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Abstract

Next-generation sequencing (NGS) of bulk tumour tissue can identify constituent cell populations in cancers and
measure their abundance. This requires computational deconvolution of allelic counts from somatic mutations, which
may be incapable of fully resolving the underlying population structure. Single cell sequencing (SCS) is a more direct
method, although its replacement of NGS is impeded by technical noise and sampling limitations. We propose
ddClone, which analytically integrates NGS and SCS data, leveraging their complementary attributes through joint
statistical inference. We show on real and simulated datasets that ddClone produces more accurate results than can
be achieved by either method alone.
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Background
Human cancers develop through branched evolutionary
processes [1] resulting in genetically diverse clonal cell
populations. Every cancer cell likely harbours a distinct
genome through accrual of individualmutations; however,
evolutionary relationships between cells can be hierarchi-
cally encoded with phylogenetic trees. The major clades
represent cell populations with a majority shared geno-
type. Mutations impacting phenotypic variation between
clonal populations are thought to drive the clonal popu-
lation dynamics of a cancer over temporal and microen-
vironmental dimensions. Clonal dynamics in turn impact
clinical trajectories, underpinning disease complications
such as treatment resistance and metastasis.
Quantitative characterization of the number of clones,

their genotypes, and their abundance is of central impor-
tance in the study of the evolutionary dynamics of cancer.
Ideally, the identified clones would correspond with the
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branches of an underlying generative process modelled
by a phylogenetic tree. In practice, because of limitations
of current sequencing technologies, we are not able to
directly observe clones of interest. Instead, indirect exper-
imental methods are used: bulk targeted deep sequencing
[2] and single cell sequencing [3]. In both bulk and single
cell, we focus the discussion on nucleotide variant mark-
ers (single nucleotide variants, SNVs), which we assume
have been identified in a preliminary analysis [4–7]. In
both experimental platforms, technical challenges remain
which prevent accurate inference of the desired quantities.
We posited that joint statistical modelling of bulk and sin-
gle cell sequencing data could improve inference of clonal
composition and abundance.
We begin the discussion with an overview of methods

for bulk sequencing. Bulk methods can only provide a
direct measure of sampled allele prevalences (the fraction
of reads that harbour a mutation at a specific genomic
locus) over DNA fragments sampled from a large, mixed
pool of alleles extracted from the totality of cells present
in the input tissues. Consequently, allele prevalence is
a compound measure impacted by the unknown quan-
tity of non-malignant cells and the unknown composition
of the constituent malignant clones. Leveraging many
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mutations measured from the same allelic pool, computa-
tional methods have been developed to estimate subclonal
structure from allele prevalences. The PyClone model [2]
takes into account several confounding factors, includ-
ing statistical variation coming from the sampling of the
reads; non-malignant cell fraction; mis-called bases and
other technical artefacts; and most importantly, how copy
number alterations resulting from segmental aneuploidies
locally and/or globally deviate from diploidy. PyClone and
other methods such as PhyloSub [8], Clomial [9], Ances-
Tree [10], and SciClone [11] generally assume mutations
with shared prevalence (either cellular prevalence or allele
prevalence) are more likely to be co-occurring within the
same cell, thus defining components of a clonal geno-
type. This assumption may be violated to varying degrees;
mutations may be present at similar allele prevalence but
distributed across clones [12].
A potential solution to this problem lies in single cell

sequencing (SCS). SCS via whole genome shotgun or
multiplex targeted design by PCR amplification theoret-
ically yields direct ascertainment of genotypes whereby
the data itself will encode whether sets of mutations are
co-occurring in individual cells. While the measurements
of SCS are conceptually simpler, they come with a much
higher level of technical noise [13–16]. Since the amount
of measured DNA from each cell is minimal, missing
one or both of the alleles (allelic drop-out (ADO) [15])
is common, resulting in sparse representation of underly-
ing genotypes. While missing both alleles is relatively easy
to detect, missing only one can seriously skew interpreta-
tion of heterozygous loci [17]. Moreover, by construction,
SCS methods sample a dramatically smaller number of
cells compared to bulk sequencing. As a consequence,
when estimating cellular prevalences the sampling error
will tend to be markedly higher (see Results section and
also Additional file 1). A number of computational meth-
ods have been developed to work with SCS data that
account for (some of) these limitations. The single cell
genotyper (SCG) [16] uses a hierarchical Bayesian model
to cluster single cells into clones and infer constituting
genotypes and their prevalences, and it models various
technical errors, including doublets. Using mutual SNV
patterns in the single cells, OncoNEM [18] and BitPhy-
logeny [19] infer the evolutionary relationships between
constituent clones, while SCITE [20] also reconstructs
order of mutations.
We propose to leverage the strengths of both sequenc-

ingmethods for optimal computational inference of clonal
genotypes and prevalences.We present a novel probabilis-
tic model based on non-parametric Bayesian integration
of bulk and single cell data. We demonstrate on syn-
thetic and real datasets how simultaneous analysis results
in improved inference of salient quantities of interest for
biological inference of clonal dynamics in cancer.

Results and discussion
We developed a statistical framework, ddClone, leverag-
ing data obtained from both single cell and bulk sequenc-
ing methods (Fig. 1). The ddClone approach assumes
single cell sequencing data will inform and improve clus-
tering of allele fractions derived from bulk sequencing
data in a joint statistical model. ddClone combines a
Bayesian non-parametric prior informed by single cell
data with a likelihood model based on bulk sequenc-
ing data to infer clonal population architecture through
clustered mutations. Intuitively, the prior ‘encourages’
genomic loci with co-occurringmutations in single cells to
cluster together. Using a cell-locus binary matrix from sin-
gle cell sequencing, ddClone computes a distance matrix
between mutations using the Jaccard distance with expo-
nential decay. This matrix is then used as a prior for
inference over mutation clusters and their prevalences
from deeply sequenced bulk data in a distance-dependent
Chinese restaurant process [21] framework. The output
of the model is the most probable set of clonal genotypes
present and the prevalence of each genotype in the pop-
ulation. Full mathematical and implementation details are
provided in Methods and Additional file 1.

Benchmarking over simulated data
We benchmarked ddClone by simulating 10 ground truth
synthetic datasets each with 10 cell genotypes and 48
genomic loci (Fig. 2). Joint bulk and single cell data were
generated from a phylogenetic Dollo process (Additional
file 1: Figure S1; Additional file 2).
We compared ddClone to threemethods that operate on

bulk data only: PyClone [2], PhyloWGS [22], and Clomial
[9], and to two methods that leverage single cell data only:
SCITE [20] and OncoNEM [18]. Two performance met-
rics were evaluated: clustering accuracy (by V-measure
[23]) and accuracy of inferred cellular prevalences (the
average over loci of the absolute differences between the
inferred and true cellular prevalences). For the same bulk
data, three sets of single cell data with different levels of
noise were generated: (1) ideal data with no ADO or dou-
blets; (2) data with moderate levels of sampling distortion,
in the presence of 30% doublet cells and an ADO rate of
30%; and finally (3) data with higher levels of sampling dis-
tortion reflective of real data, with the same doublet and
ADO rates as in (2). We designate these three regimes by
λ = ∞, λ = 10, and λ = 1.12 respectively. ddClone was
supplied with the above single cell data for encoding the
prior over clustering. Single cell-only methods were given
the exact same input as ddClone’s prior.
Under noise levels corresponding to real datasets (λ =

