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Abstract

The study of epigenetic heterogeneity at the level of individual cells and in whole populations is the key to
understanding cellular differentiation, organismal development, and the evolution of cancer. We develop a statistical
method, epiG, to infer and differentiate between different epi-allelic haplotypes, annotated with CpG methylation
status and DNA polymorphisms, from whole-genome bisulfite sequencing data, and nucleosome occupancy from
NOMe-seq data. We demonstrate the capabilities of the method by inferring allele-specific methylation and
nucleosome occupancy in cell lines, and colon and tumor samples, and by benchmarking the method against
independent experimental data.
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Background
The epigenetic state of a particular genomic region is the
combined configuration of the epigenetic modifications
in the region, including DNA (CpG) methylation, nucleo-
some positioning, and histone modifications. Such states
are important regulators of many biological processes in
health and disease, and at many different biological lev-
els, for example gene regulation, cellular differentiation,
and organismal development [1–3]. To understand the
biological consequences of CpG methylation and nucleo-
some positioning, it is, therefore, important to be able to
extract reliable epigenetic information from genome-wide
sequencing data using statistical methods.
A particularly challenging problem for statistical epi-

genetic inference is the possible heterogeneous nature of
the epigenetic states [4, 5]. Heterogeneity occurs at the
population level, for example, in relation to cellular devel-
opment and differentiation [6], and in the evolution of
cancer [7, 8]. It also occurs at the level of individual cells
in the form of allele-specific methylation (ASM) [9–13].

*Correspondence: wiuf@math.ku.dk
1Department of Mathematical Sciences, University of Copenhagen, 2100
Copenhagen, Denmark
Full list of author information is available at the end of the article

ASMmight stretch over many kilobases, and is associated
with genomic imprinting [9, 14] and generally with genetic
variants underlying phenotypic differences and complex
diseases [13, 15]. Statistical methods that are able to call
regions with ASM, and to infer and differentiate between
different stable common epi-alleles in a biological sample,
are therefore desirable. We have developed a stand-alone
package, epiG, for this purpose.
The method epiG takes as input whole-genome bisulfite

sequencing (WGBS) data [4, 16, 17]. It is a likelihood-
based method that clusters reads into epi-allelic hap-
lotypes based on sequence similarity, while taking into
account experimental errors and biological noise. It out-
puts the dominating epi-allelic haplotypes of a genomic
region of interest, annotated with an inferred CpGmethy-
lation and single nucleotide polymorphism (SNP)/somatic
nucleotide variant (SNV) profile for each epi-allelic hap-
lotype. The method makes use of prior information on
base-calling quality, bisulfite conversion efficiency, and a
reference SNP database. Recently, a protocol (NOMe-seq)
for simultaneously assessing nucleosome positioning and
CpG methylation genome-wide has been developed [18].
epiG has a NOMe-seq track that additionally performs
inference on nucleosome occupancy.
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State-of-the-art methods for WGBS methylation anal-
ysis infer CpG methylation position-wise, reporting a
degree of methylation for each CpG site, e.g. [19–21].
Consequently, these methods do not allow for profil-
ing of epigenetic haplotypes. Several methods exist for
detecting differentially methylated regions, in particu-
lar with the aim of identifying ASM genes [9, 22, 23].
These methods, too, do not profile epigenetic haplotypes
directly.
We demonstrate the applicability of epiG by inferring

ASM and dominating epi-alleles in tumor and non-tumor
WGBS samples. Also, we infer nucleosome positioning in
two NOMe-seq samples from cell lines. By benchmark-
ing with independent experimental data, we demonstrate
that epiG calls CpG methylation states and genotypes
correctly.

Results and discussion
It is not straightforward to extract precise DNA methyla-
tion profiles from raw WGBS data due to the complexity
of the bisulfite conversion process [17].
Figure 1 illustrates the conversion of genomic DNA into

sequenced reads via bisulfite conversion, PCR amplifica-
tion, and genomic mapping. For a single DNA fragment,
the strand and the methylation status (top of Fig. 1) can
be recovered from observed error-free reads (bottom of
Fig. 1), as shown in Table 1. This is possible because
an unmethylated C in a C-G site, with C on the forward
strand, is converted into U by bisulfite conversion. After
PCR amplification and genomic mapping, this results in
an observed T-C site, that is, some reads with T and some
reads with C in the matching position. Similarly, a G-
C site with an unmethylated C becomes a G-A site after
conversion, amplification, and mapping. Thus, the reads
with T (G) unambiguously come from the forward strand,
whereas the reads with C (A) unambiguously come from
the reverse strand (see Table 1).
Our method is based on the above insight. The pri-

mary goal of epiG is to infer dominant epi-allelic haplo-
types (or epi-alleles) by grouping similar reads together
to form chains of consecutive reads, called haplotype
chains. These will vary in length depending on read
length, sequencing depth, and data quality. In addition,
the method provides information about genomic and
epigenomic variation in the form of

• CpG methylation status
• Nucleosome occupancy (with NOMe-seq data)
• SNPs and SNVs

We use a read mapper (BSMAP [24]) to map reads
to the reference genome (hg19). The performance of
epiG depends on a number of user-adjustable param-
eters. These parameters control how noise is treated

