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Abstract

It remains challenging to predict regulatory variants in particular tissues or cell types due to highly context-specific
gene regulation. By connecting large-scale epigenomic profiles to expression quantitative trait loci (eQTLs) in a
wide range of human tissues/cell types, we identify critical chromatin features that predict variant regulatory
potential. We present cepip, a joint likelihood framework, for estimating a variant's regulatory probability in a
context-dependent manner. Our method exhibits significant GWAS signal enrichment and is superior to existing
cell type-specific methods. Furthermore, using phenotypically relevant epigenomes to weight the GWAS single-
nucleotide polymorphisms, we improve the statistical power of the gene-based association test.
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Background

Complex traits are usually affected by a large number of
genetic factors, jointly contributing to the susceptibility
of the disease and the phenotype [1, 2]. Recent genome-
wide association studies (GWASs) have successfully
identified tens of thousands of significant trait/disease-
associated single-nucleotide polymorphisms (SNPs) in
humans [3, 4], but these explain only a modest propor-
tion of the heritability [5]. Identifying causal variants
with moderate effect size underlying the missing herit-
ability is currently one of the biggest challenges [6, 7].
The majority of GWAS risk loci, as well as loci with sub-
genome-wide significance (P values between 1 x 10~ and
5x107®), localize to non-coding genomic regions with
many gene regulatory signals [3], suggesting that most
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trait/disease causal SNPs exert their phenotypic effects by
altering gene expression [8, 9]. This is further supported
by GWAS risk loci being enriched in genomic regions
with many expression quantitative trait loci (eQTLs) and
open chromatins [10-13]. Therefore, accurate identifica-
tion of functional regulatory variants would facilitate the
discovery of novel loci and genes that affect complex traits
and diseases.

Genes are regulated in a highly context-specific man-
ner. Both genetic and epigenetic gene regulations are
tissue/cell type-specific and depend on chromatin
states and interactions [14, 15]. Studies have shown
that trait/disease-associated variants are significantly
enriched in chromatin states of relevant tissues and cell
types [16—19]. These findings indicate that cell type-
specific chromatin marks are important for prioritizing
putative regulatory variants. Several studies have incor-
porated cell type-specific genomic/epigenomic annota-
tions into the framework for prioritizing non-coding
regulatory variants [20—22] or for fine-mapping GWAS
causal variants [23-27]. However, the selection of the
most informative chromatin marks and their combined
effects underlying the variant’s regulatory potential has
not been well studied. In addition, recent human cell
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population-based or tissue-based eQTL mapping studies,
such as the Genotype-Tissue Expression Project (GTEx)
[11], have provided an unprecedented opportunity to ex-
plore context-dependent regulatory patterns surrounding
these loci. Therefore, new computational methods that in-
tegrate tissue/cell type-specific eQTL data with coordinated
epigenomic profiles are needed to better prioritize regula-
tory variants and disease-associated genes.

We previously developed an ensemble model to inte-
grate predicted scores from CADD [28], FunSeq [29,
30], GWAVA [31], and GWAS3D [16] to compute the
composite likelihood of a given variant affecting the
gene regulation [32]. We showed that this model out-
performed each individual method using various bench-
marks [32]. In this study, we used epigenomic maps of
127 tissues/cell types from the Roadmap Epigenomics
Project [33] to develop a context-dependent model that
could examine important chromatin features surround-
ing an eQTL and predict its regulatory potential. We
further combined this model with our previous ensem-
ble model to improve the predictions. Using independ-
ent eQTL and GWAS benchmarks, we demonstrated
our novel approach was superior to existing cell type-
specific methods and the predictions showed significant
enrichment of genome-wide significant variants identi-
fied by GWAS (GWAS signals). The context-dependent
combined probability was then incorporated into our previ-
ous gene-based association test (GATES) [34] that weighted
each GWAS variant. We found this weighting strategy
could increase the power of detection of disease-associated
genes driven by regulatory variants. The cepip software and
the source code are freely available at http://jjwanglab.org/
cepip or https://github.com/mulin0424/cepip under the
GNU General Public License v3.

Results

Exploring chromatin marks around eQTLs identifies
critical chromatin features in associated cell types

To illustrate distinct regulatory effects of functional vari-
ants in different tissues/cell types, we used a uniformly
processed dataset of fine-mapped cis-eQTLs from 11
gene expression studies on seven tissues/cell types [35].
The fine-mapped eQTL SNPs in a specific tissue/cell
type can be used as indicators to identify regulatory sig-
nals of associated loci under certain conditions. For each
tissue/cell type-specific eQTL dataset, we sampled the
control SNPs using two different matching schemes: (1)
by random allele frequency-matched sampling around
the transcription start site (TSS); and (2) by strict sam-
pling, taking into consideration potential causal LD, al-
lele frequency, distance to TSS, and GC content around
the SNP locus. Using ENCODE cell lines matched to
these tissues/cell types (Additional file 1: Table S1), we
extracted 36 chromatin features (DNase I hypersensitive
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sites [DHSs] and histone modification marks) for each of
the eQTLs and the two corresponding control SNPs.
These features included the intersection of the queried
locus with a chromatin mark (Hit), the intensity of an
overlapping mark (Intensity), and the distance between
the queried locus and the peak summit of a chromatin
mark (Centrality).