1.12, Fig. 3), ddCloneλ=1.12 had a mean cellular prevalence
estimation error of 0.09 ± 0.03, significantly outperform-
ing both OncoNEMλ=1.12 (0.17 ± 0.03) and SCITEλ=10
(0.18 ± 0.05), while doing slightly better than the second
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Fig. 1 The workflow of ddClone. This figure shows the workflow of our method, ddClone. The ddClone approach is predicated on the notion that
single cell sequencing data will inform and improve clustering of allele fractions derived from bulk sequencing data in a joint statistical model.
ddClone combines a Bayesian non-parametric prior informed by single cell data with a likelihood model based on bulk sequencing data to infer
clonal population architecture. Intuitively, the prior encourages genomic loci with co-occurring mutations in single cells to cluster together. Using a
cell-locus binary matrix from single cell sequencing, ddClone computes a distance matrix between mutations using the Jaccard distance with
exponential decay. This matrix is then used as a prior for inference over mutation clusters and their prevalences from deeply sequenced bulk data in
a distance-dependent Chinese restaurant process framework. The output of the model is the most probable set of clonal genotypes present and
the prevalence of each genotype in the population

Fig. 2 Simulated phylogenetic tree (panel a) and the resulting binarized cell genotype matrix (panel b). Transposed binarized simulated cell
genotypes � from Generalized Dollo process over a fixed phylogeny. The original cell genotype matrix �CN is in copy number space. We binarize it
by setting entries with non-zero variant allele copy number to one (coloured red) and setting entries with variant allele copy number of zero to zero
(coloured blue). The clonal prevalence of each genotype is in parentheses
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Fig. 3 Performance analysis in presence of sampling distortion. Effect of sampling distortion on V-measure index (panel a) and mean absolute error
of cellular prevalences (panel b) across multiple values for the total number of single cells (specified on top of each panel). Each box plot represents
10 simulated datasets each with 10 genotypes and 48 genomic loci. The cells are sampled from a Dirichlet-multinomial distribution with sample size
m ∈ {50, 100, 200, 500, 1000} and parameters equal to the true prevalence of each genotype scaled by the concentration coefficient λ. The larger
the λ, the closer the Dirichlet-multinomial distribution approximates the multinomial distribution. At higher values of λ the sampled cells better
represent the true proportions of genotypes. Estimated values of λ for the real datasets are annotated on panel (b). We note that OncoNEM did not
converge when number of cells exceeded 100 (boxes marked by a star). This result suggests that ddClone’s clustering and cellular prevalence
estimates are fairly robust to the presence of distorted single cell sampling

best performing bulk data-only method, PyClone (0.10 ±
0.05). ddCloneλ=1.12 also had high clustering accuracy in
this noise regime, with a mean V-measure of 0.77 ± 0.06
relative to 0.74 ± 0.06 for OncoNEMλ=1.12, 0.71 ± 0.08
for SCITEλ=1.2, and 0.71 ± 0.10 for PyClone. Clomial had
a slightly higher mean V-measure than PyClone (0.78 ±
0.07), but it had a worse cellular prevalence estimation
error (0.14 ± 0.04). PhyloWGS had a mean V-measure of
0.73±0.03 and amean cellular prevalence estimation error
of 0.14 ± 0.04.
Under λ = 10, the moderate sampling distortion noise

regime, ddCloneλ=10 significantly outperformed both sin-
gle cell data-only methods, in terms of cellular prevalence
estimation, achieving a mean error of 0.07 ± 0.02 versus
OncoNEMλ=10’s 0.13± 0.03 and SCITEλ=10’s 0.18± 0.05.
ddCloneλ=10 did comparably well to OncoNEMλ=10 and
SCITEλ=10 in terms of clustering accuracy, with a mean
V-measure of 0.79±0.09 against 0.81±0.03 and 0.75±0.05
respectively.

With perfect, noiseless single cell data (λ = ∞),
OncoNEMλ=∞ outperformed SCITEλ=∞ and ddCloneλ=∞
both in terms of cellular prevalence estimation, with
an average error of 0.04 ± 0.01 against 0.06 ± 0.01 and
0.06 ± 0.01, and in terms of clustering accuracy, with a
mean V-measure of 0.90 ± 0.03 versus 0.87 ± 0.09 and
0.86 ± 0.04 respectively.
These results suggest that in the presence of simulta-

neous doublets, ADO events, and assortment bias noise,
ddClone compares favourably well to other methods
(Fig. 4). This is most relevant in the case of improved cellu-
lar prevalence estimates, as single cell platforms will likely
stay unfit for this type of measurement in the near future
due to under-sampling.

Sensitivity to presence of noise in single cell data
We next directly considered the impact of four types
of noise likely to be present in single cell data: ‘assort-
ment bias’, where the quantity of sampled cells are not
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Fig. 4 Benchmarking results over simulated data. Performance results for ddClone, single cell-only, and bulk data methods on ten synthetic
datasets. ddClone and single cell-only methods were provided with single cells, either (1) 50 cells, sampled from a multinomial distribution with true
genotype prevalences as parameters (labelled ddClone(λ = ∞), OncoNEM(λ = ∞), and SCITE(λ = ∞)) in absence of doublet and ADO noise, or (2)
50 cells sampled from a Dirichlet-multinomial distribution with λ = 10, constituting moderate to small levels of sampling bias (labelled as
ddClone(λ = 10), OncoNEM(λ = 10), and SCITE(λ = 10), or (3) 50 cells sampled from a Dirichlet-multinomial distribution with λ = 1.12,
constituting high levels of sampling bias (labelled as ddClone(λ = 1.12), OncoNEM(λ = 1.12), and SCITE(λ = 1.12), where in the case of (2) and (3),
30% of cells are doublets and rADO = 30%. Panel a shows V-measure clustering performance. Panel b shows the average over loci of the absolute
differences between the inferred and true cellular prevalences. This result shows that in the presence of reasonable levels of noise, ddClone
performs comparably well in terms of both V-measure and the accuracy of inferred cellular prevalences

representative of the underlying tumour, ‘doublets’ and
‘allele drop-outs’ affecting the quality of the signal at a
single genomic locus, and ‘genotype loss noise’, where
one or more cell genotypes are unavailable (i.e. due to
under-sampling) for formulation of the prior.

Assortment bias
Here we compare our method to methods that exclusively
accept as input single cell sequencing data: OncoNEM
[18] and SCITE [20]. In contrast to ddClone, these
methods accept cell-mutation data and not a derived
genotype-mutation matrix. In order to accommodate this
in our experiments, we simulated cells from the genotypes
as described below. See Additional file 1 for parameter set-
tings and the derivation of cellular prevalence estimates
for these methods. We note that even though ddClone
is not designed to work with cell-mutation matrices, in
the following simulations we have used this type of data
to remove the effects of genotype inference methods (e.g.
[16]) on the results. We investigated the effects of sam-
pling bias modelled using the parameter λ (see Methods
sections). For small values of λ, we expect the sampled
cells not to be representative of the true tumour content

and vice versa. With increasing assortment bias, ddClone
performs better than single cell-only methods (Fig. 3),
most importantly in λ ranges (Methods section) approx-
imating the real datasets. When the sampled cells are
accurate representations of the underlying sample, single
cell-only methods outperform ddClone as expected, since
prevalence estimates map directly to cell counting, with-
out requiring inference.

