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Abstract

Imputation

Background: Understanding the mapping precision of genome-wide association studies (GWAS), that is the
physical distances between the top associated single-nucleotide polymorphisms (SNPs) and the causal variants, is
essential to design fine-mapping experiments for complex traits and diseases.

Results: Using simulations based on whole-genome sequencing (WGS) data from 3642 unrelated individuals of
European descent, we show that the association signals at rare causal variants (minor allele frequency < 0.01) are very
unlikely to be mapped to common variants in GWAS using either WGS data or imputed data and vice versa. We
predict that at least 80% of the common variants identified from published GWAS using imputed data are within 33.5
Kbp of the causal variants, a resolution that is comparable with that using WGS data. Mapping precision at these loci
will improve with increasing sample sizes of GWAS in the future. For rare variants, the mapping precision of GWAS
using WGS data is extremely high, suggesting WGS is an efficient strategy to detect and fine-map rare variants
simultaneously. We further assess the mapping precision by linkage disequilibrium between GWAS hits and causal
variants and develop an online tool (gwasMP) to query our results with different thresholds of physical distance and/or
linkage disequilibrium (http://cnsgenomics.com/shiny/gwasMP).

Conclusions: Our findings provide a benchmark to inform future design and development of fine-mapping
experiments and technologies to pinpoint the causal variants at GWAS loci.
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Background

Genome-wide association studies (GWAS) facilitated by
high-throughput genotyping technologies have identified
thousands of genetic loci associated with complex traits
and diseases in humans [1]. The causal variants and the
underlying molecular mechanisms, however, are largely
unknown. This is mainly because of the extremely fast
pace of GWAS with increasingly large sample sizes and
the relative lag of follow-up functional studies of the
GWAS loci. There are a few studies that have been able to
pinpoint the causal variant and/or the functional gene(s)
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at a GWAS locus [2-5]. These examples, however, are
rare to date, and high-throughput experiments and tech-
nologies are in high demand to fine-map the causal vari-
ants and/or genes at the GWAS loci [6]. Understanding
the distribution of the distances between the top associ-
ated variants in GWAS and the underlying causal variants
is essential to design and develop such fine-mapping ex-
periments and technologies. In this study, we seek to
quantify the empirical distribution of physical distances
between GWAS hits and causal variants for different
genotyping strategies using simulations.

Results

The simulations were based on whole-genome sequen-
cing (WGS) data on 3642 unrelated individuals and
~17.6 million genetic variants from the UK10K project
[7] after quality controls (QC) (see “Methods”). In each
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simulation replicate, we randomly sampled a sequence
variant as causal variant to generate a phenotype (de-
noted as y) and performed genome-wide association
analyses of the simulated phenotype using genotype data
from four different genotyping/imputation strategies (see
“Methods”): (1) WGS data; (2) SNP-array data imputed
to HapMap phase 2 [8] (HapMap2); (3) SNP-array data
imputed to 1000 Genomes Project [9] (1IKGP) phase 1
(IKGP1); (4) SNP-array data imputed to 1KGP phase 3
(IKGP3). We employed the method described in Yang
et al. [10] to mimic the process of SNP-array genotyping
followed by imputation using the UK10K-WGS data.
That is, we extracted the variants on an Illumina Cor-
eExome array (312,264 SNPs after QC) from the
UK10K-WGS data and imputed the UK10K “array data”
to HapMap2, 1KGP1, and 1KGP3 using IMPUTE2 [11].
The HapMap2 and 1KGP imputations were performed
using the cosmopolitan panels. Note that we did not in-
clude the HapMap2-imputed data in the analyses of rare
variants because the HapMap2 project was mainly fo-
cused on common variants [8]. We also did not perform
imputation to the Haplotype Reference Consortium
(HRC) [12] because UK10K-WGS is part of HRC (see
below for HRC-imputation based on genotyped data
from an independent cohort). The number of variants
for each genotyping strategy is listed in Additional file 1:
Table S1. We repeated the simulation 50,000 times for
common (minor allele frequency, MAF > 0.01) and rare
(0.0003 < MAF < 0.01) variants, respectively, and selected
the top associated variant at a genome-wide significance
level from each GWAS analysis.