Fig. 1 Bisulfite conversion. The DNA fragment is shown at the top as
two complementary sequences. There are four possible base pairings
of nucleotides and with C possibly methylated, this yields six different
pairs in total, all of which are shown at the top of the figure. Bisulfite
conversion converts the forward strand into the left sequence and the
reverse strand into the right sequence, by changing unmethylated C
into U and leaving methylated C as C. Subsequent PCR amplification
results in four pairwise complementary types, where U is changed to
T, which causes a change to A on the complementary strand.
Alignment of the reads to a reference genome results in two types,
which are both read in the forward direction. Comparing the two
reads yields six possible pairs of nucleotides. If there are no
sequencing and PCR errors, then these six (out of 16) are the only
possible pairs of nucleotides that might be observed in reads from a
single DNA fragment. Each pair in the observed reads, for example
A-A, corresponds to a unique pair in the DNA fragment, here A-T

and how reads are clustered together to form haplotype
chains. epiG starts by assigning each read to its own
haplotype chain and then, iteratively, it improves the hap-
lotype chains by re-assigning reads to chains one at a
time, using an optimization procedure and prior genetic
information. Each haplotype chain is characterized by an
inferred DNA sequence annotated with CpG methyla-
tion and SNPs/SNVs. Noise and low frequency haplotype
chains might further be filtered out by removing haplo-
type chains formed by few reads.
Figure 2 shows an example of three distinct haplo-

type chains inferred from a region on chromosome 20
from a colon tumor sample (see ‘Methods’). One chain
is completely unmethylated, while another chain is fully
methylated. The last chain is partly methylated. Com-
pared to a consensus method that outputs the average
degree of methylation across all reads (irrespective of their
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Table 1 Observed reads and the true epigenetic states

A Read 1 T C G G A T

Read 2 C C G A A T

5′ → 3′ C
me
C G G A T

3′ → 5′ G G
me
C C T A

B Read T C G A

5′ → 3′ C/T
me
C /C G G/A

3′ → 5′ G/A G
me
C /C C/T

The conditions for epigenetic inference are optimal if there are no sequencing and
PCR errors. The table shows inference on the true epigenetic states from reads from
a single DNA fragment
A. If error-free reads are available from both strands, one of six possible pairs of
nucleotides might be observed at each site by comparing reads, as shown in the
two top rows of the table (see also Fig. 1). In each case, the epigenetic state and the
strand direction can be inferred unambiguously. For example, if G and A are
observed, then the 5′ → 3′ strand has G, while the 3′ → 5′ strand has C
unmethylated
B. If reads from only one strand are observed, then inference is in general
inconclusive. For each of the four possible nucleotides that might be observed, the
true epigenetic state and the strand direction cannot be inferred unambiguously.
For example, if T is observed in a read, then the true epigenetic state of the
fragment might be C-G or T-A, depending on whether the observed T comes from
the 5′ → 3′ strand or the 3′ → 5′ strand. For correct epigenetic inference, it is,
therefore, important that reads originating from both strands are observed

epi-allelic haplotype), our method provides information
about linkedmethylated sites on the same epi-allele as well
as epi-allelic diversity.
In the following, we applied epiG to publicly available

WGBS data sets and to two NOMe-seq data sets from
our own lab. See ‘Methods’ and Table 2 for naming of

and a description of the data sets. For all data sets, epiG
default parameters were used. See ‘Methods,’ Table 3, and
Additional file 1 for details.

Allele-specific methylation
To illustrate the performance of epiG to detect ASM,
we ran epiG on the four WGBS data sets (WA9, colon
normal A, colon normal B, and colon tumor B; see
Table 2 and ‘Methods’) near genomic regions that are
known to be allele-specific methylated. None of these
data sets were used for this or similar purposes in the
original publications [15, 25, 26]. We focused particularly
on two well-described ASM regions, namely the GNAS
locus on chromosome 20 and the H19 non-coding gene
on chromosome 7, both of which are known imprinted
regions [9].
In the ASM regions near the GNAS locus, we find either

fully methylated or fully unmethylated epi-alleles, strongly
suggesting that there are two dominating epi-allelic hap-
lotypes (see Fig. 3).
The paternal copy of the H19 gene is usually methy-

lated and silent while the maternal copy is hypomethy-
lated or unmethylated [27]. We reach the same con-
clusion from three of the four data sets, except for
the WA9 sample, which shows consistent methylation
and a single epi-allelic haplotype throughout the region
(see Fig. 4). This observation is in accordance with the
previously described timing of H19 gene activation to
the peri-implantation stage of human embryo develop-
ment [28]; thus, this illustrates the applicability of epiG

Fig. 2 Example of haplotype chains. Illustration of the inferred haplotype chains in a 250-bp region (position 57,415,050–57,415,300 on chromosome
20) in the GNAS locus from colon tumor B (see ‘Methods’). One major and two minor chains are inferred. The major chain is fully methylated while
one of the minor chains is completely unmethylated. Each line is one read (green), with paired reads on the same line. Converted CpGs are marked in
black. Bases not matching the reference genome are marked in red and are indicative of sequencing errors. The reads in the top part of a chain have
an inferred forward direction, while the reads in the bottom part have an inferred reverse direction. After assigning reads to haplotypes chains, the
epigenotype of a chain is inferred from all reads in the chain. The epigenotype is shown in themiddle of each chain. An open circle is an unmethylated
CpG site and a closed circle is an methylated CpG site. The chains continue beyond the right end point, but are cut for illustrative purposes
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Table 2 WGBS and NOMe-seq data sets

Mapped Read/
Sample name Description Method Layout reads paired length GEO Ref

WA9 Human embryonic stem cell line WGBS Paired 1360M 100/186 GSM1521762 [25]

Colon normal A Sigmoid colon tissue WGBS Single 1703M 101/ – GSM983645 [26]

Colon normal B Primary colon adjacent to tumor tissue WGBS Paired 789M 100/191 GSM1204466 [15]

Colon tumor B Colon primary adenocarcinoma WGBS Paired 807M 100/191 GSM1204465 [15]

PrEC Prostate epithelial cells NOMe-seq Paired 293M 73/128 GSE94361 –

LNCaP Prostate adenocarcinoma cell line NOMe-seq Paired 329M 100/146 GSE94361 –

In the text, we refer to the data sets by their sample names. The data sets colon normal A, PrEC, and LNCaP have lower data quality than the other data sets. The read/paired
length is approximate. See Additional file 1: Figure S28 for the position-wise read depth for all samples
WGBS whole-genome bisulfite sequencing

in the study of ASM during embryonic development
and cancer.
The region ∼2–4 kb upstream of H19 is the imprinted

control region H19-ICR, which is required to establish
parent-of-origin imprinting of H19 [29]. Essentially, we
find a single epi-allelic haplotype in this region for each
sample. It is methylated in WA9, but has a mixed methy-
lation pattern in the three colon samples with chunks
of unmethylated CpGs. If methylated, as in WA9, the
upstream IGF2 gene is activated and H19 expression is
silenced [29].
Figure 5 shows summary statistics for different genomic

regions in the four different samples. For allele-specific
methylated regions (AMRs), we generally find one or two
distinct haplotype chains, while for other regions (promo-
tor, exon, and randomly selected regions), we generally
find one haplotype chain, indicating that both DNA copies
of a region are methylated in the same way. Additional file
1: Figures S1–S18 show that the number and extent/length
of haplotype chains in 18 AMRs [9] in the four sam-
ples generally are in high agreement. The position-wise
variance of the number of haplotype chains is as low as
0.22 across all positions and AMRs. In contrast, randomly

