell types and
organs, for example at the level of rhythmicity parameters
(e.g. free-running period and phase [5]), of clock output
gene repertoires [3], of oscillator strength and robustness
[23, 24] or with regard to clock gene loss-of-function phe-
notypes [25]. Conceivably, the precise timing and level at
which the various clock proteins are produced may modu-
late properties of the clock circuitry and underlie some of
the abovementioned functional variations. In order to in-
vestigate these possibilities, we compared the expression
of core clock components in both organs.
We first investigated transcript and footprint RPKMs as

averages over timepoints to assess the cumulative daily
production of clock RNAs and proteins. Most core clock
genes showed a considerable degree of organ specificity in
their expression levels that was readily appreciable in the
footprint versus transcript abundance representation with
both organs overlaid in a single graph (Fig. 5a). Two tissue
differences caught our particular attention. First, the
balance between the transcriptional activators Rora/Rorc
and repressors Nr1d1/Nr1d2 differed markedly between
organs and was skewed towards repression in kidney (i.e.
higher Nr1d1/2 and lower Rora/c RPKMs in kidney,
Fig. 5a, b). These transcriptional regulators bind to shared
sequence elements on DNA and form the ‘interconnecting
limb’ within the rhythm-generating clock circuitry. In
addition, they also control an output branch of the oscilla-
tor [1, 2]. It is hence conceivable that adjusting the relative
levels of NR1D1/2 versus RORs tailors clock-controlled
gene expression in a tissue-specific fashion. Our observa-
tion of an active state of this output branch in liver and a
more repressed state in kidney is fully consistent with the
current knowledge of its target genes and knockout phe-
notypes, which point to a prominent role in the regulation
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Fig. 5 (See legend on next page.)
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of hepatic pathways such as lipid, cholesterol and bile acid
metabolism [26].
A second tissue difference concerned the main con-

stituents of the negative limb, the Period (Per) and
Cryptochrome (Cry) genes. Heterotypic PER:CRY protein
complexes inhibit ARNTL:CLOCK-driven transcriptional
activity and thus lie at the core of the oscillator’s principal
negative feedback loop. We observed a shift to more PER
(and slightly less CRY) biosynthesis in kidney (Fig. 5b).
PERs (and in particular PER2) are considered stoichiomet-
rically rate-limiting components of the PER:CRY complex
and increased PER2 dosage engenders long periods [27,
28]. Interestingly, tissue explant experiments have shown
that kidney clocks free-run with almost 1.5-h longer pe-
riods than liver clocks [5], as would be predicted from the
increased PER biosynthesis that our analyses revealed. As
a more general concept, we deem it conceivable that the
modulation of biosynthesis levels for individual clock
proteins may be a more general mechanism to engender
distinct differences in clock parameters across cell types.
We noted that for the majority of clock genes (Npas2,

Cry1, Cry2, Per1, Per2, Per3, Nr1d1, Rorc) the tissue
differences were less pronounced at the RPF than at the
RNA level (Fig. 5b), indicating that translation efficien-
cies partially counteracted RNA expression differences.
Only in four cases (Clock, Arntl, Nr1d2, Rora) TEs exac-
erbated transcript abundance differences and led to
higher tissue differences at the RPF level. Interestingly,
this observation could also be made in the time-resolved
data. As a measure of similarity between expression
profiles that takes into account profile shape and ex-
pression level, we used the Euclidean distances calcu-
lated between the four rhythmic traces of each
individual gene (i.e. RNA and RPF in kidney and liver;
Additional file 1: Figure S13). Hierarchical clustering of
the similarities for the ensemble of the 12 main core
clock genes showed that RPF profiles from the two