Doublets
Doublets are one source of noise in single cell sequenc-
ing experiments. They occur when two or more cells are
trapped together in a single well during the sequencing
procedure. As the genotype assigned to a doublet well
will be a hybrid of the genotypes of the two or more
cells that it contains, we assume that this results in a
false positive error where the hybrid genotype will have
more mutated genomic loci than the original trapped
cells (Methods). We simulated an additional 500 datasets
acrossmultiple values of rdoublet, the percentage of doublet
events, and multiple values of m, the number of sam-
pled single cells, where m ∈ {50, 100, 200, 500, 1000} and
rdoublet ∈ (0, 1]. ddClone’s cellular prevalence estimates
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are in general robust to the presence of uncorrected
doublet noise (Fig. 5). We reiterate that ddClone is not
designed to work with cell-mutation matrices, and the
best input to it is the genotype-mutationmatrix, for exam-
ple, as generated by the SCG model. SCG is designed to
correct for doublets, and we anticipate that using it would
improve ddClone’s performance.

Allele drop-outs
We next investigated the effect of increasing ADO (loci
with ADO sit at the extremes of the allele count distribu-
tion; details in the Methods section) in ddClone accuracy.
Progressively increasing the ADO rate results in degrad-
ing performance in both clustering and cellular prevalence
estimates (Fig. 6). Unsurprisingly, the detrimental effect
dampens as the number of sampled cells increases.

Clonal genotype loss
Clonal genotype loss is defined as a lack of inclusion of
a population’s genotype in the encoding of the prior. We
under-sampled genotypes by systematically ‘hiding’ single
cell genotypes from the prior. Unsurprisingly, progres-
sively removing more cell genotypes (in increasing order
of their prevalence) results in monotonically degrading

performance (Fig. 7). However, when as few as approx-
imately half of the genotypes are available to encode in
the prior, ddClone still outperforms the naive methods
in terms of cellular prevalence estimation (Figs. 4 and
7). This suggests a degree of robustness in the pres-
ence of under-sampling of clones, and that even partial
prior information will improve prevalence estimates per-
formance.

Benchmarking over triple-negative breast cancer
patient-derived xenograft data
To test our method on a real dataset, we used a subset
of samples from a triple-negative breast cancer (TNBC)
xenograft study [24], where breast cancer tissues from
55 patients were transplanted into immuno-suppressed
mice, resulting in 30 xenograft lines. Over 3 years, these
lines were passaged up to 16 generations. Whole genome
sequencing was performed over a subset of passages to
identify point mutations at specific genomic positions.
Deep targeted amplicon sequencing of between 100 to
300 SNV positions per sample was then used to establish
the allelic prevalences of these mutations. We chose 210
cells from five timepoints that span two samples for single

Fig. 5 Performance analysis in presence of doublets. Effect of presence of doublets on V-measure index (panel a) and mean absolute error of cellular
prevalences (panel b) across multiple values for the total number of single cells (specified as m on top of each panel). Each box plot represents 10
simulated datasets each with 10 genotypes and 48 genomic loci. The cells are sampled from a multinomial distribution with a sample size of m and
parameters equal to the true prevalence of each genotype. Progressively increasing the percentage of doublet cells results in minor degrading
performance in cellular prevalence estimate. Overall, this result suggests that ddClone’s cellular prevalence estimates are robust to the presence of
uncorrected doublet noise
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Fig. 6 Performance analysis in presence of allele drop-outs. Effect of presence of allele drop-outs (ADO) on V-measure index (panel a) and mean
absolute error of cellular prevalences (panel b) across multiple values for the total number of single cells (specified as m on top of each panel). Each
box plot represents 10 simulated datasets each with 10 genotypes and 48 genomic loci. The cells are sampled from a multinomial distribution with
a sample size of m and parameters equal to the true prevalence of each genotype. As expected, progressively increasing the ADO rate results in
degrading performance in both clustering and cellular prevalence estimates. The detrimental effect dampens as the number of sampled cells
increases

Fig. 7 Performance analysis in presence of loss of multiple genotypes. Effect of removing genotypes on V-measure index (panel a) and mean
absolute error of cellular prevalences (panel b). Unsurprisingly, progressively removing more cell genotypes (in increasing order of prevalence)
results in monotonically degrading performance However, when as few as approximately half of the genotypes are available to encode in the prior,
ddClone still outperforms the naive methods in terms of cellular prevalence estimate
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cell genotyping, and approximately 48 SNV positions were
targeted for each timepoint, with some filtration due to
poorly performing cells, or loci [24]. A consensus phylo-
genetic tree over cells was inferred using MrBayes [25].
Figure 8 shows the inferred cell genotype matrix � for
each sample. In each timepoint, we only kept genomic
loci that were shared between the bulk and single cell
genotype data (Additional file 3).
Since the exact clustering configuration and cellular

prevalences of the genomic loci in the real dataset are
unknown, we used the multi-sample PyClone results over
several timepoints as a benchmark (see Additional file 1
for details). PyClone in multi-sample mode borrows sta-
tistical strength across all timepoints to give generally
more accurate estimates of clonal structure in individ-
ual timepoints. We ran our method along with competing
methods on each timepoint independently (Additional
file 4). By these criteria, ddClone showed better perfor-
mance than the second best performing method in terms
of V-measure (Wilcoxon rank sum test with p value <

0.05) and performs comparably well (SA494, timepoint T
and SA501, timepoint X4) or better (all the other time-
points) than the second best performing method in terms
of accuracy of inferred cellular prevalences (Fig. 9).

ddClone achieved a V-measure of 0.88 and 0.89 for sam-
ple SA494 at timepoints T and X4 and 0.82, 0.82, and 0.81
for sample SA501 at timepoints X1, X2, and X4 respec-
tively. The second best performing method, PyClone,
achieved a V-measure of 0.56, 0.69, 0.70, 0.69, and 0.67
corresponding to sample SA494 at timepoints T and X4
and sample SA501 at timepoints X1, X2, and X4. Sum-
marizing across samples, ddClone’s clustering was best
(mean V-measure = 0.85, SD = 0.04), followed by PyClone
(mean V-measure = 0.66, SD = 0.06), Clomial (mean V-
measure = 0.61, SD = 0.06), SCITE (mean V-measure =
0.60, SD = 0.08), OncoNEM (mean V-measure = 0.60, SD
= 0.08), and finally PhyloWGS (mean V-measure = 0.53,
SD = 0.05). Use of the mean cellular prevalence estimation
error resulted in a very similar ranking: ddClone (mean
= 0.04, SD = 0.01), PyClone (mean = 0.05, SD = 0.04),
Clomial (mean = 0.07, SD = 0.01), PhyloWGS (mean =
0.08, SD = 0.02), OncoNEM (mean = 0.15, SD = 0.05), and
finally SCITE (mean = 0.16, SD = 0.05).