Table 3 Default parameter values for WGBS and NOMe-seq data

WGBS WGBS
Parameter single paired NOMe-seq

α 0.95 0.95 0.95

β 0.05 0.05 0.05

K0 40 50 40

K1 1 2 0

K2 0 0 0

K3 0 0 2

q 0.9999 0.9999 0.9999

See also Additional file 1: Table S1. K0 and K1 are put to different values for single
and paired reads, because paired reads are generally longer than single reads (see
Table 2). The default values for α and β are conservative estimates of the failed
bisulfite conversion rate and the inappropriate bisulfite conversion rate, respectively
[32, 36]
WGBS whole-genome bisulfite sequencing

assigning one or two chains to each region would yield a
variance of 1.

Nucleosome occupancy
The NOMe-seq protocol was developed for simultane-
ously assessing nucleosome positioning and DNA methy-
lation genome-wide [18]. This protocol uses the ability
of the M.CviPI methyltransferase enzyme to methylate
the cytosine in a GpC dinucleotide in accessible chro-
matin. Thus, M.CviPI treatment of intact cell nuclei can
demarcate the nucleosome positioning of cells. Follow-
ing bisulfite conversion and whole-genome sequencing,
it is, therefore, possible to infer nucleosome position-
ing using artificial GpC-methylation as well as endoge-
nous DNAmethylation at CpG dinucleotides on the same
molecule [18].
Only isolated GpC sites (DGCH sites, or sites not bor-

dering C to the left and G to the right; see ‘Notation
and definitions’ in ‘Methods’) can be used for nucleosome
inference, as otherwise the signal might be confused with
endogenous CpG methylation [18].
We applied epiG to NOMe-seq data from the PrEC and

LNCaP samples from our own lab (see Table 2 and
‘Methods’). CTCF binding sites have been shown to have
characteristic DNA methylation and nucleosome occu-
pancy patterns. Figures 6 and 7 show an example of
nucleosome inference near a CTCF site where different
epi-allelic haplotypes can be distinguished. In some of
these, the CTCF site is inaccessible due to protein bind-
ing. As nucleosome positioning is dynamic and varies
across cells, inference on nucleosome length and position
is uncertain except in regions where stable nucleosomes
are expected [30, 31]. When averaging over many CTCF
sites, we see a clear periodic pattern, like what is reported
in [18] (see Additional file 1: Figure S19).

Noise reduction
We are mainly interested in the dominant epi-alleles of
a sample. Therefore, we filter out minor epi-alleles and
reduce noise by excluding haplotype chains with few reads



Vincent et al. Genome Biology  (2017) 18:38 Page 5 of 16

a

W
A

9

0.00

0.25

0.50

0.75

1.00

M
et

hy
la

tio
n 

le
ve

l

b

C
ol

on
 n

or
m

al
 A

0.00

0.25

0.50

0.75

1.00

M
et

hy
la

tio
n 

le
ve

l

c

C
ol

on
 n

or
m

al
 B

0.00

0.25

0.50

0.75

1.00

M
et

hy
la

tio
n 

le
ve

l

d

C
ol

on
 tu

m
or

 B

0.00

0.25

0.50

0.75

1.00

M
et

hy
la

tio
n 

le
ve

l

e

GNAS AS1

GNAS

LOC101927932

R1 R2

Fig. 3 (See legend on next page.)



Vincent et al. Genome Biology  (2017) 18:38 Page 6 of 16

Fig. 3 (See figure on previous page.)
Epi-allelic profiling near the GNAS locus. Epi-allelic haplotypes of four samples in a 100-kb region near the GNAS locus with three known regions of
ASM (R1, R2, and R3; vertical dashed lines [9]). aWA9. b Colon normal A. c Colon normal B. d Colon tumor B. e CpG site density map (red) and known
genes (blue). In each of a–d, the horizontal bars are inferred epi-allelic haplotypes and the bar thickness represents the average number of reads per
position. The degree of methylation is shown in two ways. Firstly, the average methylation level of three consecutive CpGs in a chain is shown in
color, where green is for fully methylated CpG sites, purple for fully unmethylated, and white for neither. The haplotype overall methylation level is
the average methylation level of all CpGs in the whole chain. In all three regions, we clearly see ASM. The stem cell sample (WA9) shows only one
(unmethylated) epi-allele in R3. To the immediate right of R3, all four samples show consistently one unmethylated epi-allele. WA9 and colon
normal A are fully methylated outside the ASM regions, whereas a general loss of methylation can be seen in colon tumor B and partly in colon
normal B, which is tissue adjacent to the tumor. The density of CpGs is an important determinant of the length of the haplotypes. When the density
is low, haplotypes become shorter and more fragmented. ASM allele-specific methylation

or low read coverage per position. This is a post-inference
step that affects the number of reported haplotype chains
and howmany haplotypes are filtered out. Thus, the num-
ber and the form of the dominating haplotype chains (as
those in Figs. 3 and 4) are unaffected by this filtering step.
The depth fraction of a chain is defined as