Before conducting the analysis to quantify mapping
precision (i.e. physical distance between the top associ-
ated variant in GWAS and the actual causal variant), we
calibrated the genome-wide false positive rate (GWFPR,
the number of simulations with at least one false positive
divided by the total number of simulations) under the
null hypothesis (see “Methods”), where the phenotypes
were generated from a standard normal distribution
without any genetic effect. We conducted the simulation
with 1000 replicates, and calculated the GWFPR (also
known as family-wise error rate [FWER]) at a range of
threshold P values (from 5e-8 to le-11). We found that
rare variant association was extremely sensitive to the
skewness of the phenotype distribution as demonstrated
by the highly inflated test-statistics in GWAS for y*
(Additional file 1: Figure S1). We therefore performed a
rank-based inverse-normal transformation (INF) of the
phenotypes in all the subsequent analyses. Under the
null hypothesis, GWFPR at P <5e-8 was smaller than
0.05 for HapMap2-based imputation (Additional file 1:
Figure S2), suggesting that the GWFPR was well con-
trolled in most published GWAS based on SNP genotyp-
ing arrays or HapMap2-based imputation. For GWAS
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using WGS or imputed WGS data, however, 5e-8 seems
inadequate to control the GWFPR at 0.05 (GWFPR =
0.34 for WGS or 1KGP3-imputed data) (Additional file
1: Figure S2), consistent with the result from a previous
study [13]. The inflation of GWFPR for imputed data
was not due to the inclusion of SNPs with low imput-
ation INFO score (Additional file 1: Figure S3). There is
no inflation in test-statistics (Additional file 1: Table S2),
implying that the inflated GWFPR is due to the number
of independent tests being larger than 1 million. The
threshold P value at GWFPR = 0.05 needs to be some-
where between 5e-8 and le-8 for common variants and
close to 5e-9 for all variants in the UKIO0K-WGS or
1KGP3-imputed data. We therefore recommend to use a
threshold of 1le-8 for GWAS with common variants,
which might be slightly conservative for current datasets
but should be appropriate for data from WGS or
imputation-based studies in the future because the num-
ber of variants is expected to increase with the increase
of sample size [14] and improved genome coverage. For
GWAS using all the genetic variants (including rare), we
recommend to use a threshold of 5e-9 for current data-
sets and a more stringent threshold (e.g. 1e-9) for data
in the future with larger sample size and higher cover-
age. In addition, we also strongly recommend to perform
an INF of the phenotype for rare variant associations
given the highly inflated GWEFPR for phenotypes of
skewed distribution under both the null (Additional file
1: Figure S1) and alternative (Additional file 1: Figure
S4) hypotheses. However, there is a caveat that under
the alternative hypothesis where there are real genetic
effects, the estimated effect sizes for the INF-
transformed phenotype will be slightly smaller than
those for the original phenotype.

Having calibrated above the GWEFPR under the null
hypothesis, we then turned to quantify the mapping pre-
cision under the alternative hypothesis (see “Methods”).
Since most of the published GWAS used the P value
threshold of 5e-8, we performed most analyses based on
this threshold (see below for the discussion about the in-
fluence of P value threshold on mapping precision). The
total number of tests involved in the whole simulation
process would have been extraordinarily large (100,000
simulations x 17,612,713 variants). To minimize the
number of false positives, we limited the number of tests
by focusing only on GWAS results in a 20Mbp region
centered at the simulated causal variant. The number of
GWAS hits identified in all simulations for each geno-
typing strategy is listed in Additional file 1: Table S3.
The result shows that the differences in MAF between
GWAS hits and causal variants were very small (at least
95.0% of the common causal variants were mapped to
variants with MAF differences < 0.05 and at least 94.6%
of the rare causal variants were mapped to variants with
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MAF differences < 0.003) (Fig. 1), suggesting that the as-
sociation signal at a rare causal variant is highly unlikely
to be mapped to a common variant in GWAS using ei-
ther WGS or imputed data and vice versa. We then
quantified the proportion of GWAS hits within a given
physical distance from the corresponding causal variants
(Fig. 2). For common variants, the majority of the top
associated variants in GWAS were in < 100 Kbp distance
from the causal variants, from 94.8% for GWAS using
HapMap2-imputed data to 98.3% using WGS data
(Fig. 2a), in line with the result from a recent study that
most of the candidate causal variants (inferred from a
fine mapping analysis with epigenetic data) are within
100 Kbp of the GWAS top hits [15]. It should be noted
that the result for WGS data was not 100% because the
causal variant was not always the top associated variant
in GWAS (Fig. 3) due to the complicated linkage dis-
equilibrium (LD) structure between genetic variants in
close proximity and the sampling variation in the test-
statistics (see Additional file 1: Figure S5a for a simple
example). The results also suggest that for published
GWAS using imputed data from HapMap2 or 1KGP, at
least 80% of the top associated GWAS variants are
within 33.5 Kbp distance of the causal variants. The
mapping precision for 1KGP1-based imputation was
higher than that for HapMap2-based imputation but the
difference was not large (27.6 Kbp versus 33.5 Kbp at
80%). The difference between 1KGP1 and 1KGP3 was
subtle (27.6 Kbp versus 25.1 Kbp at 80%). All the results
suggest that the strategy of SNP array-based genotyping
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with subsequent imputation has already provided a high
mapping resolution that is comparable with that using
WGS, consistent with the conclusion from our previous
study [10] that WGS is not a cost-effective approach to
map common variants for complex traits.