For each of the 11 eQTL studies, we trained the logit
model to estimate the probability that the 36 chromatin
features were associated with eQTLs (herein referred to
as the “regulatory potential” of the observed variants),
which resulted in 11 models. To identify the most in-
formative feature set, we used a backward stepwise re-
gression based on the Akaike Information Criterion
(AIC) [36] to select key features, which reduced the
number to 9-14 features. Next, we reviewed the contri-
bution of each feature in terms of its importance and
consistency. We found that seven or more features were
shared by more than half of the 11 models using differ-
ent controls and the “Hit” features were more important
than the “Intensity” and “Centrality” features (Fig. 1la,
also Additional file 1: Figure S1A, Tables S2 and S3). We
termed the features with high occurrences (appearing in
more than half of the models) as “selected chromatin
features.” Among these selected chromatin features,
H3K4mel Hit, H3K36me3 Hit, DHS Hit, and
H3K79me2 Hit were present in most of the models.

These highly reoccurring chromatin signals included
some well-established chromatin marks such as enhan-
cer marks (H3K4mel), active gene bodies (H3K36me3),
active promoters, and enhancers or transcribed regions
(DHS and H3K79me2). Additionally, H3K9me3 Hit/In-
tensity and H3K4me3 Intensity were selected features,
although H3K9me3 showed inconsistent contributions
among different tissue/cell type-specific models. Another
repressive mark H3K27me3 Hit was also a selected fea-
ture in the random allele frequency-matched sampling
models, indicating some eQTLs could modulate gene
silencing. Other frequent features, such as H3K36me3
Intensity and H3K79me2 Centrality in the random allele
frequency-matched sampling models, could be used to
distinguish two variants located within the same ChIP-
seq peak (Fig. la). Furthermore, H4K20mel Hit was
identified in strict control models. Since this mark has
been reported to correlate with high CpG promoters, it
suggests that models trained by strict control may cap-
ture signals for CpG-dependent promoters (Additional
file 1: Figure S1A). Taken together, these results support
the previous findings that certain cell type-specific chro-
matin marks can be predictive of causal regulatory vari-
ants [17, 18, 33].

Previous studies reported that H3K27ac was associated
with many disease-related variants [33]. However, this
active enhancer mark was not selected in most of our
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Fig. 1 Critical chromatin features and correlations among tissues/cell types. a Tissue/cell type-specific or generalized logit models trained by ten
selected chromatin features using eQTLs fine mapping dataset (occurrence indicates the number of models sharing the feature after the feature
selection procedure; * indicates the P value of coefficient for corresponding feature < 0.05; heatmap color is rendered by exponential coefficients).
CPL CAP_LCL, STL Stranger_LCL, HCE Harvard_cerebellum, HPC Harvard_prefrontal_cortex, HVC Harvard_visual_cortex, GCF GenCord_fibroblast,
GCL GenCord_LC, GCT GenCord_tcell, CLI UChicago_liver, MLI Merck_liver, MBR Myers_brain, All combined dataset, Geuvadis Geuvadis_LCL.

b Spearman’s rank correlation tests between the coefficients of the selected features in each cell type-specific logit model using ten selected
chromatin features. ¢ Tissue/cell type-specific logit models trained by 11 selected chromatin features using the GTEx eQTLs dataset (occurrence
indicates the number of models sharing the feature after the feature selection procedure; * indicates the P value of coefficient for corresponding
feature < 0.05; heatmap color is rendered by exponential coefficients). d Spearman’s rank correlation between the coefficients of selected features
in each GTEx cell type-specific logit model using 11 selected chromatin features

tissue/cell type-specific models. We examined the rela- whether the chromatin features identified above are
tionship between DHS-related and histone modification  also critical in GTEx data, we used our feature selec-
features and found that DHS Hit and H3K27ac Hit had tion procedure to examine eQTLs from 13 human
the highest correlation among all examined pairs (r=  tissues with the epigenomic profiles of relevant tis-
0.542, P value <2.2x 107'°, Pearson’s correlation). To sues/cell types from Roadmap Epigenomics Project
investigate whether additional histone modification fea- (Additional file 1: Table S6). As expected, we found
tures could be selected in the absence of DHS-related fea-  that the majority of previously selected chromatin fea-
tures, we retrained our models without DHS-related tures were also picked up. Similar levels of occurrence
features. This resulted in H3K27ac Hit appearing in more  for most of the informative features, such as DHS Hit,
than half of the models, which implies that it is a critical H3K4mel Hit, H3K36me3 Hit, and H3K79me2 Hit,
chromatin feature. In addition, occurrences of H3K4me2 were identified. H3K9me3 Hit was replaced by
Intensity and H3K4me3 Intensity increased in all cell ~H3K9me3 Intensity in the list of the selected features,
type-specific models (Additional file 1: Figure S1B, C, whereas two other features, H3K27ac Intensity and
Tables S4 and S5). These results indicate DHS-related fea- DHS Centrality, were added to the list (Fig. 1c and
tures could cover signals from some histone modification = Additional file 1: Table S7). These results show that
features in open chromatin regions. several critical chromatin marks display consistent

The GTEx project has provided us with eQTLs map-  patterns associated with locus regulatory potential
ping of many different human tissues. To determine under different cellular conditions.



Li et al. Genome Biology (2017) 18:52

To investigate the effect of the selected chromatin fea-
tures on predicting regulatory potential across different
tissues/cell types, we retrained the logit model using the
selected features from the 11 eQTL studies and 13
GTEx eQTL studies, respectively. We performed pair-
wise correlation tests on the coefficients of the selected
features between each of tissue/cell type-specific models.
High and consistent correlations among most of the
models (Fig. 1b and d) were observed, and the correla-
tions were higher in cell types from the same tissues.
These results suggest that our selected features con-
tributed in a generally consistent manner in each
context-dependent model and indicate the feasibility of
a generalized model.