Total base pairs in chain
Total base pairs overlapping the chain

,

where the total base pairs in chain is the sum of the lengths
of all reads in the chain and the total base pairs overlap-
ping the chain is the sum of the lengths of all reads in the
chains overlapping the particular chain.
We use the depth fraction to distinguish noise from

signal and do so by only keeping chains for which the
inequality

a ≤ chain length + b × depth fraction

holds, for some values of a and b. In general, this means
that we keep long chains and chains with a high depth
fraction. In all presented analyses, we used a = 10 ×
103 and b = 28.5 × 103 for paired layout WGBS,
and a = 5 × 103 and b = 20 × 103 for single lay-
out WGBS, based on empirical observations (see Fig. 8,
Fig. 9, and Additional file 1: Figures S20, S21, and S22).
With the chosen values, the main determinant of whether
a chain is kept or not is the depth fraction (see the
figures). As seen in the figures, a common feature is
a trail of haplotype chains with very low depth frac-
tion, corresponding to haplotype chains consisting of
very few reads. There is not a gold standard for setting
a and b.

a

b

Fig. 4 Epi-allelic profiling near the H19 gene. Epi-allelic haplotypes of the four samples in a 20-kb region around the H19 gene with one known ASM
region (vertical red lines [9]). a Horizontal bars are inferred haplotype chains and the bar thickness represents the average number of reads per
position. The average methylation level of three consecutive CpGs in a chain is shown in color, where green is for fully methylated CpG sites, purple
for fully unmethylated, and white for neither (the vertical position of a chain represents the average degree of methylation). WA9 has only one
(methylated) epi-allele in the entire ASM region, while the other three show one methylated and one unmethylated epi-allele. The unmethylated
region does not span the entire ASM region, which is compiled from 22 methylomes from cell lines and tissue samples (not including the colon) [9].
b CpG site density map (red) and known genes (blue). The region ∼2–4 kb upstream of H19 is the H19 imprinting control region (H19-ICR). ASM
allele-specific methylation
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a

b

Fig. 5 Summary statistics of the estimated haplotype chains. Collected statistics of the estimated haplotype chains over four different genomic
regions: promoters, exons, randomly selected regions, and known AMRs. For each type, except AMR, 100 regions where randomly chosen. For AMR,
18 known AMRs were used. See Additional file 1: Table S2 and [9]. For each region, haplotypes were estimated using the default configuration and
the noise was reduced as described in ‘Noise reduction’ in ‘Results and discussion.’ a The percentage of regions with only one chain, two
overlapping chains, and three or more overlapping chains for each region. The majority of regions, except AMRs, were covered by only one chain.
b The distribution of the average methylation level over the haplotype chains. Chains tend to be either fully methylated or completely
unmethylated. AMR allele-specific methylated region

Validation and benchmarking
In addition to the qualitative validation presented above,
we carried out quantitative validations. Specifically, we
measured the ability of epiG to infer position-wise methy-
lation and SNP genotypes by comparing epiG predic-
tions to measurements obtained from Infinium BeadChip
and SNP6.0 arrays, with details given below. The results
were also compared to results obtained using Bis-SNP
[20], a state-of-the-art method for inferring position-wise
methylation and genotypes from WGBS and NOMe-seq
data. Further, we investigated the robustness of epiG by
varying the default parameters.

Methylation validation
To evaluate the inferred methylation states, we used ∼18k
isolated CpG sites (HCGD sites; see ‘Notation and def-
initions’ in ‘Methods’) with high and low methylation
levels on the Infinium BeadChip from the LNCaP sam-
ple. We used isolated sites to distinguish endogenous
methylation frommethylation caused by the GpCmethyl-
transferase [18].

We first preselected the 5% of CpG sites with the highest
β value (high) and the 5% with the lowest β value (low)
on the Infinium BeadChip from the LNCaP sample (see
‘Methods’ for details). Subsequently, we removed all non-
isolated CpG sites and ended up with approximately 18k
isolated CpG sites for validation of which ∼8k have low
β values and ∼10k have high β values. We took high and
low as being the true methylation states of the sites. For
each of the 18k CpG sites, we then predicted the states
high and low from the methylation levels inferred by epiG
and Bis-SNP.
For epiG, the inferred level is the percentage of reads

with inferred CpG methylation. Bis-SNP outputs auto-
matically an inferred percentage for each site. We calcu-
lated the receiver operating characteristic (ROC) curves
for epiG and Bis-SNP (see Additional file 1: Figure S23),
and chose the thresholds that gave the best classifiers
for epiG and Bis-SNP. Specifically, we chose the thresh-
olds that minimized the squared sum FP2 + (1 − TP)2,
where FP is the false positive rate and TP the true posi-
tive rate. The inference failed for 1% (10%) of the sites for
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a

b

Fig. 6 DNA accessibility near a CTCF site. a Consensus DNA accessibility near a representative CTCF site at position 31,109,691 on chromosome 20 in
the LNCaP sample. The center of the CTCF site is at position 0 of the plot. Red line: consensus based on the two chains shown in (b); blue line:
consensus based on all reads. b The two dominating epi-alleles. Each point is an isolated GpC position. Black: methylated GpC position (DNA
accessible), white: unmethylated GpC position (DNA inaccessible). The approximate lengths of the inaccessible intervals are computed (black lines),
showing that the CTCF site appears to be flanked by nucleosomes (∼149 bp). In one epi-allele, the CTCF site appears to be inaccessible, potentially
due to binding of a protein. As nucleosome positioning is dynamic and the read coverage is low for these samples, the inferred intervals are uncertain