For rare variants, however, the results were different. The
difference between WGS and 1KGP-impution was very
large. There were 94.2% of the GWAS hits within a dis-
tance of 5 Kbp of the causal variants for WGS but only
36.6% for 1KGP3-based imputation. This is because the
number of variants in high LD with a rare variant was
much smaller than that for a common variant (Additional
file 1: Figure S6) and thus it is more likely for a rare causal
variant being detected as the top signal in WGS data than a
common variant. It is shown in Fig. 3 that 98% of causal
variants were detected as the top signals in GWAS for very
rare variants (0.0003 < MAF <0.001) and the proportion
decreased to ~30-40% for very common variants (MAF >
0.1). Approximately 68.1% of the GWAS hits were within a
distance of 100 Kbp of the causal variants for 1KGP3-based
imputation (Fig. 2b), which was much smaller than that
(98.2%) for WGS (Fig. 2b). These results suggest that map-
ping precision of GWAS using imputed data for rare vari-
ants is much lower than that for common variants (Fig. 2),
and these results are not driven by sampling variation in
LD #* (Additional file 1: Figure S7). Moreover, the statistical
power of detection for rare variants using imputed data was
also much lower than that for common variants (Fig. 4) be-
cause rare variants were less well imputed than common
variants [12, 16]. There were a substantial proportion of
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Fig. 2 Mapping precision of GWAS based on different genotyping strategies. Results are from 50,000 simulations for causal common (a) and rare
(b) variants, respectively, based on the UK10K-WGS data. Shown on the y-axis is the proportion of causal variants that were mapped to variants
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causal variants, especially rare causal variants, which were
mapped to variants in more than 100 Kb distance even at
an extremely stringent P value threshold (ie. P<5e-11)
(Additional file 1: Figure S8). This is because in comparison
with common variants, rare variants have fewer LD proxies

within 100 Kb distance (Additional file 1: Figure S6), less
likely to be present in the reference panel (2.2% of the com-
mon variants and 504% of the rare variants in UK10K-
WGS are absent in 1KGP3), and less well imputed even if
they are present in the reference panel [12, 16], their
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Fig. 3 Proportion of causal variants that are the top associated variants in GWAS. Shown are the mean values in MAF bins from 50,000
simulations based on the UKT0K-WGS data for common (a) and rare (b) variants, respectively

b rare (MAF < 0.01)
o
8 -
;” °
£ .
L . .
(7))
<C
=
S
Q o _|
2 ©
I
3]
=
@
5 o
©
[%2]
>
8
B o
s &
§
o
Q.
s
o
° J
[ T T T T 1
0.000 0.002 0.004 0.006 0.008 0.010
MAF