Inference of genotypes frommultiple spatial samples in
ovarian cancer
We next evaluated performance on samples from a high-
grade serous ovarian cancer (HGSOvCa) study [26] where

Fig. 8 Genotypes curated for the triple-negative breast cancer data. Binary cell genotype matrices for sample SA494 over 28 genomic loci (left) and
sample SA501 over 38 genomic loci (right). These are manually curated from a single cell genotype sequencing experiment [24]. Briefly, MrBayes
was used to infer a consensus phylogenetic tree over the single nuclei. Then they were grouped into clades according to high probability branching
splits. Finally, each clade was assigned a consensus genotype by taking the mode genotype of the clade at each genomic locus. Colour red indicates
a mutated locus, while colour blue indicates a non-mutated locus
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Fig. 9 Benchmarking results over TNBC dataset. Performance results for ddClone and existing methods over TNBC SA501 X1, X2, X4, and
SA494 T, X4. Panel a shows clustering assignment performance. Panel b shows cellular prevalence approximation mean absolute error.
Evaluated against multi-sample PyClone, ddClone outperforms the second best performing method (PyClone) in terms of V-measure (Wilcoxon
rank sum test with p value < 0.05) and performs as well (SA494, timepoint T) or better (all the other timepoints) than the second best performing
method in terms of accuracy of inferred cellular prevalences

68 tumour samples from seven patients (5–13 samples per
patient) including samples from the ovary and omentum
were obtained during initial debulking surgery, except for
one patient for whom samples from the first and second
relapses were also available. Whole genome sequencing
of 31 cryopreserved tissues and matched normal blood
produced a panel of 3577 to 16,987 somatic genomic
aberrations including SNVs and allele-specific absolute
copy number variations (CNVs) per patient. To verify
existence and allelic counts of these predicted SNVs, 37
formalin-fixed, paraffin-embedded specimens were used
in targeted deep sequencing of 300 loci per patient with
multiplex PCR amplicons. Single-nucleus sequencing of a
total of 1680 cells from three patients was used to deter-
mine the co-occurrence of between 43 to 84 SNVs per
sample. This data in combination with the single cell geno-
typer (SCG)model [16] produced the cell genotypematrix
� for each sample. Similar to the xenograft TNBC case
study, we only kept genomic loci that were shared between
the bulk and single cell genotype data and evaluated the
results analogously.
Measured against the multi-sample PyClone bench-

mark, ddClone outperforms all other methods in terms of
clustering accuracy with a mean V-measure of 0.68 (SD

= 0.12). The next best performing methods are SCITE
(mean V-measure = 0.60, SD = 0.08), PyClone (mean V-
measure = 0.56, SD = 0.10), OncoNEM (mean V-measure
= 0.53, SD = 0.11), PhyloWGS (mean V-measure = 0.52,
SD = 0.12), and finally Clomial (mean V-measure = 0.52,
SD = 0.15). We note that although Clomial seems to tie
with PhyloWGS, it did not converge over 4 out of 13 sam-
ples (P3 - Adnx1, P3 Om1, P3 - ROv1, and P3 ROv2).
Similarly, OncoNEM did not converge over 5 out of 13
samples (P2 - ROv2, P3 - Adnx1, P3 - Om1, P3 - ROv1,
and P3 - ROv2). This ranking is very similar in terms of
the cellular prevalence metric where ddClone has the low-
est cellular prevalence estimation error (mean = 0.07, SD
= 0.03), followed by PyClone (mean = 0.10, SD = 0.07).
OncoNEM ties SCITE with a mean cellular prevalence
error equal to 0.19 (SD = 0.06 and SD = 0.08 respectively).
Then comes PhyloWGS (mean = 0.27, SD = 0.11) and
finally Clomial (mean = 0.27, SD = 0.14). These results
suggest that using ddClone over single datasource-only
methods may help avoid catastrophic estimation errors
best exemplified in the Omentum site 1 in Patient 9 (P9
- Om1) where ddClone has a cellular prevalence esti-
mation error less than one-fifth that of the second best
performing method, SCITE (Fig. 10).
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Fig. 10 Benchmarking results over HGSOvCa dataset. Performance results for ddClone and existing methods over HGSOvCa data, from three
patients: Patient 2 (P2) at sites Om1, Om2, ROv1, ROv2, Patient 3 (P3) at sites Adnx1, Om1, Rov1, Rov2, and Patient 9 (P9) at sites
LOv1, LOv2, Om1, Om2, and ROv1. Panel a shows clustering assignment performance. Panel b shows cellular prevalence approximation
mean absolute error. (Om1) Omentum sample 1, (Om2) Omentum sample 2, (ROv1) Right ovary sample 1, (ROv2) Right ovary sample 2, (LOv1) Left
ovary sample 1, (LOv2) Left ovary sample 2, (Adnx1) Adnexa sample1

Investigating mutation clusters in a patient with acute
lymphoblastic leukemia
Here we analyse a dataset consisting in targeted sequenc-
ing of a panel of mutations (mostly SNVs) in 1479 single
tumour cells from six patients with acute lymphoblastic
leukemia (ALL) [12]. The genomic loci were assumed to
be highly diploid. To confirm mutations in the single cell
samples, the authors performed resequencing of the bulk
samples over an average of 46 loci (between 10 to 105) for
each patient.
Figure 11 shows ddClone’s analysis on one of the

patients in this study (Patient 1). Four clones were
reported in this dataset, one of which was labelled a dou-
blet (Fig. 11, clone number 4) and was removed from
subsequent analyses. The authors then extracted consen-
sus genotypes for these clones (Fig. 11, panel A, bottom).
ddClone finds six clusters. While single cell genotypes
support a merger of clusters 4 and 2, ddClone splits
them in two, placing locus chr19:40895668 in a separate
cluster. This split is supported by the bulk data where
the variant allele frequency (VAF) of chr19:40895668 is
about 1.5 times that of the mean VAF of cluster 4 (0.33
and 0.22 respectively). Conversely, loci chr17:1657484 and
chr1:38226084 have similar bulk VAFs (0.21 and 0.21
respectively), but since they have different prior geno-
types, ddClone assigns them to separate clusters (clusters
4 and 5 respectively). PyClone assigns these twomutations

to one cluster. We find similar instances in other patients
in this dataset (see Additional file 1).
Due to the lack of multiple samples from within a

patient, we were unable to use the same method we
used to establish benchmark as in the other real datasets.
Despite this, we confirm that ddClone’s estimated cellu-
lar prevalences are highly correlated with the reported
bulk VAFs (R2 = 0.85 across all patients), suggesting that
ddClone does not introduce unreasonable structure in the
results (Additional file 1).