Fig. 7 Haplotype chains near a CTCF site. The inferred haplotype chains in a small 500-bp region near the CTCF site at position 31,109,691 on
chromosome 20 (same as in Fig. 6) in the LNCaP sample. Seven chains are found (black lines with open and closed circles). The two major chains are
also shown in Fig. 6. The reads (green lines) assigned to a haplotype chain are shown above (inferred forward direction) and below (inferred reverse
direction) the chain, with paired reads on the same line. Converted isolated CpGs are marked in blue and converted isolated GpCs in black. Bases not
matching the reference genome are marked in red and indicative of errors (sequencing or bisulfite conversion). After assigning reads to haplotypes
chains, the epigenotype of the chain is inferred from the reads: converted GpCs (solid black circles), unconverted GpCs (open black), and converted
CpGs (open blue; there are only two of these)
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Fig. 8 Depth fraction and length of haplotype chains. Plot showing
the lengths of haplotype chains against the depth fraction of the
chains in a 100-kbp region near the GNAS locus for the WA9 sample.
Each point is a chain and the size indicates the number of reads within
it. To reduce noise and to extract the dominating haplotype chains,
chains falling to the left of the straight line are removed as they either
have a short length or contain a low fraction of the reads in the region.
Green: removed chains. Brown: kept chains. The exact same cut-off was
applied to all samples in all analyses. The chains are plotted against
the genomic position in Fig. 9 and in Fig. 3 after the removal of noise

epiG (Bis-SNP). For epiG, these are sites not covered by
any reads or sites for which the sequenced nucleotide is
uncertain (N).
Using the optimized thresholds, in Fig. 10 we plotted the

fraction of true predictions against the read depth. Not
surprisingly, and for both methods, the accuracy increases

with read depth and was above 90% when the read depth
is higher than five reads.

Genotype validation
For SNP genotype validation, we selected all high-
confidence genotype calls (∼74k) on chromosomes 1
and 2 on the SNP6.0 array from the LNCaP sam-
ple (see ‘Methods’). The genotype calls on the array
were taken to be the true genotypes. Of the ∼74k
SNPs, 170 had zero read depth (no reads available) and,
hence, inference failed for both epiG and Bis-SNP for
these sites.
For epiG, the combined genotype is computed from the

haplotype chains with log-likelihood ratios F ≤ −15 or
|FR − FA| ≥ 15 (see ‘Log-likelihood ratios’ in ‘Meth-
ods’ for definitions). This is done to avoid haplotype
chains with very few reads affecting the combined geno-
type. The combined genotype is then the genotype rep-
resented by the remaining haplotype chains. For example,
if there are two remaining haplotype chains with geno-
type C and one with T then the combined genotype
is CT.
The overall result of the genotype validation can be

seen in Fig. 10. The performance differs for the differ-
ent SNP genotypes (see Additional file 1: Figure S24). It is
best for the homozygous genotypes and less good for the
genotypes AG and CT, where confusion with methylated
cytosines is possible.

Fig. 9 Inferred haplotype chains. The plot shows all inferred haplotype chains in a 100-kb region near the GNAS locus in the WA9 sample before
noise reduction, as Fig. 3. The depth fraction of a chain is plotted against its genomic position. The color indicates whether the chain is kept (brown)
or interpreted as noise (green). See Fig. 8
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Fig. 10 Position-wise methylation and SNP validation. Accuracy
plotted against read depth for epiG (solid line) and Bis-SNP (dotted line).
Blue lines are CpG consensus methylation predictions and red lines SNP
predictions. 95% confidence intervals are shown. The two methods
show comparable results. SNP single nucleotide polymorphism

Robustness
epiG depends on a number of user-adjustable parameters.
To investigate the robustness of the performance of epiG,
we varied the default parameters and compared the results
for different parameter choices. Of particular interest are
the following questions: (1) How does the methylation
and genotype validation depend on the parameters? (2)
How does the number of dominating haplotype chains
vary with the parameters? Different choices of parameters
might divide haplotype chains into several smaller chains
or create fewer longer chains by merging smaller chains.
An important issue is whether the number of chains over-
lapping a particular site in the genome remains the same
for different parameter values. Refer to ‘Methods’ and
Table 3 for a description of the parameters.
Additional file 1: Figure S25 shows the results of varying

the failed conversion rate α and the inappropriate con-
version rate β on the methylation calls. Specifically, we
calculated the area under the curve (AUC) of the ROC
curve, as in Additional file 1: Figure S23, for a grid of α and
β values (including the default values). The AUC changes
only by less than 2%, yielding high robustness in calling
methylation status.
Additional file 1: Figure S26 shows the influence of the

genotype prior on the genotype calls. The prior depends
on a single adjustable parameter q and uses informa-
tion from hg19 and dbSNP135 (optional), weighted by
q; see ‘Methods’ for details. If dbSNP135 is not used,
then epiG assumes there is only one possible genotype
for each genomic position, except for private mutations.
We repeated the genotype validation study on the same
∼74k SNPs using different configurations of the prior.
The percentage of correctly called AA and TT genotypes

is unaffected by the prior settings (including with and
without dbSNP135). For the genotypes CC and GG, the sit-
uation is different. Due to the bisulfite conversion process,
the true genotypes might be confused with the genotypes
CT and GA, respectively, if dbSNP135 is used. In fact, if the
read depth is high, we see a marked decline in the perfor-
mance, mainly for low q. This is not the case if dbSNP135
is not used. The calls of the heterozygous genotypes are
also affected by changes in the prior setting, again because
the bisulfite conversion process creates ambiguities in the
interpretation of the data. However, in this case dbSNP135
helps resolve ambiguities unlike for the CC and GG geno-
types. The percentage of correctly called SNPs increases
by up to ∼30 percentage points with the inclusion of
dbSNP135, depending on SNP type and read depth. Based
on these investigations, we advocate the use of dbSNP135
and a high q.
Note that these results might be extrapolated to non-

SNP positions as this corresponds to having a homo-
geneous genotype and not using dbSNP135. From the
discussion above, we conclude that epiG performs well for
non-SNP positions. The performance for private muta-
tions is not clear and could be negatively influenced by the
prior.
Additional file 1: Figure S27 shows that the number

of haplotype chains overlapping a particular site in the
genome essentially remains unchanged when varying the
values of K0 ≥ 10 (bp) and K1 ≥ 1 (CpG sites), which
control the required overlap between reads and haplotype
chains. This is, in particular, the case for the ASM regions.
However, individual haplotype chains might still be split
up or merged according to the values of K0 and K1.