To improve the model’s predictive power in more con-
ditions, we trained four generalized context-dependent
models using the pooled cell type-specific features from
all 11 eQTL studies under different controls and related
DHS features. Using Geuvadis “the best eQTLs” [37]
and epigenomic annotations of GM12878 lymphoblas-
toid cell line as the gold standard, we found that the
generalized context-dependent model trained by random
TSS controls and related DHS features slightly outper-
formed other models (Additional file 1: Figure S2). All
selected chromatin features achieved significant coefficients
in this generalized model (Additional file 1: Table S8). Also,
the coefficients of the newly trained model for Geuvadis
data showed a highly correlated pattern with that of the
generalized models (Fig. 1a). We, therefore, used this gener-
alized context-dependent model to perform a downstream
analysis. Overall, our results highlight that the generalized
context-dependent model could consistently predict variant
regulatory potential with high accuracy using the ensemble
effects of the selected chromatin features.

Context-dependent scoring of GWAS fine-mapped SNPs
underlies phenotypic cell-type specificity

To examine whether our generalized context-dependent
model could identify cell-type specificity in human dis-
eases, we first applied our model to 7747 candidate
causal SNPs of 38 immune and non-immune diseases/
traits derived from a GWAS fine-mapping study [19].
We used reference human epigenomes for 127 diverse
tissues/cell types [33] (Additional file 2) to extract the
selected chromatin features. We then calculated the
regulatory potential for every causal variant in each tis-
sue/cell type.

We clustered the 127 tissues/cell types using the nor-
malized mean regulatory potential for all causal SNPs
in each disease/trait. The hierarchical clustering gener-
ally recapitulated cell lineages. For example, blood cells
formed a coherent group, meanwhile brain cells and
embryonic stem cells were mostly clustered in separate
groups (Fig. 2). Importantly, using our prediction
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method, we observed phenotypic cell-type specificity
for many diseases/traits. The majority of the auto-
immune diseases preferentially showed higher mean
regulatory potentials for cells within T-cell, B-cell, or
monocyte subpopulations (Fig. 2). By ranking the nor-
malized mean regulatory potentials among the 127
tissues/cell types, we estimated the most relevant tis-
sue/cell type in each of the 38 immune and non-
immune diseases/traits (Additional file 1: Table S9). As
expected, almost all of the autoimmune diseases were
successfully mapped to blood-derived cells. Notably,
asthma, atopic dermatitis and allergy were mapped to
CD4+ T helper cells, whereas alopecia areata and
juvenile idiopathic arthritis were mapped to CD4+
CD25+ regulatory T cells. For non-immune diseases,
HDL cholesterol, LDL cholesterol, and triglycerides
were mapped to liver tissue/cells. Alzheimer’s disease
and restless legs syndrome were mapped to brain tissue.
These findings were largely in agreement with a recent
report showing that H3K27ac enrichment depicts
phenotypic cell-type specificity using the same set of
causal variants set [19]. Taken together, the integrative
effect of our selected chromatin features underlies
phenotypic tissue/cell type specificity of the GWAS risk
loci in a particular disease/trait.

To further test our context-dependent model, we ap-
plied it to 201 trait/disease-associated eQTLs from
monocytes and/or T cells reported by the ImmVar pro-
ject [38]. We calculated the regulatory potentials for
ImmVar trait/disease-associated eQTLs using epige-
nomic data of 12 human cell lines from the ENCODE
project. It was observed that the regulatory potentials of
the 201 eQTLs were significantly higher in Mo-CD14+
cells than in other cell types (P<2.0x107° for all,
Mann—Whitney U test) (Fig. 3a). This shows our gener-
alized context-dependent model could predict regulatory
variants using phenotypic cell type-specific chromatin
signatures.

Cell type-specific evaluation of the combined model

To further enhance the predictive performance, we
combined our context-dependent model with a previ-
ously reported composite model [32], which can make
ensemble predictions from tools such as CADD, Fun-
Seq2, GWAVA, etc. The Pearson correlation coefficient
between the regulatory potential and our previous com-
posite probability in the GM12878 cell line at the
genome-wide level showed a low dependence (r=0.197,
Additional file 1: Figure S3). Assuming independence
between the prediction scores from the composite
model and the cell type-specific chromatin features, we
computed the posterior probability of a variant being
regulatory given the two sets of information (herein re-
ferred to as “combined probability”). We evaluated the
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Fig. 2 Clustering of 127 tissues/cell types using the normalized mean regulatory potential for fine-mapped GWAS SNPs of 38 immune and
non-immune diseases/traits. See Additional file 2 for abbreviations of tissues/cell types
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performance of our combined model by comparing it
with two recent cell type-specific methods, the
evolution-based fitCons [20] and the sequence-based
deltaSVM [21], using two independent cis-eQTL data-
sets of relevant tissues/cells (i.e. “Geuvadis eQTLs”
from Geuvadis lymphoblastoid cells and “meta blood
eQTLs” from an eQTL meta-analysis in non-
transformed peripheral blood samples) and a rheuma-
toid arthritis (RA) eQTL dataset [39].

Assuming an algorithm that covers more eQTLs in
top-ranked variants will have better sensitivity in identi-
fying functional regulatory loci, we next investigated the
eQTL coverage (excluding eQTLs used in the training
dataset) as the percentage of top-ranked variants in-
creased by using all variants from the 1000 Genomes
Project. Our combined model can detect more eQTLs in
the three independent eQTL datasets than fitCons and
deltaSVM among the 10% top-ranked variants. For ex-
ample, our model and fitCons achieved over 20% cover-
age in the Geuvadis eQTLs for the 10% top-ranked
variants, whereas deltaSVM only achieved 10% coverage
(Fig. 3b). Compared with fitCons, our combined model
achieved better coverage of the top-ranked variants
(Fig. 3b). In addition, our model achieved 26% coverage
for the 10% top-ranked variants for meta blood eQTLs,
surpassing both fitCons and deltaSVM (19.8% and 10.1%
coverage, respectively) (Fig. 3c). Finally, our model
achieved 20.8% coverage for the 10% top-ranked variants
when applied to RA cis-eQTLs, performing better than
fitCons and deltaSVM (20.5% and 10.5% coverage, re-
spectively) (Fig. 3d). Our combined model consistently
outperformed the previous context-free composite
scores in all three evaluations (18.9% for Geuvadis
eQTLs, 22.6% for meta blood eQTLs, and 18.3% for RA
eQTLs), suggesting that tissue/cell type-specific epige-
nomic features largely contributed to the combined
model (Fig. 3b—d).