organs grouped together (Fig. 5c). The temporal pro-
files of clock protein biosynthesis between organs were
thus more similar than RNA and RPF expression pro-
files within organs. By contrast, the 178 common rhyth-
mic genes identified in Fig. 3c—serving as a control set
for this analysis—revealed within-organ clustering
(Fig. 5d). These findings underscored that translational
compensation was occurring within the core clock, where
it led to more similar expression profiles in clock protein
biosynthesis than would have been predicted from the
rhythmic RNA abundance. This phenomenon was, how-
ever, not a general feature of all rhythmic gene expression.
The transcriptome-wide analyses described further

above had shown only weak signs of association be-
tween cross-organ differences in TE and in uORF usage
(Additional file 1: Figure S8C–E). However, we knew
from our previous work in liver that at least five core
clock transcripts (Nr1d1, Nr1d2, Cry1, Clock, Arntl)
contained translated, potentially regulatory, AUG-
initiated uORFs [10]. We therefore examined whether
for any of these concrete cases there was evidence for a
connection between uORF translation and cross-organ
TE differences. The read distribution along the tran-
scripts (Additional file 1: Figure S14A) and the marked
frame preference of RPF reads (Additional file 1: Figure
S14B) confirmed that the footprints mapping to our an-
notated uORFs likely reflected active translation. How-
ever, only in one case, Nr1d2, there was a distinct
anticorrelation between uORF usage and TE differences
on the CDS (Fig. 5e). Nr1d2 contains two translated
uORFs in the 5′ UTR (Fig. 5f ), whose decreased usage
in kidney was accompanied with higher TE on the CDS
in this organ (Fig. 5e). For Nr1d2, differential uORF
usage could thus represent a plausible mechanism that
contributes to regulating organ-specific gene expression
output at the translational level, keeping NR1D2 bio-
synthesis low in liver and high in kidney.

(See figure on previous page.)
Fig. 5 Tissue specificity in core clock gene expression at the level of RNA abundance and translation. a Scatterplot of transcript abundance (RNA-seq)
vs. footprint abundance (RPF-seq) for liver (grey) and kidney (sepia) (n = 10,289), where core clock components are highlighted (kidney, dots with
dashed circles). Coloured dashed lines join the relative locations of each core clock gene between organs. b Bar graph of the average RPKM ratio
between kidney and liver for the main circadian core clock genes, at the level of mRNA abundance (dark shades) and ribosome footprints (light shades)
suggested that translational compensation led to higher similarity at the level of protein biosynthesis (RPF) for several core clock genes. c Hierarchical
clustering of the organs’ RNA and RPF profiles based on the similarities of the core clock genes expression patterns (n = 12, genes shown in B). The
height of the branches represents weighted average distances over the considered genes (see ‘Methods’). Note that RPF rhythms in two organs were
more similar than RNA and RPF rhythms within an organ. d Hierarchical clustering as in (c) based on the genes detected as rhythmic throughout
(n = 178, see Fig. 3c). When compared to the clustering based on core clock gene expression patterns in (c), this rhythmic gene set showed an
organ-based clustering. e Scatterplot of kidney/liver ratios of uORF vs. CDS translation efficiencies for genes containing AUG-initiated translated uORFs
in both organs (n = 1199). uORF-containing core clock genes are highlighted. As also shown in Additional file 1: Figure S8E, differential uORF usage
could not globally explain differences in CDS TE across organs (note the lack of negative correlation between the two variables, R2 = 0.005, p = 0.008).
As an exception, the lower uORF TE of Nr1d2 might have a role in setting relatively higher CDS TE in kidney. f RPF (blue) and RNA (orange) reads
mapping along the Nr1d2 transcript in kidney (top) and liver (bottom) for the timepoint of maximal CDS translation (ZT10). 5′ UTR and CDS are shown
in full, but for better visualization only a portion of the 3′ UTR (the same length as the 5′ UTR) is shown. Red boxes indicate the predicted AUG-initiated
translated uORFs. Right panels show that, similar to the CDS, the uORFs showed clear frame preference, indicative of active translation
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Discussion
Given that the functionally relevant output of most gene
expression is the protein, quantitative and genome-wide
analyses of protein biosynthesis are of high interest to
complement the wealth of transcriptomics data that are
already available. Of note, only the fairly recent develop-
ment of the ribosome profiling technique [29] has made it
possible to analyse translational events in a quantitative,
high-throughput fashion. Our study of two paradigms of
differential gene expression, i.e. its tissue-dependence and
its time of day-dependence, is among the first of its kind
and, together with the associated datasets and resources,
will likely be of wide interest and utility to researchers
working in the chronobiology and gene expression fields.
We have addressed several, rather fundamental ques-