Conclusions
Various statistical methods exist for drawing inference
on epigenetic patterns in general and ASM specifically.
Admixture models, e.g. as implemented in armfinder [9],
have been used to identify AMRs from WGBS data with-
out inferring the structure of the underlying epi-allelic
haplotypes. Other methods, such as Bis-SNP [20] and
Bismark [21], infer CpG methylation levels position-wise
(and they output the degree of methylation) from WGBS
data without distinguishing between epi-alleles.
We have developed a novel method to infer CpGmethy-

lation states from WGBS data and epigenetic states,
including DNA methylation and nucleosome position-
ing, from NOMe-seq data. The method groups similar
reads into haplotype chains, thereby making it possi-
ble to draw inference at the haplotype level rather than
at the nucleotide level alone. In particular, we have
demonstrated that epiG is able to infer allele-specific
methylated epi-alleles in different WGBS samples and
to reveal information about nucleosome occupancy in
NOMe-seq data. The separation of reads into distinct epi-
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allelic haplogroups is a first step in providing a statistical
method that is able to extract information about epige-
netic mixtures of cell populations and their frequencies,
and ultimately enable the comparison of epigenetic states
between cell types.
We benchmarked epiG against array data from prostate

cells grown in culture and showed that epiG performed
comparably to Bis-SNP with respect to position-wise
methylation. The software epiG is available for download
(see ‘Software’ in ‘Methods’ for details).

Methods
Statistical model
We first formulate a statistical model for WGBS (and
NOMe-seq) data based on the bisulfite sequencing pro-
tocol described in [17]. The model takes into account
sequencing errors, and failed and inappropriate bisulfite
conversions [32], as well as errors in methylation of GpC
sites (NOMe-seq data only) [18]. The model consists of a
conversion model and a sequencing model. See Fig. 11 for
the overall structure.
The true epigenotype of a position in a DNA fragment is

one of

C,G,A, T,
me
C , or G

me
,

representing the nucleotides cytosine, guanine, adenine,
and thymine, plus methylated cytosine and guanine com-
plementary to amethylated cytosine on the reverse strand,
respectively. (The epigenotype is haploid and not diploid
as is normally the case.) We observe the epigenotype
subject to two levels of noise: first of all, the DNA frag-
ment is potentially treated with GpC methyltransferase
(NOMe-seq), then bisulfite converted and PCR ampli-
fied. Secondly, it is passed through a sequencing machine.
For NOMe-seq data, we take the methylation state of the
enzyme-treated genome to be the true epigenotype.

We are interested in the probability of the observed
nucleotide D in a given position in a read as a function
of the epigenotype g and the strand r (fwd, rev) from
which the read originates. Both g and r are in this context
unknown parameters that we aim to estimate. The proba-
bility is modeled in two steps, reflecting the two levels of
noise.
First, we let Z be the nucleotide at the position in the

DNA fragment after conversion and PCR amplification.
The probability of Z depends on the parameters g and r,
the rate α of failed bisulfite conversions, and the rate β of
inappropriate bisulfite conversions. It is given in Table 4
and builds on the observations in Fig. 1.
Second, the probability of D given Z depends on the

reliability of the base-calling. We treat the reliability as
an additional parameter, ε, in the model and obtain
this parameter from the Phred sequencing quality scores
[33, 34]. Specifically, we put

P(D = d | Z = z) =
{
1 − ε, if d = z,
ε
3 , if d �= z,

for d, z = C,G,A, T. As we treat N as an unknown
nucleotide, we have P(D = N | Z = z) = 1. We have

P(D = d | g, r)
=

∑
z∈{C,G,A,T}

P(D = d | Z = z)P(Z = z | g, r)

=
(
1 − 4

3
ε

)
P(Z = d | g, r) + ε

3
, (1)

for d = C,G,A, T and P(D = N | g, r) = 1.
The model can be made position or context dependent

by changing the default settings (see Additional file 1).
In particular, the quality score always depends on the
position.

Fig. 11 Outline of the statistical model
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Table 4 The bisulfite conversion model

Epigenotype g

Z C G A T
me
C G

me

C ρ̂α 0 0 0 1 − ρ̂β 0

G 0 ρα 0 0 0 1 − ρβ

A 0 1 − ρα 1 0 0 ρβ

T 1 − ρ̂α 0 0 1 ρ̂β 0

The probability P(Z = z | g, r) of Z given the epigenotype g and the strand r. Here α

is the rate of failed bisulfite conversion and β is the rate of inappropriately
converted nucleotides. The parameter ρ is 0 if r = fwd, 1 if r = rev, and ρ̂ = 1 − ρ .
For example, P(Z = C | g = C, r = fwd) = α

Overview of the inference procedure
The sequenced reads come from different cells that might
or might not share epigenetic structure. Typically, we
find several non-compatible epigenetic haplotypes, as well
as reads that support a common, or similar, origin. We
call a collection of DNA fragments from the same epige-
netic haplotype for an epigenetic haplotype chain or just a
haplotype chain.
We propose an algorithm that does the following:

(1) Infer haplotype chains, that is, cluster the reads
according to their epigenetic haplotype.

(2) Infer the epigenotype of each position and strand of
each read in a haplotype chain.

These inference steps are done using a constrainedmax-
imum posterior procedure based on the model Eq. 1, as
described in the ‘Details of the inference procedure.’

Notation and definitions
Weuse standard nomenclature and letH be any nucleotide
different from G, and D be any nucleotide different from C
[35]. A CpG site is said to be isolated if the context isHCGD
and likewise, a GpC is said to be isolated if the context is
DGCH.
Let n denote the number of reads and bi the haplotype

chain of read i. If read i and j come from DNA fragments
with the same epigenetic haplotype, then bi = bj. The
strand of read i is called ri. We refer to B = (b1, . . . , bn) as
the haplotype structure and to R = (r1, . . . , rn) as a strand
assignment.
Each position in a haplotype chain has a unique

epigenotype. For a haplotype chain b, let

gb = (
gSbb, . . . , g(Sb+Lb−1)b

)
(2)

be an assignment of an epigenotype to each position in
the chain, where Sb is the start position of the chain
(with respect to a reference genome) and Lb the length
of the chain. We refer to gb as an epigenotype chain. The
collection of epigenotype chains, one for each haplotype
chain, is denoted by G and referred to as an epigenotype
assignment.