ddClone avoids co-clustering of mutations from distinct
clones with shared cellular prevalences
Methods that cluster mutations based only on cellular
prevalences are prone to grouping togethermutations that
belong to separate unique clones, if such clones happen
to exist in similar cellular prevalences. Co-occurrence pat-
terns from single cell data can be used to distinguish such
clones. We define mutually exclusive mutations (MEMs)
as a pair of mutations that never co-occur in clones
inferred from single cell genotype analysis. The MEMs
correspond to pair of mutations with a Jaccard distance of
one (see Methods). PyClone, the second best performing
method in terms of clustering, erroneously merges mul-
tiple MEMs in 8 out of 13 samples across three patients
in the HGSOvCa data (Additional file 5). The numbers
of pairs of MEMs erroneously merged by single-sample
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Fig. 11 Analysis results of an acute lymphoblastic leukemia (ALL)
dataset [12]. Analysis results of a patient with ALL (Patient 1) [12]. The
variant allele frequencies (VAFs) from the bulk data (panel a, top)
along with the consensus genotypes estimated from the binary cell
matrix (panel A, bottom). These two constitute the input to the
ddClone model. We note that the binary cell matrix b is displayed
here for comparison and is not an input to ddClone. This binary cell
matrix was used in [12] to cluster the cells into clones (vertical bar at
the right side of the figure) and consensus genotypes (bottom part of
panel a). ddClone clusters mutations into 6 groups (panel c, top) and
estimates cellular prevalence (�) for each (panel c, bottom). ddClone’s
estimated � are highly correlated with the corrected bulk VAFs
(R2 = 0.98, also see Additional file 1), suggesting that it does not
introduce unreasonable structure in the data. Furthermore, when
there is evidence in the bulk, it can override its prior and split clusters
as necessary. For instance, even though locus chr19:40895668 has the
same prior genotype as loci in cluster 4, its VAF in the bulk data is 1.5
times that of the mean of loci in cluster 4. This hints at a finer
structure in cluster 4, and ddClone has automatically assigned
chr19:40895668 to a separate cluster

PyClone in each of the 8 samples are 13, 140, 259, 103,
169, 2, 14, and 1 respectively. Even multi-sample PyClone
fails in correctly clustering MEMs in 9 out of 13 sam-
ples in the HGSOvCa data, although for markedly fewer
mutations. The numbers of pairs of MEMs erroneously
merged by multi-sample PyClone in each of the 9 sam-
ples are 5, 5, 5, 5, 2, 2, 2, 2, and 2 respectively. In contrast,
ddClone only mergedMEMs in 2 out of 13 samples (1 pair
in the first sample and 2 pairs in the second sample) in the
HGSOvCa data.
One pair of MEMs, 15:26990805 (SNV at chromosome

15, coordinate 26990805) and 5:38686543 (SNV at chro-
mosome 5, coordinate 38686543) from Patient 3 in Omen-
tum sample 1, had assigned cellular prevalences of 0.47
and 0.48 by PyClone, 0.43 and 0.46 by ddClone, and 0.41
and 0.41 by multi-sample PyClone respectively. PyClone
and multi-sample PyClone both merged these MEMs;
however, ddClone, while estimating a cellular prevalence
in agreement with multi-sample PyClone (mean absolute
difference of 0.03), separated them into different clus-
ters. See Additional file 5 for a complete list of MEMs. In
the TNBC xenograft data, PyClone erroneously merged
6 MEMs in 1 out of 5 samples. Neither multi-sample
PyClone nor ddClone merged any MEMs. Another exam-
ple is loci 17:1657484 and 1:38226084 in Patient 1 in the
ALL dataset. They have similar bulk VAFs (both equal to
0.21) but different prior genotypes, and ddClone assigns
them to separate clusters while PyClone co-clusters them.
Taken together, results on real data suggest a marked
advantage of using ddClone as measured by clustering
accuracy. We note that the gains on prevalence error were
more modest. We suggest this underscores the impor-
tance of single cell data to resolve mutation clustering as
a reflection of genotype, while bulk data likely provides
an accurate representation of mutation prevalence. Thus
the ddClone approach can leverage the strengths of both
measurement types and provide an overall improvement
in the parameters of interest.

ddClone overrides its prior in presence of evidence in the
bulk data
ddClone is provided with a prior genotype-mutation
matrix. When this prior encodes identical genotypes for
two genomic loci, ddClone is very likely to cluster the
pair together. However, if there is evidence in the bulk
data suggesting that the mutations do not belong to a
cluster, i.e. their bulk VAFs corrected for CNA are too
dissimilar, we expect the model to override its prior and
assign those genomic loci to separate clusters. We define
prior overriding mutations (POMs) as a pair of muta-
tions that have identical prior genotype, but are clustered
separately by ddClone. The TNBC xenograft dataset had
on average 41 (ranging from 32 to 61) POM pairs. For
instance, in sample SA501, timepoint X1, 20:3209183 and



Salehi et al. Genome Biology  (2017) 18:44 Page 12 of 18

2:152063945 were a POM pair with a corrected bulk VAF
of 6. On average about 10 (from 0 to 27) POM pairs were
in the HGSOvCa data, including genomic loci 9:35546540
and X:154158018 from Patient 2, Omentum site 2 with a
corrected bulk VAF of 1.56. In the ALL dataset, in Patient
1, loci chr19:40895668 and chr17:1657484 had identical
prior genotypes, but a corrected bulk VAF ratio of 1.4, and
ddClone put them into separate clusters. In this dataset,
Patients 1 to 5 had 3, 4, 105, 320, and 1264 such pairs,
with an average corrected bulk VAF ratio of 1.36 ± 0.13,
1.61 ± 0.25, 1.72 ± 0.61, 1.40 ± 0.39, and 1.69 ± 1.19
respectively. There were no such pairs in Patient 6.

Conclusions
The ddClone approach presented here exemplifies the
combined statistical strength of orthogonally derived
observations for inference of clonal populations from
NGS sequencing. Single cell sequencing methods are
continually improving; however, they will likely always
be limited by the effect of small DNA inputs and
sparsely sampled cell populations. Bulk methods, on the
other hand, will require computational deconvolution
approaches to disentangle the unobserved underlying
clonal constituents used to generate a measurement of
interest. Here we show that bulk and single cell measure-
ments when fused together with joint statistical inference
can overcome the limitations of both methods, leading
to more accurate inference. Single cell sequencing exper-
iments typically generate a bulk template as a control
sample, and so statistical integration can be ubiquitously
applied. In particular, we show how ddClone resolves
clonally mutually exclusive mutations which would oth-
erwise be co-clustered in bulk, therefore underestimating
the number of clones present in a sample of interest. We
note that samples analysed by ddClone from the ovarian
cancer study were heavily intermixed, as reported in [26],
representing a situation where multiple clones co-existed
in different anatomic sites at relatively equal prevalence.
This is similar to what might be observed in haematolog-
ical malignancies where relatively less anatomic isolation
of clones is the default model for clonality and thus clones
are likely to co-exist at equal prevalence [12]. Failure to
resolve clones in these scenarios could lead to poor and
spurious biological interpretation and underestimation of
tumour complexity. Multiple samples where clonal preva-
lences vary would lead to more accurate inference as
demonstrated by [2]; however, we show in the single sam-
ple scenario that ddClone can overcome under-clustering
ofmutations that arises frommultiple clones co-occurring
at near equal prevalences.
While the ddClone presents an advance in statistical

integration, several limitations remain. As investigators
continue to dissect longitudinal clonal dynamics through
temporal sampling, extensions to leverage statistical

signals across multiple samples will be necessary. Fur-
thermore, we expect the method will generalize well to
different single cell platforms offering longer reads with
phased mutations. However, considering more mutations
will come at a computational cost that may not scale to
whole genome dimensions. This may limit the utility of
ddClone in the case of whole genome analysis. In addi-
tion, we showed with theoretical and simulated ‘clean’
single cell data that single cell-only methods outperform
ddClone. This is expected and reflects, in the context of
future potential for accurate single cell methods, the need
for bulk observations to infer prevalence of clones may
diminish.
Analogously, there are some scenarios in which bulk