tions that go beyond the chronobiological focus of the
study: How does the dynamic range of translation effi-
ciency compare to that of transcript abundances across
two distinct organs of an animal? Is translation efficiency
a default transcript property and comparable across two
tissues or do TEs become reinterpreted depending on cell
type or organ? Does cross-tissue variability of TEs come
with any direction, i.e. is there a global tendency to either
reinforce or to counteract transcriptomal differences?
To our knowledge, only one previous study has reported

on ribosome profiling datasets from two complementary
mammalian tissues: rat liver and heart [19]. This study
also included animals with different genetic backgrounds
as covariates in the experimental design and its main
focus was on strain differences in translation rather than
on tissue differences. Our analyses based on more than
10,000 genes commonly expressed in liver and kidney
show that cross-organ TE differences are widespread, but
of limited magnitude. Across genes in a tissue and for in-
dividual genes between tissues, the dynamic range of
translation efficiencies is thus about 30–50-fold narrower
than that of transcript abundances. These findings are co-
herent with the view that major differences in gene ex-
pression are set up at the level of transcription (possibly
with some influence coming from RNA stability as well),
whereas differences in translation rate have more of a
modulatory role. It is intriguing that this modulation is
overall characterised by directionality, with TE differences
between tissues globally counteracting some of the mRNA
abundance differences. Such translational compensation
has previously been observed for divergent transcript
expression levels across yeast species [30] and across dif-
ferent rat strains [19]; our study now extends this observa-
tion to gene expression across organs. Moreover, the idea
of translational compensation is conceptually similar to
findings that proteomes are evolutionarily more highly
conserved than transcriptomes [31, 32]. As an underlying
common principle, these cases may indicate that selective
pressure on precise gene expression levels likely acts on

protein abundances, whereas a certain degree of variability
(even noise) in RNA levels may be tolerated without
further consequences. It will be exciting to study the un-
derpinnings of translational compensation further, across
tissues and across species.
Maybe not unexpectedly, there was no dominant,

distinct sequence feature that could serve as a predictor
for cross-organ TE differences. Rather, we found several
associations with a number of transcript characteristics.
Conceivably, these contribute collectively to modulating
TEs in concert with the specific cellular and tissue envir-
onment and possible cell-type differences in the transla-
tion machinery including its regulators and trans-acting
factors. While our ribosome profiling studies have
allowed us to record the outcome of such regulation at
high resolution, understanding its causes represents an
exciting challenge for the future. For now, we can only
infer that an overarching theme of the identified associa-
tions is a connection to 5′ UTRs, which is in also in line
with the notion that initiation is rate-limiting for most
translation events. We thus observed associations of
cross-organ TE differences with 5′ UTR length, with
uORF usage, with GC content and folding potential, as
well as with transcript isoform diversity that affected the
5′ UTR. We would like to point out that comprehensive
uORF annotations remain a bioinformatics challenge
that is far from resolved. We have therefore restricted
our analyses to AUG-initiated ORFs, inevitably leading
to a bias towards false-negatives in uORF annotation. As
we will learn how to annotate uORFs more comprehen-
sively and more precisely in the future, it may be worth
revisiting the relationship between differential TE and
uORF translation in our datasets in order to evaluate
whether a clearer role for these regulatory sequence ele-
ments will emerge.
Our study has led to novel insights into rhythmic