An epigenotype chain is said to be strand compatible, if
the epigenotypes of each CpG site are either CG or

me
C G

me
,

that is, if C is methylated on the forward strand, then
the C on the reverse strand complementary to G is also
methylated. In NOMe-seq mode, this is required only for
isolated CpG sites as well as all isolated GpC sites, for
which the epigenotypes should be GC or G

me

me
C .

Let g denote the nucleotide of an epigenotype g. For
example, if g = C, then also g = C and if g = me

C , then
g = C.

Feasible haplotype chains
For a haplotype chain b, let c(b, j) be the read depth of the
chain at position j, that is, c(b, j) ≥ 0 is the number of
reads in the chain overlapping position j. The range of the
haplotype is the interval [ Sb, Sb + Lb − 1] from the start
position of the first read of the chain until the end position
of the last read of the chain.
A haplotype chain b with epigenotype chain gb is said to

be feasible if

1. It has positive read depth throughout its range, that
is, if c(b, j) > 0 for all j ∈ [Sb, Sb + Lb − 1].

2. It consists of a single read, or it is obtained from
another feasible haplotype chain b′ by adding one
read ib, such that

(a) The overlap between b′ and ib is at least K0
positions.

(b) The overlap between b′ and ib contains at
least K1 CpGs, K2 isolated CpGs, and K3
isolated GpCs.

3. The epigenotype chain gb is strand compatible.

A haplotype structure B is said to be feasible if all haplo-
type chains of B are feasible. The haplotype structure that
assigns every read to its own haplotype chain is feasible.
Default values forK0,K1,K2, andK3 are listed in Table 3.

A high overlap between two reads makes it more likely the
reads originate from the same epi-allelic haplotype, than
a small overlap. However, if we require a large overlap,
few reads will cluster together, leading to many haplotype
chains with few reads. There is, therefore, a balance to
strike. If reads are long, we can in general ask for a larger
overlap than if reads are small. If two reads do not overlap
in any CpGs, then there is no epigenetic evidence they are
from the same epi-allelic haplotype. Hence K1 should be
at least 1.

Details of the inference procedure
The likelihood and priors
The haplotype structure B, the strand R, and epigenotype
assignment G are unknown parameters and will be
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inferred from the data. The parameters α,β , and ε will be
fixed (assumed known) in the inference procedure and not
estimated from the data.
The lengths of the reads are denoted by l1, . . . , ln. We

observe the nucleotide sequences(
di1, . . . , dili

) ∈ {C,G,A, T,N}li , i = 1, . . . , n,

of the n reads. In our data analyses, li is typically around
75–100.
With this in mind, the likelihood of the observed reads

is given by

L(B,G,R) =
n∏

i=1

li∏
j=1

P(D = dij | g(si+j)bi , ri),

where s1, . . . , sn are the start positions of the reads in the
genome. Here g(si+j)bi is the epigenotype at the jth position
in the ith read of the haplotype chain gbi containing the
read (see Eq. 2). The parameters α, β , and ε are suppressed
in P as they are not estimated from the data.
We add priors on B,G, and R. We use a uniform prior

on R, such that all strand assignments a priori are equally
likely. The prior on B controls the number of haplotype
chains, that is, the tendency of reads to be grouped into
the same haplotype chain (potentially at the cost of impos-
ing errors). The prior onG is derived from hg19 (reference
genome) and dbSNP135. The purpose of this prior is
to guide the inference in situations of low read depth,
abundant errors, or high methylation levels.

Optimization
The posterior likelihood for the optimization problem is
defined as

�(B,G,R) = π0(B)π1(G |B)L(B,G,R), (3)

where π0(B) and π1(G |B) are the priors on the haplotype
structure and the epigenotype assignment, respectively.
As the prior on R is uniform, it can be omitted. In other
words, �(B,G,R) is the likelihood of the data weighted by
π0(B) and π1(G |B).
The inference procedure updates estimates of B,G, and

R iteratively, such that the posterior likelihood increases
in each step. In the (k+1)th step, new estimates B̂k+1 and
R̂k+1 are proposed from the estimates B̂k and R̂k in the
previous step. Given B̂k+1 and R̂k+1, the optimal estimate
Ĝk+1 ofG can be computed directly (see Additional file 1).
The algorithm is guaranteed to converge in a finite num-
ber of steps. However, in rare cases, the final estimates are
found to be suboptimal (see Additional file 1). The initial
haplotype structure assigns all reads to their own haplo-
type chain. Note that if we do not use a prior on B, then
the algorithm will remain in the initial configuration, as
the likelihood does not increase by re-assigning reads to
other chains.

For further details and implementation, see Additional
file 1.

Priors
Let Ib denote the set of all reads in haplotype chain b,
hence Ib = {i = 1, . . . , n | bi = b}. The prior on B is
defined as

π0(B) ∝
n∏

i=1

√
Lbi

⎛
⎝∑

j∈Ibi
lj

⎞
⎠
2

.

The prior gives higher weight to longer chains as well as
to chains for which the total length of all reads is high. If
all reads have the same length, then

π0(B) ∝
n∏

i=1
n2i

√
Lbi ,

where ni is the number of reads in Ibi , and the prior simply
weights the number of reads in the chains to their length.
The exponents could be chosen in many ways. Here the
number of reads in a chain weights higher (exponent 2)
than the length of the chain (exponent 0.5); thus, we favor
thick chains to long (thin) chains. This is sensible, as we
are particularly interested in the dominating epi-alleles.
The general form of the prior is based on practical con-

siderations. The space of all haplotype structures B is a
highly complex space and for computational reasons is it
essential that the prior weight is relatively straightforward
to calculate.
We assume the prior π1(G |B) is of the form