Next, we used a well-studied GWAS locus in plasma
low-density lipoprotein cholesterol (LDL-C) [40] to
demonstrate the effectiveness of our method. Based on
the above findings (Fig. 2), SNPs associated with mul-
tiple lipid metabolism traits were predicted to have
higher regulatory potentials in liver cells. We, therefore,
selected phenotypically relevant HepG2 epigenomes to
prioritize 17 fine-mapped LDL-C-associated SNPs from
the 1p13.3 region in Caucasian populations. The regula-
tory potentials of these 17 SNPs partially correlated with
the original GWAS P value (r = 0.58, P value < 0.01, Spear-
man’s rank correlation) (Additional file 1: Table S10). By
checking the epigenomic profiles of HepG2, the top as-
sociated SNPs were found to be located in the dips or
peaks of H3K4mel overlapping with DHS (Fig. 4). In
addition, the chromatin signals in HepG2 were signifi-
cantly stronger compared to other ENCODE cell types
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(Fig. 4), which suggest the importance of cell type-
specific prioritization.

Among the 17 statistically fine-mapped LDL-C-
associated SNPs, six SNPs were located in an extremely
high LD region and had similar P values calculated from
association studies in a Caucasian population. Thus, it is
more challenging to pinpoint true functional SNPs in the
Caucasian population with strict LD compared with the
African population with its relatively unconfined LD
(Additional file 1: Figure S4). Our cell type-specific
prioritization, from the perspective of functional gene
regulation, can partially resolve this problem by assigning
higher regulatory potentials to four SNPs (rs660240,
rs646776, rs629301, and rs12740374) (Fig. 4). In addition,
the experimentally validated SNP rs12740374 that modu-
lates LDL-C [40] was among the top five variants in our
final prioritization list based on either regulatory potential
or combined probability (Additional file 1: Table S10). Evi-
dence from the literature and from functional studies sup-
port the potential regulatory roles of these top-ranked
SNPs (Additional file 1: Table S11), including: (1) HepG2-
specific super enhancer or enhancer stretch overlapping
with a region containing rs12740374, rs660240, rs629301,
and rs646776 [41, 42]; (2) in addition to the experimen-
tally confirmed gene SORTI that is regulated by
rs12740374, the data from eQTLs and chromosomal long-
range interactions revealed more associations of these
top-ranked SNPs and other gene targets in different tis-
sues/cell types [43] (Additional file 1: Figure S5); and (3)
in silico motif analysis showed altered transcription factor
binding affinities with these SNPs [16]. These investiga-
tions suggest our method can capture context-dependent
regulatory variants in a wide range of gene regulation
patterns.

Top predicted SNPs show higher enrichment of GWAS
signals in relevant cells

To evaluate the potential of our context-dependent
prioritization in genetic mapping studies of diseases, we
calculated the combined probability in all 8,253,617
SNPs from a RA GWAS meta-analysis using epigenomic
profiles of 13 ENCODE tissues/cell types [44]. Using fea-
tures from blood cell lines (Mo-CD14+ and GM12878),
the top 5% SNPs showed leftward deviations of the ob-
served P values from the expected P values in the Q-Q
plots (Fig. 5a, b). In contrast to other non-blood cell
lines (e.g. skin, muscle and liver cell lines), blood-related
cells shifted leftward the most (Fig. 5a, b and Additional
file 1: Figure S6) and had more significant empirical P
values by permutation test (Fig. 5¢). We observed simi-
lar results using allele frequency-matched sampling
(Additional file 1: Figure S7). We also calculated the
inflation factor (\) of the top 5% SNPs and found that
blood-related cells had higher A than non-blood cells
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(Additional file 1: Figure S8). Furthermore, we ob-
served that in the Mo-CD14+ cells, the top-ranked SNPs
(top 5%) exhibited more enrichment of RA GWAS signals
than lower-ranked SNPs (e.g. top 5-10% and last 5%,
Fig. 5d). Similar results were observed in other cell lines
(Additional file 1: Figure S9).

To validate the ability of our method to identify
regulatory SNPs with moderate GWAS signals (i.e.
GWAS P values>5x 107%), we removed all known
RA-associated SNPs and still found similar patterns
(Additional file 1: Figure S10). Notably, using epige-
nomic marks from the Mo-CD14+ cell line, we identi-
fied one SNP rs874628 with moderate RA GWAS
signals (GWAS P value = 0.00036) located in a genomic
region enriched with Mo-CD14+ specific chromatin fea-
tures (Additional file 1: Figure S11). Interestingly, this

SNP was reported to be associated with multiple sclerosis
(GWAS P value = 1.0 x 107%) [17]. We also generated a list
of top-prioritized SNPs with moderate RA GWAS P
values as potential novel candidates for further validation
(Additional file 1: Table S12).