gene expression. The extent to which rhythmicity is
generated by the temporal regulation of translation has
been the subject of speculation ever since the first re-
port of rhythmic proteins encoded by non-rhythmic
mRNAs [7]. Our kidney datasets complement recent
time-resolved ribosome profiling data from liver [10,
11] and from a cell line [33]. As compared to liver, the
number of transcripts subject to translational rhythms in
kidney is slightly lower, but overall in a similar order of
magnitude with around 1% of the transcriptome affected.
It came as a surprise that translational rhythms were es-
sentially tissue-specific in terms of the affected genes and
the phase distributions. A possible explanation could be
that these rhythms are driven by rhythmic systemic cues
to which tissues do not respond equally. The effects of
feeding and mTOR signalling, for example, may be more
pronounced in liver due to the dedicated role that this
organ plays in energy homeostasis and fasting responses,
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thus explaining the differences in translational oscillations
for RP genes. Beyond the role that translation has in
generating rhythms, our analyses have pointed to an add-
itional, rhythmicity-modulating role that appears to affect
gene expression quite broadly, i.e. the timing of the phase
of protein biosynthesis oscillations relative to that of
mRNA abundance rhythms. Consistent with work by the
Green lab that showed interactions between polyadenyla-
tion status of mRNAs and rhythmic protein expression in
the liver [21], it is tempting to speculate that related mecha-
nisms are operative across organs, with tissue-specific dead-
enylation kinetics tuning the timing of rhythmic protein
biosynthesis. Finally, our study is a first attempt to resolve
tissue differences in core clock gene expression as a factor
contributing to functional differences of the oscillator. It is
interesting that the core clock mechanism has a long-
standing history of being referred to as a ‘transcription-
translation feedback loop’ [34], although the actual
feedback occurs at the transcriptional level and possible
mechanistic functions of translational regulation have not
been much investigated. Our cross-organ comparison of
core clock protein biosynthesis suggests that translational
control—including through the activity of uORFs [10,
33]—is of regulatory interest and represents a way by which
the identical set of core clock genes could form circuitries
with different stoichiometry of its main components. As a
result, both clock parameters and output gene repertoires
may be organ-specifically tuned.

Conclusions
How translational differences contribute to overall gene
expression diversity is still poorly understood. Our study
uncovered translational changes that occur across two
paradigms of regulated gene expression, i.e. around-the-
clock and between tissues. Daily gene expression rhythms
generated at the translational level were strongly organ-
specific with regard to the identities and phase distribu-
tions of affected genes. Moreover, our data indicate that
translation efficiency differences between organs can ad-
just the timing of protein production from rhythmic
mRNAs and the levels of core clock protein production,
in agreement with the tissue specificities observed in clock
output gene sets and clock parameters. Together, these
results are consistent with an important role of post-
transcriptional mechanisms in mammalian circadian gene
expression regulation. Beyond the temporal dimension,
we have explored constitutive protein biosynthesis across
organs. Our quantitative analyses underscore that gene
expression divergence is largely programmed at the tran-
script abundance level. Interestingly, the widespread
differences in translational efficiency that we detected be-
tween organs even serve to achieve higher concordance in
protein production between tissues. Conceivably, such
translational compensation reflects a selective pressure to

maintain precise protein levels rather than mRNA levels.
The high-resolution genome-wide translatome datasets
generated in this study will allow further explorations into
the mechanisms of post-transcriptional control and differ-
ential gene expression in vivo.

Methods
Animals
Twelve-week-old male mice (C57BL/6 J; Janvier Labs)
were entrained for two weeks to light:dark 12:12 cycles
with ad libitum access to food and water and were anes-
thetized (isoflurane) and sacrificed every 2 h (ZT0–ZT22,
with ZT0 corresponding to ‘lights-on’) for two daily cycles.
Livers and kidneys were removed and processed either
directly or flash-frozen in liquid N2.