π1(G |B) ∝
∏
j

∏
b∈B(j)

qI
(
gjb

)
(1 − q)1−I

(
gjb

)
,

where the first product is over all positions in the haplo-
type chains, B(j) is the set of haplotype chains overlapping
position j, gjb is the nucleotide of position j in chain b
(Eq. 2), and I(gjb) is 1 if the genotype is found in hg19 or
dbSNP135, and it is 0 otherwise (dbSNP135 is optional).
If q = 0.5, then π(G |B) is independent of hg19 and
dbSNP135 and gives the same prior weight to all obser-
vations. The prior serves two purposes: the main purpose
is to guide epiG in situations where the data might be
interpreted in different ways because the bisulfite conver-
sion process creates ambiguities; secondly, it weights the
likelihood of introducing private mutations. We take q =
0.9999 and use the same value of q for all data sets, even
though it might be reasonable to adjust the parameter
according to what is believed about the sample; for exam-
ple, cancer cells are generally more exposed to private
mutations than other cell types.
There is a missing normalization constant obtained by

normalizing the distribution π0(B)π1(G |B) to 1. It has no
influence on the estimation procedure. In practice, we,
therefore, ignore the normalization constant.
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Log-likelihood ratios
To assess the fitted epigenotypes, we compute three like-
lihood ratios. For a given haplotype structure and strand
assignment, we compute a log-likelihood for each haplo-
type chain b that assesses the significance of a particular
epigenotype x in position j in the chain,

�(x) =
∑
bi=b

logP(D = dij | x, ri),

where the sum is over all reads in the chain overlapping
the position (see Eq. 1). The dependence on b and j is
suppressed in �(x).
The log fit-ratio is defined as

F = 2
(
max
x�∈{g,g}

�(x) − max
x∈{g,g}

�(x)
)
, (4)

where g is the inferred epigenotype in the position. The
log fit-ratio measures how well the inferred epigenotype
(or the corresponding unmethylated nucleotide) fits com-
pared to any other epigenotype. It can take any value
since �(x) is only maximized as part of the full posterior
likelihood (see Eq. 3).
Additionally, the fit of the genomic reference nucleotide

(or the alternative nucleotide, if relevant) can be similarly
assessed:

FR = 2
(

max
x�∈{y,yme} �(x) − max

x∈{y,yme} �(x)
)

(5)

(similarly FA for the alternative nucleotide), where y
denotes the reference (or alternative) nucleotide and yme

denotes the methylated nucleotide when y = C,G. Again,
this quantity can take any value.

WGBS data
We downloaded four publicly available WGBS data sets
(see Table 2 and Additional file 1: Figure S28 for details).
All data sets were mapped to the hg19 reference genome
using BSMAP with the standard configuration [24]. For
a paired design, reads not properly paired were removed.
The bam file was sorted using Picard tools [37].

LNCaP and PrEC cell culture
LNCaP prostate adenocarcinoma cells and PrEC nor-
mal primary prostate epithelial cells were obtained from
the American Type Culture Collection (ATCC). LNCaP
cells were grown in RPMI 1640 with L-glutamine sup-
plemented with 10% fetal bovine serum, 100 U/ml peni-
cillin, and 100 μg/ml streptomycin (Life Technologies).
The authenticity of the LNCaP cell line was confirmed
by short tandem repeat analysis (www.identicell.dk).

PrEC cells were grown in Prostate Epithelial Cell Basal
Medium (ATCC) supplemented with Prostate Epithe-
lial Cell Growth Kit (ATCC). LNCaP and PrEC cells
were harvested at 80% confluence using Trypsin-EDTA
(Life Technologies) or Trypsin-EDTA for primary cells
(ATCC) and Trypsin Neutralizing Solution (ATCC),
respectively. For microarray analyses, genomic DNA from
PrEC and LNCaP cells was extracted using the Puregene
DNA purification kit (Gentra Systems) with proteinase
K treatment (100 U, 30 min at 55 °C), as described
previously [38].

Microarray analyses
All microarray analyses were performed by ser-
vice provider Aros Applied Biotechnology, Aarhus,
Denmark. For SNP genotyping of LNCaP and PrEC
cells, genomic DNA was labeled and hybridized to
the Genome-Wide Human SNP6.0 array (Affymetrix,
Santa Clara, CA, USA), as described previously [39].
SNP6.0 data processing and analysis were performed as
previously [39].
For methylation profiling, 1 μg of DNA was bisul-

fite converted, whole-genome amplified, and analyzed on
the InfiniumHumanMethylation450 BeadChip (Illumina,
San Diego, CA) according to the protocol provided by
the manufacturer. This array interrogates the methyla-
tion states of >485,000 CpG sites per sample at single
nucleotide resolution, where each investigated CpG site
is assigned a β value ranging from 0 (fully unmethylated)
to 1 (fully methylated), corresponding to the ratio of the
methylated signal divided by the sum of the methylated
and unmethylated signals. Normalized peak-corrected β

values were used.

Genome-wide nucleosome footprinting assay
NOMe-seq was performed as previously described [18].
Briefly, exponentially growing cells were washed with
phosphate buffered saline, trypsinized, and incubated
with ice-cold lysis buffer (10 mM Tris, pH 7.4, 10 mM
NaCl, 3 mM MgCl2, 0.1 mM EDTA, and 0.5% NP-40) for
5 min on ice to isolate intact nuclei. Nuclei were washed
with ice-cold wash buffer (10 mM Tris, pH7.4, 10 mM
NaCl, 3 mM MgCl2, 0.1 mM EDTA), resuspended in ice-
cold 1× GpC buffer (New England BioLabs), and treated
with 200 units of M.CviPI enzyme supplemented with
1.5 μL S-adenosylmethionine (SAM) for 7.5 min with a
boost of 100 units enzyme and 0.75 μL SAM for an addi-
tional 7.5 min. Genomic DNA was isolated by standard
phenol-chloroform extraction and ethanol precipitation.
WGBS libraries were generated using 2–5 μg of DNA as
previously described and sequenced on a HiSeq 2000 per-
formed by the USC Epigenome Center [40]. Sequencing
reads were mapped to the hg19 reference genome using
BSMAP.

www.identicell.dk
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Additional file

Additional file 1: Additional information and figures. Additional
information about the statistical method, in particular, the optimization
and implementation of epiG, as well as additional figures referenced in the
main text. (PDF 1880 kb)
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