To test whether the context-dependent prioritization
was affected by LD, we recalculated the ratio of
SNPs with sub-genome-wide associations (P values
<1x107°) by using the effective numbers of inde-
pendent markers [45]. Using RA-relevant cell types,
the combined model significantly increased the ratio
compared with the original GWAS signals (Additional
file 1: Figure S12 and Table S13). All these results
demonstrate the reliability of the context-specific
prioritization and its ability to establish a link between
variants and a disease.
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Fig. 5 Context-dependent prioritization shows GWAS signal enrichment in relevant cells. a The top 5% prioritized SNPs using blood cell line
Mo-CD14+ (purple) display more leftward shift than using skin (green), muscle (blue), or liver (gold) cell lines against permutated GWAS signals;
gray area shows 95% intervals of permutated signals. b The top 5% prioritized SNPs using blood cell line GM12878 (red) display more leftward
shift than using skin (green), muscle (blue), or liver (gold) cell lines against permutated GWAS signals; gray area shows 95% intervals of permutated
signals. ¢ The empirical P values of permutations for blood cell lines (Mo-CD14+ and GM12878) are more significant than other tissue/cell types.
d After the blood cell line Mo-CD14+ prioritization, the top-ranked SNPs display more significant shift from permutated GWAS signals than lower-
ranked ones; gray area shows 95% intervals of permutated signals. BLD blood, LNG lung, SKIN skin, BONE bone, LIV liver, VAS vascular, MUS muscle,
BRN brain, CRVX cervix, BRST breast, Composite context-free composite model




Li et al. Genome Biology (2017) 18:52

Context-dependent epigenomic weighting increases the
statistical power of detecting disease-associated genes
We examined if we could improve the statistical power
of detecting disease-associated genes driven by regula-
tory variants by using the context-dependent combined
probability as a weight for each GWAS SNP. We incor-
porated this weighting approach into our previous gene-
based association test GATES [34] and then applied it to
two RA GWASs [44, 46].

For SNPs from the RA GWAS meta-analysis [44], we
used the combined probability of 13 different ENCODE cell
types as the weight to generate two SNP sets for each cell
type: the original set of SNPs with no weights (NW_SNP)
and the same set of SNPs with context-dependent weights
(W_SNP). Next, we used GATES to examine the RA-
associated genes in the NW_SNP and W_SNP sets,
respectively. Compared with the GATES detection using
the NW_SNP set, we found the W_SNP set improved the
power of detection of RA-associated genes in a context-
dependent manner. Weighting SNPs with the two blood
cell lines (Mo-CD14+ and GM12878) gave the largest num-
ber of improved genes as demonstrated by decreasing P
values (below the significant threshold of 1x10™) or by
further lowering of the originally significant P values to
more significant levels (Fig. 6a). It is also noted that using
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weights from Mo-CD14+ generated more RA eQTL-
associated genes (eGenes) [39] when compared with using
weights from other cell types (Fig. 6a). This suggests the
context-dependent weighting strategy could identify more
genes that subsequently affect disease susceptibility through
regulatory mechanisms (Additional file 3).

Gene set enrichment analysis revealed that the im-
proved genes weighted by blood cell types showed higher
enrichment in immune system pathways than when
weighted by other cell types (Fig. 6b and Additional file 1:
Table S14). Although some genes became less significant
after weighting (worsened genes), the comparisons
showed that weighting by blood cell types generated
higher percentages of improved genes and lower percent-
ages of worsened genes. Similar results were observed for
eGenes (Additional file 1: Figure S13). We performed the
same weighting strategy on the other RA study that had a
smaller sample size [46]. It is noticed that the improved
genes weighted by blood cell lines in this smaller sam-
ple size study tended to be genes with higher signifi-
cance (i.e. smaller P values) in the larger sample size
study (Additional file 1: Figure S14). Both analyses indi-
cate that our context-dependent epigenomic weighting
approach increases the statistical power for the detec-
tion of disease-associated genes.
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Discussion

Several computational methods have been developed to
predict and prioritize non-coding variants based on
only functional annotations, but the performance of
these tools have been largely inconsistent [32]. With re-
cent eQTL studies in diverse human tissues/cell types
and the availability of large-scale functional genomic
data, it is now becoming possible to integrate tissue/cell
type-specific chromatin states for predicting regulatory
variants and for fine-mapping of disease-causal vari-
ants/genes that have weak associations with complex
traits [6, 47, 48].

In this study, we describe a novel method to integrate
epigenomic features with eQTL data for prioritizing
regulatory variants. We uncovered a set of critical chro-
matin features that could be used to consistently predict
variant regulatory potential across different cellular
contexts. Building on these findings, we developed a
context-dependent combined model to predict variant
regulatory potential. By comparing our model with exist-
ing methods using multiple functional datasets, we
showed that this combined approach greatly improved
our original method for identifying regulatory variants
and disease-associated genes.

To investigate the relationship between informative
tissue/cell type-specific chromatin marks and the regula-
tory effect of variants, we selected the most significant
fine-mapped eQTLs in each LD to form the benchmark
datasets. However, these datasets may lose other inde-
pendent eQTLs within the same LD or introduce false
positives, because fine-mapped eQTLs are not necessar-
ily causal ones in the high LD proxies. Nevertheless, due
to the high cost of massively parallel experimental valid-
ation in real cellular contexts [49-51], fine-mapped
eQTL data could be used as a reasonable replacement
for a true benchmark dataset. We attempted to repre-
sent the regulatory potential of genetic variants by using
cell type-specific chromatin states around an eQTL.
Using multiple uniformly processed eQTL datasets as
benchmarks, our selected chromatin features were found
to be generally consistent among different tissues/cell
types. These features could be integrated as a weight for
GWAS SNPs for prioritizing disease-associated genes. In
addition, eQTLs are not enough to explain all functional
mechanisms of regulatory variants. We anticipate more
large-scale QTL studies focusing on other molecular
phenotypes, such as DNA methylation and histone
modification, could be available in a wide range of tis-
sues/cell types [27, 52—54].