Wu et al. Genome Biology (2017) 18:86 Page 5 of 10
p
a common (MAF > 0.01) b rare (MAF < 0.01)
o o
S S
A_A—A ::::ﬁ
A ’.’.
AZe—" A
8 /:5' A,A’A’A~A 3
/A/
A/A/A
/
2 /- 2
S ﬁ/ S
& K 5
g ‘/ g
/A A/A""A—A
ae
A _e—0o—¢
& A/ & AT _e-e—t
A A/ /.’.
/ WGS Le—"
/ —— 1KGP3 e WGS
A —o— 1KGP1 o= —a— 1KGP3
o Ja-a HAPMAP2 R —— 1KGP1
| | T | T | | | T | | | | 1
0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.000 0.005 0.010 0.015 0.020 0.025 0.030

Variance explained

Fig. 4 Statistical power of GWAS based on different genotyping strategies. Power is calculated as the proportion of simulations with a least a
variant at P < 5e-8. Shown are the results from 5000 simulations for common (a) and rare (b) variants, respectively, at each heritability level
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association signals are therefore more likely to be mapped
to distant variants due to the complicated LD structure of
genome as illustrated in Additional file 1: Figure S9. Taken
all together, our results demonstrate the benefit of using
WGS as a strategy for detecting and fine-mapping rare vari-
ants simultaneously. For real data, ignoring cost consider-
ations, the advantage of using WGS in GWAS depends on
the proportion of heritability for the trait or disease that is
attributable to rare variants [10, 17]. In addition, the sample
size of WGS data needs to be very large because the statis-
tical power of GWAS to detect a variant is determined by
the non-centrality parameter (NCP) of the y* test-statistic,
ie. NCP = ng*/(1 — ¢°), where n is the sample size of the
GWAS data, ¢* = 2(1 — f)b* with b being the effect size per
allele and f being the allele frequency. For rare variants, if
q* is small, NCP ~ ng* ~ 2nfb”.

We observed little difference in mapping precision
between the analyses based on data imputed to 1KGP1
and 1KGP3 (Fig. 2) despite that the sample size of 1KGP3
(Mpef = 2504) is ~2.5 times larger than that of 1IKGP1 (n,¢
=1092). There was an apparent, although also not large,
difference in power between 1KGP1 and 1KGP3 (Fig. 4).
We then investigated the mapping precision as a function
of n,¢ by re-running the imputation to a random subset
of individuals from 1KGP3 (71, = 500 and 1000). The add-
itional imputation analyses showed consistent results, i.e.
power slightly increased with 7, in particular for rare var-
iants (Additional file 1: Figure S10) whereas mapping pre-
cision was almost independent from n,s for either
common or rare variants (Fig. 5). To further investigate

the influence of 7. on the mapping precision of GWAS
using imputed data, we performed additional analyses
using genotyped data from a larger GWAS cohort (i.e. the
Health Retirement Study [HRS] [18]) and imputed the ge-
notyped data to a much larger reference panel (i.e. HRC).
There were 8479 unrelated individuals in HRS genotyped
on ~1.7 million SNPs (1,451,882 common and 243,548
rare) after QC [10]. We left out 50,000 common and
50,000 rare SNPs as a pool to sample causal variants for
simulations and imputed the genotypes of the remaining
SNPs to 1IKGP3 and HRC. We performed 50,000 simula-
tions for common and rare variants, respectively. In each
simulation replicate, we randomly sampled a variant from
the causal variant pool (50,000 common and 50,000 rare
SNPs) and simulated a quantitative phenotype using the
method described above with ¢* = 0.87% (NCP = 74, simi-
lar as that in the UK10K simulation). We then performed
GWAS analyses of the simulated phenotype using the
1KGP3- and HRC-imputed data. We observed little differ-
ence in mapping precision between the results using
1KGP3- and HRC-imputed data (Additional file 1: Figure
S11), consistent with our observations above that mapping
precision of GWAS using imputed data was almost inde-
pendent of n,.. We further performed simulations in a
subset of HRS individuals (n = 3642, the same sample size
as UK10K) using the same setting as in the UK10K simu-
lations above. The result remained largely unchanged
(Additional file 1: Figure S11). It is interesting to note that
mapping precision for rare variants in the 1IKGP-imputed
HRS data was much higher than that in the 1KGP-
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imputed UK10K data (Additional file 1: Figure S11 and
Fig. 2). This is because almost all the rare causal variants
in HRS were available in 1KGP3 (only 5.9% were not avail-
able) whereas more than a half (50.2%) of the rare causal
variants in UK10K were not available in 1KGP3. To con-
firm this, we re-calculated the mapping precision in the
1KGP3-imputed UK10K data focusing only on the causal
variants that were available in 1KPG3. The result was al-
most identical to that observed in the HRS data imputed
to either 1IKGP3 or HRC (Additional file 1: Figure S12).
These observations suggest that the low mapping pre-
cision for rare variants in GWAS using imputed data
is mainly due to a large proportion of rare causal var-
iants that are not available in the reference. Taken to-
gether, our results seem to suggest that the mapping
precision of GWAS using imputed data increases with
the variant-coverage of the imputation reference but
is almost independent of the sample size of the refer-
ence (although these two factors are intertwined). In
addition, we observed that having the causal variants
in the reference not only improved mapping precision
(Fig. 2 and Additional file 1: Figure S13) but also in-
creased statistical power (Fig. 4 and Additional file 1:
Figure S14). The difference in power between the two
sets of variants (available versus not available in the
reference) can be quantified as the loss of power at-
tributable to imputation accuracies (the variance ex-
plained by GWAS hit qéWAg:qu,zmp, where Rfmp is
the squared imputation accuracy) and imperfect