Ribosome profiling
Generation of liver RPF-seq and RNA-seq libraries using
the ARTseq ribosome profiling kit (Epicentre) was de-
scribed recently [10, 16]. Kidney libraries were prepared
in the same manner, with a single modification to the
order of steps in RPF library preparation. After RNase
treatment and recovery of ribosome-protected frag-
ments, 5 μg of material was first ribosomal RNA
(rRNA)-depleted (Ribo-Zero magnetic kit, Epicentre)
and then purified by 15% PAGE. In the formerly pre-
pared liver libraries, Ribo-Zero treatment and PAGE
purification had been inverted because at the time we
had found that changing the order had a beneficial ef-
fect on obtaining highly concentrated libraries. For the
kidney samples, however, we noted that this modified
order led to higher contamination with reverse-strand
rRNA probes bleeding from the Ribo-Zero kit and we
thus reverted to ARTseq’s original order. All other steps
and materials were identical between liver and kidney
samples and followed the ARTseq ribosome profiling
kit instructions. RPF and RNA libraries were sequenced
on an Illumina HiSeq 2500.

Sequencing data processing, alignment and quantification
Processing, quality assessment, alignment and quantifica-
tion of sequencing data were performed as described
previously [10, 16]. Briefly, after adapter trimming using
Cutadapt [35], the length distribution of trimmed reads was
used to assess the quality of nuclease digestion and size-
selection, which is particularly important for RPF libraries
(Additional file 1: Figure S1B). Trimmed reads were filtered
by size (26–35 nt for RPF; 21–60 nt for RNA) using an in-
house Python script and sequentially mapped to mouse
rRNA, human rRNA, mitochondrial tRNA, mouse tRNA,
mouse cDNA (Ensemble mouse database release 75) using
Bowtie v2.2.1 [36] and mouse genome (GRCm38.p2) using
Tophat v2.0.11 [37]. Trimmed and filtered sequences were
also directly mapped against the mouse genome (Tophat
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v2.0.11) in order to estimate expressed transcript models in
each organ (using Cufflinks v2.2.1 [38]). Transcriptome-
mapping reads in the sequential alignment were counted
towards their location into the 5′ UTR, CDS or 3′ UTR of
the transcript, based on feature annotation (Ensemble
mouse release 75). Mappable and countable feature lengths
were not calculated for this study (see ‘faux reads analysis’
in the ‘Quantification of mRNA and ribosome footprint
abundance’ section of Supplemental Experimental Proce-
dures of previous study [10]) as its contribution was negli-
gible for further analyses. Therefore, RPKM calculations in
this study were not corrected with such factor. Read counts
in RNA-seq and RPF-seq datasets were normalised with
upper quantile method of edgeR [39] and RPKM values
were calculated as the number of reads per 1000 bases per
geometric mean of normalised read counts per million.
Relative translation efficiencies (TE) were calculated as the
ratio of RPF-RPKM to RNA-RPKM per gene per sample.
Reading frame and nucleotide periodicity analyses were
performed as in [10]. PCA relied on a combined matrix of
CDS counts for RPF and RNA from both liver and kidney
and following the same approach as before [10]. Ribo-seq
Unit Step Transformation (RUST) analysis was used to as-
sess whether the sequencing libraries were globally of simi-
lar quality in terms of their local footprint densities [17].
RUST is a simple normalisation method that reduces the
heterogeneous noise in the data and allows identification of
mRNA sequence features that affect footprint densities glo-
bally. We used the version 1.2 of the published rust_co-
don.py standalone python script with minor modifications
to reflect the experimental settings as closely as possible
(i.e. A-site offsetting). RUST codon profile and correspond-
ing Kullback–Leibler (K–L) divergence for each library
(RPF and RNA) was generated against a database of 8012
single protein isoform transcript sequences using all
mapped reads with a length of 28–32 nt. The K-L diver-
gences from all samples for each combination of tissue
(kidney or liver) and read type (RPF or RNA) were used to
generate K-L profiles at the 0, 10, 25, 50, 75, 90 and 100th
quantiles.