Genetic determinations of many complex traits are
complicated, likely due to the joint susceptibilities of
many risk loci with small genetic effect sizes, as well as
indirect alterations of protein functions through differ-
ent levels of gene regulation [26]. Currently, it is difficult
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to identify true causal variants/genes that underlie dis-
ease pathogenesis using conventional genetic mapping
strategies alone, because of limitations of sample size,
statistical power and LD [47, 55]. Using relevant epige-
nomic data that match GWAS diseases/traits, we can
weigh the regulatory potential of each GWAS SNP and
re-evaluate its association independently from LD. Since
our method does not rely on GWAS results, the power
of detecting causal variants in a particular disease/trait is
limited. Nevertheless, the strength of our method is to
prioritize active regulatory variants in a certain tissue/
cellular environment. Many of our top-prioritized vari-
ants, as shown in the results section, revealed strong
GWAS signals. In our gene-based association tests, we
demonstrated context-dependent epigenomic weighting,
which together with the original GWAS summary statis-
tics could boost the detection power of RA-associated
genes.

Conclusions

In summary, we have focused on an essential problem
in the field of regulatory variant prioritization and
disease-associated gene detection. Considering the im-
portance of cellular chromatin states, we have devel-
oped a context-dependent method to quantify the
regulatory potential of genetic variants in a particular
tissue/cell type. Previous studies suggest that a single tis-
sue/cell type-specific epigenetic mark, such H3K4me3
[18] or H3K27ac [19], could be used to fine-map GWAS
loci for particular diseases/traits. Our context-dependent
prioritization method uses the integrative effect of mul-
tiple chromatin states to identify functional regulatory
variants. Building on our previous context-free regula-
tory variant prediction method, we have demonstrated
that context-dependent epigenomic weighting can im-
prove identification of both variant-level and gene-level
susceptible loci in GWAS. We will frequently update
epigenomes data for more tissues/cell types and inte-
grate cepip into our comprehensive downstream ana-
lysis platform KGGSeq in the future [56, 57].

Methods

eQTL fine-mapping data and controls

We used the uniformly processed cis-eQTLs fine-
mapping data produced by Brown et al. [35]. A multi-
traits Bayesian linear regression model was used to
identify cis-eQTLs from 11 studies on seven tissues/cell
lines, including CAP_LCL (CPL), Stranger_LCL (STL),
Harvard_cerebellum (HCE), Harvard_prefrontal_cortex
(HPC), Harvard_visual_cortex (HVC), GenCord_fibro-
blast (GCF), GenCord_LCL (GCL), GenCord_tcell
(GCT), UChicago_liver (CLI), Merck_liver (MLI), and
Myers_brain (MBR). We downloaded the eQTL SNPs
of the most highly associated cis-linked SNP within an
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LD block. To acquire reliable fine-mapped eQTL SNPs,
we applied a strict cutoff of 10% false discovery rate
(FDR) for each tissue/cell type. These eQTL SNPs were
treated as the candidate regulatory variants. We con-
structed corresponding background SNPs using two
strategies: (1) random allele frequency-matched sam-
pling (less than 0.05 deviations to each eQTL SNP
using 1000 Genomes project EUR population) of SNPs
around the gene’s nearest TSS genome-wide (within 10
kb); and (2) a strict matching scheme with (i) no overlap
with any SNPs within high LD of each fine-mapped eQTL
SNP (+*>0.8 in 1000 Genomes project EUR population),
(ii) matched allele frequency, (iii) matched TSS distance to
each eQTL SNP (up/downstream 1000 bp deviations),
and (iv) matched GC content to each eQTL SNP locus
(up/downstream 50 bp DNA sequence).

GTEx eQTL data

We downloaded significant SNP-gene associations
from GTEx V4 from the GTEx portal (http://
www.gtexportal.org/), which contains Matrix eQTL
[58] mapping results of 13 human tissues, including
Adipose Subcutaneous (AS), Artery Aorta (AA),
Artery Tibial (AT), Esophagus Mucosa (EMA),
Esophagus Muscularis (EMS), Heart Left Ventricle
(HLV), Lung (LU), Muscle Skeletal (MS), Nerve Tibial
(NT), Skin Sun Exposed Lower leg (SSELL), Stomach
(ST), Thyroid (TH) and Whole Blood (WB). For each
tissue, we sampled equal numbers of frequency-
matched background SNPs around the gene’s nearest
TSS genome-wide (within 10 kb).

Functional epigenomics data

We incorporated epigenomic data of 127 human tissues/
cell lines from Roadmap Epigenomics Mapping repositor-
ies (http://egg2.wustl.edu/roadmap/web_portal/), includ-
ing primary tissues, diverse blood cells, and embryonic
stem cells, as well as ENCODE cell lines. For each tissue/
cell line, we acquired narrow peaks using DNase-seq and
ChIP-seq for 11 histone modification marks, including
H2AFZ, H3K27ac, H3K27me3, H3K36me3, H3K4mel,
H3K4me2, H3K4me3, H3K79me2, H3K9ac, H3K9me3,
and H4K20mel from the uniformly reprocessed consoli-
dated epigenome, which can capture relatively equalized
signal strength across tissues/cell types. We used imputed
peak calls for missing epigenomes [33].