data may be a biased representation of the underlying
tumour, for instance, due to sampling from spatially sep-
arated regions of the tumour [26]. This may suggest that
investigators should take caution in matching samples
from single cell and bulk data.
We emphasize that multi-sample PyClone does not

constitute ground truth. For example, we observe some
erroneous clustering of mutations based on VAFs in
its results. Nevertheless, previous research demonstrates
that using samples from multiple regions or timepoints
improves the accuracy of the clonal structure inference
methods [8, 9, 27] since statistical strength can be bor-
rowed across multiple measurements. In this context,
we use multi-sample analysis as a convenient benchmark
against which we quantitatively assess performance using
single sample data. This may be suboptimal, and thus
our study illuminates the need to create ground truth
datasets either through extensive orthogonal measure-
ment or through engineered admixtures of related cell
populations in defined proportions.
We focused our work on point mutations in this report,

but other clonal marks such as structural variations and
epigenetic markers can be used to infer clonal composi-
tion and dynamics. Extensions to the model for features
with different statistical properties will be required to
integrate non-point-mutation features of the genome. The
use of Jaccard index to summarize the prior genotypes
in our model may be suboptimal, due to different noise
levels, among other reasons. We implemented an aug-
mented Jaccard index taking this asymmetry into account.
While for the majority of datasets it has marginal effect,
it improves the performance of ddClone in one of the
real datasets analysed here. Continued improvement of
summary statistics, including for example phylogenetic
models, to encode prior knowledge should lead to further
increases in accuracy.
Finally, the model we have proposed is unidirectional,

encoding single cell data as a Bayesian prior and bulk
data with a likelihood model. Future improvements may
be realized by implementing a bi-directional inference
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framework which iteratively improves predictions from
bulk data informed by single cell and single cell data
informed from bulk data. These limitations represent
open problems for future work stimulated by our con-
tribution here. We anticipate that our work here lays a
foundation upon which complementary bulk and single
cell measurements in cancer can be statistically integrated
to sharpen the investigator’s view of clonal dynamics. We
contend this is an important step towards ultimately real-
izing quantitative fitness properties leading to a deeper
understanding of cancer progression and morbidity in
patients.

Methods
Concepts and definitions
Given (1) variant allele counts and (2) copy number at
each genomic locus, (3) tumour cellularity, and (4) single
cell genotype data, our method infers (a) cellular preva-
lences and (b) cluster assignments for those genomic loci.
We review these notations below.

Variant allele counts. We assume that at each genomic
locus i, a total of di reads map to locus i, out of which
bi reads harbour the variant allele.

Variant allelic prevalence. The expected fraction of
reads, ξ , that harbour the variant allele. However,
this quantity is not observed directly; rather, we
observe, for each locus of interest, the number of
variant reads divided by the total number of reads in
all cells.

Copy number at each genomic locus. Copy number
variations influence the allelic prevalence ξ . An
example of this influence is shown in Fig. 12b, where
ξ = 2×5

2×1+3×3+3×5 = 5
13 .

Tumour cellularity, t. The fraction of cancer cells in the
sample. Hence the fraction of normal cells would be
1− t. We assume that tumour cellularity is estimated
independently from our model.

Cell genotype data. Let M denote the number of cell
genotypes in the tumour sample and N be the num-
ber of genomic loci in our model. Cell genotype data
is modelled as a binary matrix � ∈ {0, 1}M×N with
rows corresponding to cell genotypes and columns to
genomic loci. �m,n = 1 if the genotypem is mutated
at locus n. We assume in this work that cell genotype
data are derived from single cell sequencing studies.

The desired outputs are cluster assignments of genomic
loci and their cellular prevalences. Cellular prevalence φi
for a particular genomic locus i is defined as the frac-
tion of cells in the sample that harbour a mutation at that
genomic locus. For example, in Fig. 12b cellular preva-
lence for the depicted genomic locus is 5

9 . Thus 1−φi, the
fraction of cancer cells from the reference population, is
1 − 5

9 = 3
9 . We define the clonal prevalence of a genotype

to be the fraction of cells in the tumour sample harbouring
that genotype.

Notation
Let X = {x1, x2, . . . , xN } be the set of the N genomic loci
of interest, indexed by � = {1, 2, . . . ,N}.
We adopt the notation j : i for j ≤ i, j, i ∈ N to denote

{j, j + 1, j + 2, . . . , i}, a subset of successive integers.
We define a clustering of X as a partition T of its index

set � , that is, T = {T1,T2, . . . ,TK } such that �k∈1:KTk =
� where K is the number of partitions, � denotes the
disjoint union operator, and each subset Tk is called a
cluster.

Fig. 12 Hypothesized sitting arrangement in ddCRP/subpopulation assumptions in the bulk data. a Induced table sitting T(C) by a particular
customer connection configuration C. Bold arrows show customer connections and dotted arrows point to equivalent table sittings. Since customer
7 only has a self-loop, the corresponding table has only one customer. b Our assumption about clonal architecture in the tumour with respect to a
particular genomic locus. In this example, normal subpopulation represents a collection of un-mutated diploid cells. Reference subpopulation
comprises cells that have a copy number amplification event, but no single nucleotide mutations. Variant subpopulation is a collection of cells that
have an SNV at the particular genomic locus
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We define xA for A ⊂ � to be {xi|i ∈ A}. For exam-
ple, xTk is the set of data points in cluster Tk and xi:j =
{xi, xi+1, xi+2, . . . , xj}.
Furthermore, let T(.) : N → Nmap data point indices to

their clusters, that is, T(i) = k iff i ∈ Tk .

Partitions of a graph
Let G(V ,E) denote an undirected graph G where V is the
set of vertices and E is the set edges, i.e. a set of unordered
pairs {u, v} ⊂ V . The set of edges E induces a partitioning
on V , where each connected component of V corresponds
to a cluster. With a slight abuse of notation, let T(E) =
T(G(V ,E)) denote this partitioning andTk

E
denote its k-th

cluster.
A directed graph G(V , E) consists in a set of vertices

V and a set of directed edges E where each edge is an
ordered pair of vertices. For a directed graph G, we define
its underlying undirected graph U(G) to be the graph
obtained by replacing all directed edges in G with undi-
rected ones. Let T(E) be the partitioning induced by
U(G), the underlying undirected graph of G. Throughout
this document the G corresponding to E is always appar-
ent from the context, with V always being the set of our
data points. Let TE : N → N map vertex indices to their
clusters, that is, TE (i) = k iff i ∈ Tk

E .

Traditional CRP
ddCRP can be explained through an alternative repre-
sentation of the Chinese restaurant process (CRP). We
follow the notation in [21]. In the traditional CRP, cus-
tomers enter a Chinese restaurant and opt to sit at a
table where the probability of joining a table is propor-
tional to the number of customers already sitting at that
table. Customers may also choose to sit at a new table
with probability proportional to α, a model parameter. In
the Chinese restaurant metaphor, customers represent the
genomic loci and tables represent clusters [28].
Let zi denote the table assignment for customer i and

assume that customers 1 : i−1 have occupied tables 1 : K ,
and let nk be the number of customers sitting at table k.
The customer sitting configuration induces a partitioning
of customer indices. The CRP draws zi as in Eq. (1).

p
(
zi = k|z1:(i−1),α

) ∝
{
nk for k ≤ K
α for k = K + 1 (1)

Alternative representation of traditional CRP
Traditional CRP can equivalently be viewed as customers
joining other customers instead of joining other tables. Let
ci denote the customer index with whom customer i is
sitting and C = c1:N .
This defines a directed graph G(V , E) with V the set of

customer indices and E the set of ordered pairs (i, ci).