tagging (qZGWAS:qZR%mprZ, where 7 is LD 7 between
GWAS hit and causal variant).

We next investigated the influence of GWAS sample
size (1) on mapping precision. We demonstrated by sim-
ulations under a simple scenario that the probability of
causal variant being detected as the top signal in GWAS
with sequencing data depends on NCP (Additional file
1: Figure S5), which is a function of both ¢* and 7 (see
the equations above). This explains why the mapping
precision slightly decreased with decreased # or ¢* in ei-
ther WGS or 1KGP-imputed data (Additional file 1: Fig-
ure S15). In our simulations, in order to obtain sufficient
power to detect the simulated genetic effects at a
genome-wide significance level (e.g. P<5e-8) using a
relatively small sample size (n =3642 unrelated individ-
uals), we simulated causal variants of relatively large ef-
fect (4% =2% in most of the analyses). Given n =3642
and ¢° = 2%, the NCP at any of the simulated causal var-
iants was 74.3, which is approximately equivalent to a
setting with 7 = 250,000 and ¢* = 0.03% (note that the es-
timated mean ¢> of the published 679 height SNPs is
~0.03% from the GIANT meta-analysis [19] with n=
~250,000), suggesting that the conclusions we drew from
our simulations can be applied in general to studies at
the current scale (n =100,000s) and that mapping preci-
sion at the known loci will be improved in the future
with larger sample sizes. The conclusion has further
been supported by evidence from simulations in the
HRS dataset with a wider range of sample sizes and
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NCP (Additional file 1: Figure S16). In addition, we in-
vestigated the impact of P value threshold on mapping
precision. We found that mapping precision of GWAS
using sequenced or imputed common variants or se-
quenced rare variants did not change with P value
threshold (Additional file 1: Figure S8). However, map-
ping precision of GWAS using rare imputed variants at
P <5e-11 was substantially larger than that at P < 5e-8.
This is because distant tagging variants were dispropor-
tionately more likely to be removed by the stringent
threshold P < 5e-11 (Additional file 1: Figure S17).