Cell-type matching and eQTL chromatin signature
localization

The 11 eQTL tissues/cell lines and 13 GTEx eQTL tis-
sues were mapped onto the 127 tissues/cell types from
Roadmap Epigenomics Project (including 16 ENCODE
cell lines) according to their best matched cell type or
tissue origin. For eQTL SNPs in each tissue/cell line, we
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defined three types of feature for the DNase I hypersen-
sitive site and the 11 histone marks using the narrow
peak calling results: (1) the hit of peak (Hit) feature; (2)
the peak intensity (Intensity) feature; and (3) the dis-
tance to summit (Centrality) feature. Overall, we ex-
tracted 36 cell type-specific genomic and epigenomic
features from all eQTL SNPs and corresponding back-
ground SNPs.

Context-dependent model and model selection

We trained logit model for eQTL SNPs and control SNPs
from each of the 11 eQTL studies and calculated the regu-
latory probability of each investigated SNP. We termed
this probability the “regulatory potential” given by:

1
P(causal|lX) = Fap=r
where o is the intercept and [} is the vector of coeffi-
cients of X (36 features) from the logistic regression of
eQTL SNPs of a specific tissue/cell type and correspond-
ing control SNPs. To identify the most informative fea-
tures, we performed a model selection using backward
stepwise selection based on the AIC [59]. We selected
features shared by more than half of the tissue/cell type-
specific models. Next, we computed the pairwise correl-
ation coefficients for these features using Spearman’s
rank correlation tests between models. To make a gener-
alized model, we pooled the cell type-specific chromatin
features for each of 11 fine-mapped eQTL datasets and
retrained four generalized logit models under different
controls and DHS-related features. Four controls in-
clude: (1) random control; (2) strict control; (3) random
control without DNA-related features; and (4) strict con-
trol without DNA-related features. We used Geuvadis
and a randomly sampled control around TSS (within 10
kb) to test the generalized models. In addition, the epi-
genomic annotations of the ENCODE GM12878 lym-
phoblastoid cell line were used to extract chromatin
features.

Phenotypic cell type-specific evaluation on GWAS
fine-mapped data and 127 reference epigenomes

We retrieved candidate causal SNPs from a GWAS fine-
mapping study of 38 immune and non-immune diseases
(http://www.broadinstitute.org/pubs/finemapping/),
which contained 8741 fine-mapped SNPs that passed the
PICS probability cutoff (>0.0275). We extracted our
selected chromatin features for each candidate regula-
tory SNPs in the 127 epigenomes. Next, we applied our
generalized context-dependent model to predict the
regulatory potential for each fine-mapped SNP k in the
corresponding disease category i using each of the con-
solidated epigenomes of 127 tissues/cell types j, defined
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as Py, For each disease and cell/tissue type combin-
ation, we calculated the mean prediction score for all
causal SNPs that were associated with the disease, de-
fined as the mean;;(P). We normalized the mean;;(P)
across diseases/traits (centered by 1) and used hierarch-
ical clustering to group the tissues/cell types according
to the normalized value. We estimated the most relevant
tissue/cell type for each of the 38 immune and non-
immune diseases/traits by selecting the largest normal-
ized mean;;(P) among the 127 tissues/cell types.

Evaluation of ImmVar eQTLs

We collected an independent dataset of ImmVar eQTLs
of the GWAS LD proxy for monocytes and/or T cells to
test the performance of our generalized context-
dependent model. We calculated the regulatory potential
for ImmVar trait/disease-associated eQTL SNPs using
the chromatin signatures of 12 ENCODE cell types with
complete epigenome profiles (four blood cell lines and
eight other cell lines from unique tissues). The Mann-—
Whitney U test was used to compare the regulatory po-
tentials between different measurements after removing
SNPs that had the same probability in all cell types.

Combined model

We used the ensemble model [60] and our context-
dependent model in a combined model, integrating
state-of-the-art cell type-free predictions and cell type-
specific chromatin states to better prioritize regulatory
variants. In the composite model, we computed the
probability of a causal regulatory variant by the compos-
ite likelihood:

P(causal|S) =

E P(si|causal) x m

P(si|causal) x m + P(si|neutral) x (1 - m)

i=1

where S is the observed set of prediction scores and the
probability that a causal or a neutral SNP obtains a score
s; could be calculated through the empirical distribution
of training dataset. The flat prior probability =0.5 for
the causal probability of each variant.

Given a set of functional prediction scores (S) and the
chromatin features of one defined cell (X) for an ob-
served SNP, one can estimate the posterior probability of
the SNP being a regulatory variant. We termed this joint
likelihood the “combined probability” as:

(S, X|causal) x m
P(S, X)

P
P(causal|S, X) =

Since test scores and chromatin signatures are two in-
dependent measurements:
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P P(X
PlcausallS, X) — (S|causal)P(X|causal) x

P(S, X)
_ P(S)P(X) P(causal|S)P(causal|X)
= P X)) 7
4w P(causal|S)P(causal|X)

T

where a is the normalization constant, P(causal|S) is the
likelihood in the composite model and P(causal|X) is
the regulatory potential in the context-dependent model.

Comparison with other cell type-specific methods
Geuvadis eQTLs of lymphoblastoid cells for 373 European
individuals were downloaded from the EMBL-EBI Geuvadis
Data Browser (http://www.ebi.ac.uk/Tools/geuvadis-das/).
The cis-eQTLs from a meta-analysis study of whole blood
samples in ~5300 individuals were downloaded from the
Blood eQTL Browser (http://www.genenetwork.nl/blood-
eqtlbrowser/) [61]. A dataset of RA cis-eQTLs with FDR <
5% was retrieved from a published paper [39]. For each of
the eQTL datasets, we first removed eQTLs that over-
lapped with the training eQTL dataset. Next, we used our
previous algorithm to compute the composite probability
and then used our new combined model to estimate the
regulatory probability for all 1000 Genomes variants based
on the epigenome annotations of the ENCODE GM12878
lymphoblastoid cell line. For a comparison, we extracted
fitCons GM12878 cell type-specific scores for all 1000 Ge-
nomes variants. In addition, we computed the deltaSVM
GM12878 DHS-weighted scores for all 1000 Genomes
variants. Using ranked scores for the four algorithms
(composite model, combined model, fitCons, and del-
taSVM), we examined how many eQTLs were covered
when increasing the percentage of top-ranked variants.