Correlation analyses and assessment of translational
compensation across organs
Correlation of RNA-seq and RPF-seq across organs:
kidney versus liver correlations at the levels of RNA-seq
and RPF-seq (i.e. Fig. 2b; Additional file 1: Figure S6C–
E, H–L) were calculated in a pairwise fashion for each of
the 24 samples (12 timepoints, two replicates/timepoint),
as livers and kidneys of each replicate originated from the
same animals. Significance of the difference in the Spear-
man coefficients between both distributions was assessed
by paired t-test on Fisher z-transformed coefficients. Heart
versus liver correlation at the levels of RNA and RPF-seq
(Additional file 1: Figure S7A) was calculated from the

study [19], using the BN-Lx reference rat strain data. Since
the five heart and liver replicates in this study did not
come from the same animals, we calculated all possible
pairwise correlation coefficients between heart and liver
(i.e. 25) and compared all possible combinations of five
coefficients between RNA-seq and RPF-seq (paired t-test
on Fisher z-transformed coefficients).
Measurement error: measurement errors (Additional

file 1: Figure S6A, B, F, G) were calculated similarly to
[18] using the meas.est() function from smatr R package
[40]. Genes were first binned according to average ex-
pression level (calculated as the fourth root of the prod-
uct of liver RNA-seq, liver RPF-seq, kidney RNA-seq
and kidney RPF-seq) into ten groups, each containing
10% of all genes. Within each bin, the measurement
error was calculated separately for RNA-seq and RPF-
seq and for liver and kidney, using the two replicates
(log of normalised CDS counts) to estimate the error
and the 12 timepoint samples to estimate its variability.
For the analyses using a filtered gene set (Additional file
1: Figure S6F-G), genes that showed a mean expression
ratio (either between organs or between RNA-seq and
RPF-seq) greater than 2 for all timepoints were excluded
(9236 genes used in analysis).

Analyses of differential translation efficiency
To test for differential translation efficiency (TE) between
liver and kidney we used the Wilcoxon-signed rank paired
test, using all 24 samples (12 timepoints; two replicates/
timepoint) as replicates; resulting p values were FDR-
corrected. A gene was defined as having differential TE
when FDR < 0.01 and the inter-organ difference in TE was
at least 1.5-fold (Fig. 2e).
Analysis of transcript usage diversity across organs: for

each gene g, P(g) = (p 1,…,p n) is the vector of the relative
expression proportions of its n protein-coding transcripts,
as estimated from our RNA-seq analysis (see ‘Sequencing
data processing, alignment and quantification’). To quan-
tify the dissimilarity in relative transcript isoform expres-
sion between liver L and kidney K, the Hellinger distance
H is defined as:

H PL gð Þ; PK gð Þð Þ ¼ 1=
ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

ffiffiffiffiffiffiffiffiffi

pLi−
p ffiffiffiffiffiffiffi

pKi
p� �2

s

ð1Þ

In order to detect the transcript features that were asso-
ciated with tissue specificity in TE, we selected genes
whose transcript diversity between both organs originated
from or was excluded from 5′ UTR, CDS, or 3′ UTR,
based on feature annotation information for the detected
protein-coding transcripts (Fig. 2g and Additional file 1:
Figure S9).
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Study of transcript characteristics: for single-isoform
genes, we investigated whether a particular transcript
characteristic (length, GC content, Kozak context, struc-
ture) could be predictive of differential TE. Length and
GC content were determined directly on the whole tran-
script and/or on the region of interest (5′ UTR, CDS, 3′
UTR). Kozak context was scored according to the consen-
sus sequence GccA/GccAUGG, where upper-case letters
denote highly conserved bases (scored +3), lower-case let-
ters indicate the most common nucleotides (scored +1)
and bold is the start codon (not scored), giving a max-
imum score of 13. Minimum free energy secondary struc-
tures on the 5′ UTR were predicted with RNAfold from
ViennaRNA package with default parameters [41].