As described above, this induces TE = T(C), a parti-
tioning of customer indices. Each cluster corresponds to
a table in the traditional representation. Figure 12a shows
an example C and its corresponding T(C).
In a generalization of this model, the probability for

a customer i to connect to a customer j is proportional
to a function of the distance between them. The dis-
tance matrix D encodes our knowledge about the data
points’ dissimilarity from a secondary source. In this work,
this distance matrix is computed from the cell geno-
types derived from single cell genotyping experiments.
The non-increasing decay function f takes non-negative
finite values. This is summarized in Eq. 2.

p(ci = j|D,α) ∝
{
f
(
di,j

)
for i 	= j

α for i = j (2)

This defines the ddCRP model. We note that picking
a constant decay function f (x) = 1 reduces ddCRP to
traditional CRP, since in that case, Eq. (2) is identical to
Eq. (1).

The ddClone model
We assign each genomic locus to a customer. Through-
out this document, we use cell genotype data from single
cell genotyping studies to compute the distance between
genomic loci. We note that this is not a requirement of
the model, and other sources could be used to define
dissimilarity between genomic loci.

Distancematrix
We have used the Jaccard distance to form the distance
matrix D ∈ [0, 1]N×N between genomic loci. The Jaccard
distance is computed as 1 − JaccardIndex that is:

JaccardDist(A,B) = 1− |A ∩ B|
|A ∪ B| = 1−

∑M
i=1(Ai × Bi)

∑M
i=1(Ai + Bi)

(3)

where AM×1 and BM×1 are binary column vectors, each
representing a genomic locus. Intuitively, this assigns a
higher distance to genomic loci that co-occur less often
in the single cell genotypes and vice versa. We note that
our use of the Jaccard index to compute distances between
genomic loci is related to distance-based phylogenetic
inference methods [29].
As the Jaccard index is agnostic to the different FN and

FP noise rates inherent in the single cell data, we have
proposed and investigated an augmented (modified) Jac-
card distance (MJD). The results show that while over
simulated data, MJD has a marginal effect on ddClone’s
performance, using MJD substantially improves perfor-
mance over one of the real datasets. See Additional file 1
for the formulation and more details.
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Let λ = {s,α, a} be the collection of hyperparameters in
our model. For brevity, we first assume that these hyper-
parameters are fixed, and in Additional file 1 discuss their
resampling scheme.

Bulk population assumptions
Similar to PyClone, we make the simplifying assumption
that the clonal population in the bulk data, with respect
to a specific mutation, comprises three subpopulations:
the normal, the reference, and the variant subpopulations.
Figure 12b illustrates this assumption. To avoid confusion
with the cell genotype states coming from the single cell
sequencing study, we refer to the assumed copy number
of the subpopulations in the bulk data as locus geno-
types. This data is usually not available directly from the
bulk data and has to be inferred or accounted for in the
inference procedure.

Locus genotype state priors
Let ψi = (

giN , giR, giV
) ∈ (N0 ×N0)3 represent the assumed

locus genotype state at each genomic locus i in the bulk
data where N0 = N ∪ {0}.
Let giN represent the normal locus genotypeN, giR repre-

sent the reference locus genotype R, and giV represent the
variant locus genotype V. Each giS is a pair of non-negative
integers that denote the copy number for the locus geno-
type S ∈ {N ,R,V } at the genomic locus i. For example,
giN = (2, 3) means that the normal locus genotype in the
bulk tumour sample has two copies of the reference allele
and three copies of the variant allele at genomic locus i.
Here (0, 0) denotes a homozygous deletion. For g ∈ G =
N0 ×N0, let ζ : G → N0 be the total copy number of locus
genotype g. We define μ(g), the probability of sampling a
variant allele from a subpopulation with locus genotype g,
as follows:

μ(g) =

⎧
⎪⎨

⎪⎩

ε forb(g) = 0
1 − ε forb(g) = ζ(g)
b(g)
ζ(g) otherwise

where ε is the sequencing error probability, the probabil-
ity of observing a variant allele when sequencing a true
reference allele.
To capture the effects of locus genotypes, cellular preva-

lence, and tumour cellularity, we define ξ(ψ ,φ, t) as fol-
lows:

ξ(ψ ,φ, t) = (1 − t)ζ(gN )

Z
μ(gN ) + t(1 − φ)ζ(gR)

Z
μ(gR)+

tφζ(gV )

Z
μ(gV )

where Z = (1 − t)ζ(gN ) + t(1 − φ)ζ(gR) + tφζ(gV ) is the
normalizing constant.
To compute the likelihood, we sum over possible values

ofψi. Since the discrete space of� values quickly becomes
intractable, we only consider a limited number of locus

genotypes. This is done by defining an informative prior
πi over ψi (more details are given in Additional file 1).

The likelihood function
Given the priors over locus genotypes, the emission likeli-
hood for one locus is:

p (bi|φi, di,πi, t) =
∑

ψi∈G3

p (bi|φi, di,ψi, t) p (ψi|πi) (4)

To address overdispersion, we have modelled the condi-
tional distribution of variant allele counts bi with a beta-
binomial distribution, characterized in terms of mean and
precision as follows:

p(b|d,m, s) =
(
d
b

)
B(b + sm, d − b + s(1 − m))

B(sm, s(1 − m))
(5)

where B is the beta function. To reflect our assumptions
over the sample sub-population structure, we set themean
value to a function of locus genotypes, cellular preva-
lence, and cellularity for each data point, that is, m =
ξ(ψn,φn, t). To reduce the number of parameters, all loci
share the same precision s.

Synthetic data simulation
Single cell instantiation
To simulate cells, we first sample observed prevalences
� = {�observed

1 ,�observed
2 , . . . ,�observed

M } for each geno-
type from a Dirichlet distribution �observed ∼ Dir(λ�),
where � = {�1,�2, . . . ,�M} are the true prevalences
for genotypes 1 to M. We then simulate m cells from
a multinomial distribution with parameters �observed,
i.e. (n1, n2, . . . , nM) ∼ Mult(�observed) where ni is the
number of cells that have genotype i. This process
is equivalent to sampling the cells from a Dirichlet-
multinomial distribution, that is, (n1, n2, . . . , nM) ∼
Dirichlet-multinomial(λ�). The larger the λ is, the closer
are the two vectors �observed and �. In fact, as the value of
λ grows, the Dirichlet-multinomial distribution progres-
sively better approximates the multinomial distribution.
For each dataset, we represent the average error between
true and observed prevalences by e� = 1

M
∑M

1 |�i −
�observed

i |, the average absolute difference between true
and observed genotype prevalences. We measure the dis-
crepancy between the true and the observed prevalences
by the number of absent genotypes in the samples of cells
and by e�, the average error between true and observed
prevalences.
For λ = 0.01, on average only about 1 out of 10 geno-

types is observed in the sampled cells and e� = 0.17. In
contrast, when λ = 1000, on average, more than 9 out
of 10 genotypes are observed and observed prevalences
closely resemble the true genotype prevalences (e� =
0.008).
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Modelling doublet noise
Assume K cells c1, c2, . . . , cK with genotypes �c1 ,�c2 , . . . ,
�cK are trapped in a well wd, where �ci correspond to
rows in the binary genotype matrix � as defined in the
Methods section. We define the reported genotype for wd
as the logical OR between genotypes of its constituent
cells, i.e. �Wd = �c1OR�c2OR . . .OR�cK . In this study
we assume that, for a doublet, exactly two cells are trapped
in a well simultaneously (K = 2).
For a fixed value of rdoublet, we first sample m cells as

the original set. Second we sample an extra rdoublet ∗ m
cells to act as co-trapped cells. Finally, we randomly pick
rdoublet ∗ m of the original set and combine each with one
of the cells from the co-trapped cells by recording the
logical OR of their respective genotypes. These consti-
tute the doublets. Algorithm 1 shows the pseudo code for
simulating doublets.