RA GWAS and eQTL dataset

The RA SNP summary statistics from two GWASs by
Okada et al. [44] and by Stahl et al. [46] were retrieved
from ImmunoBase [62]. The GWAS by Okada et al. had
a large sample size of both European and Asian ances-
tries consisting of 29,880 cases and 73,758 controls. The
GWAS by Stahl et al. [46] had a small sample size con-
sisting of 12,307 cases and 28,975 controls. Another RA
eQTL dataset was obtained from a study by Walsh et al.
[39], which combined whole-genome sequences and
blood transcription profiles of 377 RA patients with over
6000 identified eGenes.

GWAS signal enrichment

The GWAS signal enrichment analysis was performed
using RA-associated SNPs from Okada et al. [44]. SNPs in
MHC regions were removed before the analysis. The RA-
associated SNPs were prioritized according to the context-
dependent combined probability using epigenomic profiles


http://www.ebi.ac.uk/Tools/geuvadis-das/
http://www.genenetwork.nl/bloodeqtlbrowser/
http://www.genenetwork.nl/bloodeqtlbrowser/

Li et al. Genome Biology (2017) 18:52

of 13 ENCODE tissues/cell types, including DND41
(Blood), GM12878 (Blood), HeLa-S3 (Cervix), HepG2
(Liver), HMEC (Breast), HSMM (Muscle), HUVEC (Vascu-
lar), K562 (Blood), Mo-CD14+ (Blood), NH-A (Brain),
NHDEF-Ad (Skin), NHLF (Lung), and OSTEO (Bone). For
the top 5% prioritized SNPs in each context, we evaluated
the GWAS signal enrichment by permutation test. We per-
formed two types of permutation. First, we randomly drew
1 million samples with the same number of top-ranked
SNPs from the original GWAS SNPs. To investigate the
impact of allele frequency on our results, we further ran-
domly drew one million allele frequency-matched samples
with a frequency deviation of less than 0.05 to each top-
ranked SNP. We used Fisher’s method to combine GWAS
P values in each sampling and compared the combined
statistics among all samples. To reduce the computational
burden, we removed SNPs with GWAS P values > 0.001.
The Q-Q plot of the top 5% SNPs was constructed to
compare the two non-cancer blood cell lines (Mo-CD14+
and GM12878) with other cell lines against the permu-
tated GWAS signals.

Removal of known RA-associated SNPs

Known RA-associated SNPs were defined according to
SNPs reported in GWAS Catalog [4] and SNPs with P
values <5 x 10 from the meta-analysis dataset [44].
These SNPs were removed from the original GWAS
dataset, composite dataset, and each context-dependent
dataset. The Q-Q plot of the top 5% SNPs was con-
structed to compare against the permutated GWAS
signals as previously mentioned.

Estimation of effective number of independent markers
We estimated the effective number of independent markers
in each SNP set using The Genetic Type I error calculator
(GEC) [45], which is a robust tool to remove non-
independent SNPs based on LD. For each context, we first
compiled two SNP sets: (1) the top 1% SNPs after context-
dependent prioritization; and (2) SNPs with sub-genome-
wide GWAS significance (P values < 1 x 107°) in the top 1%
SNPs. For each set, we calculated the effective number (M,)
of independent markers chromosome by chromosome. The
ratio for each chromosome was obtained as:

M, (sub—genome—wide SNPs)
M. (Top 1% SNPs)

Ratio(chr) =

Weighed GATES gene-based association test

For each RA GWAS SNP from Okada et al. and Stahl et
al., we first calculated the context-dependent combined
probability using epigenomes of the 13 ENCODE cell
lines. The combined probability of SNPs was rescaled to
keep the ratio of highest value to the lowest one as ten for
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each cell line, so that a “wrong” weight would not substan-
tially affect the power [34]. The rescaled probabilities were
then used as prior weights of n SNPs, ry, ..., r,,. According
to the procedure of weighted GATES, the final weight of
iy, sorted SNP by its P value is
Wiy = e(meqy = Men)r,

where m,; is the effective number of independent P
values among the top j SNPs, m,) =0, and ¢ is defined
such that the weights sum to m,:

Me

> ey = men)

The weighted gene-based P value was then given by:

cC =

MePj)
J
D W

For each cell type, we performed the gene-based asso-
ciation test on both the weighted SNPs (W_SNP) and
non-weighted SNPs (NW_SNP), respectively. Next, we
compared the W_SNP with NW_SNP for each context.
For each gene, we defined an improved gene as: (1) a
gene where the P value decreased from a non-significant
level using NW_SNP to a significant level using W_SNP
(significant threshold of 1 x 107%); or (2) an already de-
tected gene with a P value above a significant level using
NW_SNP was further decreased by over 0.8-fold when
using W_SNP. A gene detected as significant using
NW_SNP but becoming less significant when using
W_SNP was defined as a worsened gene.

Pc = Min

Gene set enrichment analysis

Genes from each context-specific prioritization were in-
putted into the GSEA analysis tool (http://software.broa-
dinstitute.org/gsea) to evaluate the pathway enrichment.
The immune system-related gene sets were retrieved
from Reactome [63].
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