Discussion and conclusions

We have shown above results from simulations where
the causal variants were randomly sampled from the se-
quence variants. In reality, however, it might not be the
case. It has been suggested in previous studies that trait-
associated or disease-associated variants are not ran-
domly distributed but enriched in some functional cat-
egories of the genome such as the DNase I
hypersensitive sites (DHSs) [20, 21]. We therefore per-
formed simulations by sampling causal variants from
DHSs where the SNPs are in lower LD [10, 20]. The re-
sults were almost exactly the same as those presented
above (Additional file 1: Figure S18), suggesting mapping
precision is almost independent of the distribution of
the causal variants in the genome. All the imputation
analyses presented above are based on Illumina CoreEx-
ome array. We chose the Illumina CoreExome array be-
cause it is the most cost-effective SNP array with respect
to capturing genetic variation among all the SNP arrays
investigated in a previous study [10] and because the
number of SNPs on an Illumina CoreExome array
(312,264 SNPs after QC) is relatively small (Additional
file 1: Table S4) so that the mapping precision quantified
based on this array is likely to be conservative and can
therefore be used as a benchmark to guide the design of
fine-mapping studies. In a meta-analysis of GWAS, how-
ever, data from different participating cohorts are usually
genotyped on different types of SNP genotyping arrays.
We then repeated the analysis for four additional types
of SNP arrays (ie. Affymetrix 6, Affymetrix Axiom
Genome-Wide EUR Array [22], Illumina OmniExpress,
and Illumina Omni2.5). The number of variants in each
array is listed in Additional file 1: Table S4. The results
were all very similar except that Illumina Omni2.5 per-
formed slightly better than the other types of arrays for
both common and rare variants (Additional file 1: Figure
S19), which is likely because of its denser SNP coverage.
Given these results, if data from all participating cohorts
are imputed to the same imputation reference (e.g.
1KGP), heterogeneity in mapping precision across co-
horts is likely to be small. These results also imply that
to design a SNP-array based GWAS study with a fixed
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budget, the most cost-effective design is to choose the
cheapest SNP array with genome-wide coverage and
maximize experimental sample size, in line with the con-
clusion drawn from our previous study [10]. In all the
analyses above, we used physical distance to assess the
mapping precision. In practice, however, it is sometimes
also useful to know the distribution of LD between
GWAS top hits and causal variants. To this end, we
quantified the mapping precision by the squared LD cor-
relation (?) between causal variants and GWAS hits
(Fig. 6). Interestingly, for common variants in GWAS
using imputed data, at least 77.3% of the association sig-
nals were mapped to SNPs in LD * > 0.8 with the causal
variants. We further developed an online tool (gwasMP)
[26] for querying our results with different thresholds of
physical distance and/or LD (http://cnsgenomics.com/
shiny/gwasMP).

There are certainly more complicated scenarios (e.g.
multiple common and rare causal variants in a very
small genomic region) that have not been investigated in
our simulations. However, these scenarios are unlikely to
be the norm and thus are unlikely to bias our results
substantially. With limited sample size of the WGS data
(n=3642) we were only able to quantify the mapping
precision for rare variants with MAF down to 0.0003.
For rarer variants, larger population-based cohorts with
WGS data are required. Our conclusions were drawn
from simulations based on modern SNP arrays with
100,000s SNPs, which cannot be applied to studies based
on low-dense markers. It should also be noted that all
our results are from analyses in European populations,
these results need to be applied with caution to non-
European populations (e.g. Asian and African popula-
tions), given the substantial differences in LD structure
between Europeans and non-Europeans. We also did not
simulate a case-control design because the sample size
of UK10K-WGS data is not large enough to simulate an
ascertained case-control study of sufficiently large sam-
ple size for a disease of reasonable prevalence. However,
the general conclusions about mapping precision should
be applicable to case-control studies because mapping
precision is essentially determined by the strength of the
association signal, LD structure and imputation preci-
sion, rather than the scale of the phenotype. Neverthe-
less, this needs to be confirmed in the future by
simulations of case-control design using large WGS
datasets.

In summary, we performed simulations based on
WGS data to quantify the mapping precision for com-
plex traits and diseases under a number of different sce-
narios. The results show that SNP array-based
genotyping with subsequent imputation to any of the
commonly used reference panels has provided very high
mapping precision for common variants. We predict that
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Fig. 6 Mapping precision of GWAS as measured by the squared LD correlations between causal variants and GWAS top SNPs based on different
genotyping strategies. Results are from 50,000 simulations for causal common (a) and rare (b) variants, respectively, based on the UK10K-WGS
data. Shown on the y-axis is the proportion of causal variants that were mapped to variants with LD r* smaller than a certain threshold as
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at least 80% of the top associated common variants identi-
fied from published GWAS are within 33.5 Kbp distance of
the causal variants, and mapping precision at these loci can
be improved in the future with larger sample sizes. For im-
puted data, the differences in mapping precision between
different SNP genotyping arrays were trivial. Mapping pre-
cision of GWAS using imputed data increased with variant-
coverage of the reference panel but was almost independent
of sample size of the reference. These two factors, however,
are not independent. WGS with increasingly large sample
sizes and improved sequencing technology will provide
more genetic variants [14] in the reference panels in a fore-
seeable near future, which will certainly improve the map-
ping precision of GWAS using data imputed from these
large reference panels. For rare variants, the mapping preci-
sion of GWAS based on WGS data was extremely high,
much higher than that based on imputation. This implies
the potential of using WGS as an efficient strategy for de-
tecting and fine-mapping rare variants at the same time. All
these findings provide an important benchmark to inform
the design and development of fine-mapping experiments
and technologies in the future to identify causal variants at
the GWAS loci.