Algorithm 1 Simulating doublet noise
1: procedure SIMULATEDOUBLETNOISE (m, rDOUBLET,�)
2: NtrappedCells ← round(rdoublet × m)

3: originalCells ← sampleCells(�,m)

4: trappedCells ← sampleCells(�,NtrappedCells)
5: noisyCells ← originalCells
6: for i in 1 : NtrappedCells do
7: Randomly pick without replacement a cell ci from

originalCells
8: noisyCells[ci]← noisyCells[ci] OR trappedCells[i]
9: end for

10: return noisyCells
11: end procedure

In Algorithm 1, sampleCells(�,m) is a method that,
given a genotype matrix �, returns an array X of size m,
where the i-th itemX[ i] is a row in the genotypematrix�.

Modelling allele drop-out noise
To simulate the effect of ADOs, we first pick m
cells from a multinomial distribution with parameters
equal to the true prevalence of each genotype, that is,
(n1, n2, . . . , nM) ∼ Mult(�), where ni is the number of
cells that have genotype i,

∑M
i=1 = m, and � is the true

prevalence of each genotype. This results in a binary cell-
genotype matrix G ∈ {0, 1}m,M with rows corresponding
to sampled cells and columns corresponding to genomic
loci where Gi,j = 1 if cell i is mutated at locus j. We
assume that ADO affects a cell by turning a mutated locus
into an unmutated one and causing a false negative error.
When an unmutated locus is affected, it mimics a deletion
and does not alter the genotype matrix. At a fixed ADO
rate, rADO, we randomly pick rADO of the mutated loci
across all sampled cells and set their value to zero. This
constitutes the modified binary matrix G that we use as

input to ddClone. Algorithm 2 shows the pseudo code for
simulating allele drop-out noise.

Algorithm 2 Simulating allele drop-out noise
1: procedure SIMULATEADONOISE (m, rADO,�)
2: NdroppedAlleles ← round(rdoublet × m)

3: G ← sampleCells(�,m)

4: mutatedLoci ← {(i, j) : G[i, j]= 1}
5: droppedLoci ← randomly pick NdroppedAlleles loci

from mutatedLoci
6: for (i, j) in droppedLoci do
7: G[i, j] ← 0
8: end for
9: return G

10: end procedure

Inference
We use a Gibbs sampler to draw samples from the pos-
terior distribution of the model. We initialize the sampler
such that all customers are in their own clusters. Let c−i
be the customer connection configuration with customer
i’s outgoing connection removed. Let xi = (bi, di) denote
the observed data, namely, variant and total allele counts.
The full conditional distribution of ci is:

p (ci|c−i, x1:N , λ) ∝ p (ci|λ) p (x1:N |ci, c−i, λ) (6)

where p(ci|λ) is the same as Eq. (2) and λ is the set of all
hyperparameters. Let xTk be the set of customers in clus-
ter Tk or, equivalently, the set of customers sitting at table
k, then the likelihood term factors in:

p(x1:N |c−i, ci = j, λ) =
∏

Tk∈T(C)

p
(
xTk |λ

)
(7)

where T(C) is the partitioning induced by current cus-
tomer connection configuration C. The term p(xTk |λ)

further expands as:

p
(
xTk |λ

) =
∫

⎛

⎝
∏

i∈Tk

p (xi|θ , λ)

⎞

⎠ p(θ |λ)dθ (8)

where the likelihood p(xi|θ , λ) = p(bi|φi, di,πi, t) is the
same as Eq. (4).
Since our prior over cellular prevalences φi is non-

conjugate to the likelihood, we resort to a cached version
of Griddy Gibbs method [30] to compute the above inte-
gral. At the end of each iteration (i.e. when all customers
are reassigned), we sample φk for each cluster k as follows:

φk ∼ p
(
φk|xTk ,πTk , t, λ

) ∝ p
(
φTk |λ

)
p

(
xTk |φTk , λ,πTk , t

)

(9)
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where p(φTk |λ) is the probability density function of a
uniform distribution.

Approximating λ in real datasets
First, we computed, for simulated datasets with various
values of λ, the concordance between bulk and single cell
data as measured by the coefficient of determination (R2),
that is, how well mutation cellular prevalences (φ) esti-
mated from the bulk data correspond to that estimated
from the single cell data.
We then measured the observed concordance between

mutation cellular prevalences as estimated from bulk
data by multi-sample PyClone (for TNBC xenograft and
HGSOvCa datasets) or corrected bulk VAFs (for the ALL
dataset) and single cell data. Lastly, we compared at what
value for λ, the R2 value in the simulated dataset matched
the R2 value of each real dataset. The estimated λ val-
ues are 1.13 ± 0.31, 2.00 ± 0.21, and 2.24 ± 0.21 for
the HGSOvCa, TNBC, and ALL datasets respectively. For
the ALL dataset, in computing the coefficient of determi-
nation, we set aside the outlier Patient 5 which had an
R2 = 0.08. We note that since single cell data in the real
dataset are affected by sources of noise other than sam-
pling distortion, including doublets and ADOs, the above
procedure overestimates λ.

Clustering summarization
To cluster genomic loci we first compute the posterior
similarity matrix and then maximize the PEAR index to
compute a point estimate [31] as implemented in the
R package mcclust [32]. We estimate the cellular preva-
lence for each genomic locus as the mean of after burn-in
Markov chain Monte Carlo (MCMC) samples.

Computational complexity
Computing the distance matrix takes O(N2M) where N
and M are the rows and columns of the input matrix
to ddClone. In the intended use of ddClone, the input
matrix would be the binary genotype matrix �, in which
case N is the number of genotypes and M is the num-
ber of genomic loci. Computing the clustering result takes
O(M2). The complete analysis with 10,000 MCMC itera-
tions on a machine with 40x cores of Intel Xeon 2.20GHz
CPU and 500GB of RAM, for a dataset of 37 genomic
loci, takes about 6 hours (365.9 ± 47.32 minutes) to finish
(averaged on 4 samples from Patient 2 in the HGSOvCa
dataset).
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Additional file 4: Real data benchmarks. An excel file containing the
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measured against these results. (XLSX 32 kb)
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xenograft and ITH HGSOvCa datasets as well as the MEMs merged by
PyClone and multi-sample PyClone. (ZIP 7 kb)
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