Detection and translation efficiency calculation for uORFs
To assess the impact of differential uORF usage on TE
differences across organs, uORFs were identified as in our
previous study [10]. Briefly, genes expressing a single
protein-coding isoform in both organs were used for this
analysis (n = 5815). We selected uORFs with an AUG start
codon and a length of at least 18 nt to the first in-frame
stop codon and considered them as translated if the reads
showed significant frame bias towards the reading frame
of the uORF start codon and if coverage was > 10%. uORF
translation efficiency was calculated from the ratio of
RPF-seq to RNA-seq reads whose predicted A-sites
mapped to the annotated uORF regions. If several uORFs
partially of completely overlapped on a given 5′ UTR, a
composite uORF was considered for read counting.
uORFs overlapping with the CDS in the same frame were
not considered. When they overlapped in different frames,
only reads mapping to the 5′ UTR-specific uORF se-
quence (but not the overlapping sequence) was considered
for quantifications.

Rhythmicity analyses
Rhythmicity detection and rhythmic parameter estima-
tions in each dataset (RNA-seq and RPF-seq, liver and
kidney) were done based on Akaike information criterion
(AIC) model selection as in our previous study [10]. The
Babel computational framework [22] was used to detect
rhythmically translated genes from constantly expressed
mRNAs within each organ. For cross-correlation of time
series to compare the daily profiles of rhythmic genes
beyond their peak differences, we used the ccf function in
R. As we computed the correlations of the RPF-seq with
respect to the RNA-seq profiles, negative lag values cor-
respond to RPF leading RNA.

Hierarchical clustering of rhythmic genes
To evaluate the similarity of the expression profiles for
rhythmic genes, a dissimilarity matrix was computed for
each gene of interest, based on the Euclidean distance

between the RNA-seq and RPF-seq expression profiles
within and across organs. A hierarchical clustering tree
was constructed on the weighted average of the dissimi-
larity matrices of genes under consideration (core clock
genes in Fig. 5c or all rhythmic genes in Fig. 5d), using
the ‘average’ clustering method. The R functions {pack-
ages} dist {stats}, fuse {analogue} and hclust {stats} were
used for computing the individual dissimilarity matrices,
the weighted mean dissimilarity matrix and the hierarch-
ical clustering, respectively.

Additional files

Additional file 1: Supplementary Figures. This file contains the
Supplementary Figures S1–S14 and Supplementary Figure legends.
(PDF 32661 kb)

Additional file 2: Mapping outcome summary. This file contains
information on the deep-sequencing data from kidney (raw read counts,
mapping summary etc.) (XLSX 23 kb)

Additional file 3: Differential TE analysis. This file contains details of the
GO-term analysis on the differential TE gene set of Fig. 2. (XLSX 228 kb)

Additional file 4: Rhythmicity parameters in kidney datasets. This file
contains the outcome of the transcriptome-wide rhythmicity analyses
on the kidney datasets (related to Fig. 3a). (XLSX 163 kb)

Additional file 5: Rhythmicity parameters of 178 common rhythmic
genes. This file contains the outcome of the rhythmicity analyses in
kidney and liver for the 178 commonly rhythmic genes (RNA and RPF
in kidney and liver; related to Fig. 3c). (XLSX 35 kb)

Additional file 6: Transcriptome-wide kidney RPF (blue) and RNA
(orange) levels in the left panels (with “error bars” connecting the two
replicates of each timepoint) and TE in the right panels. (ZIP 116896 kb)

Additional file 7: Expression plots for kidney and liver for the 178
common rhythmic genes of Fig. 3c. (ZIP 3338.28 kb)
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