Methods

Simulation based on WGS data

We used WGS data from the UKIOK project
(UK10K-WG@GS) [7] for simulations. The data consist
of 3781 individuals and ~45.5 million genetic variants.

We excluded SNPs with missingness >0.05, Hardy-
Weinberg equilibrium test P value<1x107°% or
minor allele count (MAC) <3 (equivalent to MAF <
0.0003) using PLINK [23]. We chose a MAC thresh-
old of 3 because we sought to choose a MAF thresh-
old as low as possible to make general inferences
about rare-variant associations but excluded single-
tons and doubletons as they are more subject to se-
quencing errors. We further removed individuals with
genotype missingness rate > 0.05 and one of each pair
of individuals with estimated genetic relatedness >
0.05. The genetic relatedness was estimated from
GCTA [24] using all the common SNPs on HapMap
phase 3 (HapMap3). A total of 3642 unrelated indi-
viduals and 17.6 million variants were retained for
analysis. We randomly sampled a variant from
UK10K-WGS as causal variant and generated the
phenotype based on the model y=g+e, with g=wu

and w= (x-2f)/\/2f(1-f), where x is the indicator

variable for the genotypes of causal variant (coded as
0, lor 2), fis the frequency of the coded allele, and u
is the effect size per standardized genotype sampled
from N(0, 1). The residual e was generated from N(0,
var(g)(1/q* - 1)) with g* being the proportion of vari-
ance in phenotype explained by the causal variant.
We performed a GWAS analysis for the simulated
trait using the variants from different genotyping
strategies (see below for details about the genotyping
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strategies) and selected the top associated variant that
passed a genome-wide significance level (e.g. P value
<5e-8). We repeated the simulation to quantify the
power at different levels of ¢* (from 0 to 3% at 0.2%
intervals; 5000 replicates at each ¢* level). Note that
the simulations at ¢”>=0 quantify the false positive
rate. We then repeated the simulation 50,000 times
at ¢°=2% to quantify the mapping precision (i..
physical distance between the top associated variant
identified in GWAS analysis and the simulated causal
variant) for common and rare variants, respectively.
We further repeated analysis to quantify the mapping
precision by sampling causal variants from the DNase
I hypersensitive sites (DHSs) to mimic the observa-
tion that genetic variants associated with complex
traits are enriched in DHSs [10, 20].

Imputation of SNP-array data to multiple reference panels
We performed simulations to quantify the mapping preci-
sion using three different genotyping strategies, ie. WGS,
SNP-array data imputed to HapMap 2 reference panel
(HapMap?2) [8], and SNP-array data imputed to 1000 Gen-
ome project reference panels (1IKGP) [9]. The method to
mimic the strategy of SNP-array genotyping followed by
imputation is described in Yang et al. [10]. That is, we ex-
tracted SNPs that are on Illumina CoreExome arrays from
the UK10K-WGS data, phased genotypes using SHAPEIT
[25], and imputed the data to HapMap2, 1KGP phase 1
(1KGP1), and 1KGP phase 3 (1KGP3) by IMPUTE2 [11].
To investigate the power and mapping precision as a func-
tion of sample size of the imputation reference, we further
performed the imputation analyses using a subset of indi-
viduals randomly sampled from 1KGP3 (n = 500 and 1000)
as the reference panel.

To investigate the influence of reference sample size on
the mapping precision of GWAS using imputed data, we
performed additional analyses using genotyped data from
HRS and imputed the genotyped data to HRC. There were
8479 unrelated individuals in HRS genotyped on ~1.7 mil-
lion SNPs (1,451,882 common and 243,548 rare) after QC.
We left out 50,000 common and 50,000 rare SNPs as a pool
to sample causal variants for simulations and imputed the
genotypes of the remaining SNPs to the 1KGP3 and HRC
reference panel [12] respectively using Sanger imputation
server (https://imputation.sanger.ac.uk/).
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