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Abstract

Allele-specific measurements of transcription factor binding from ChiIP-seq data are key to dissecting the allelic effects
of non-coding variants and their contribution to phenotypic diversity. However, most methods of detecting an allelic
imbalance assume diploid genomes. This assumption severely limits their applicability to cancer samples with frequent
DNA copy-number changes. Here we present a Bayesian statistical approach called BaalChlP to correct for the effect
of background allele frequency on the observed ChIP-seq read counts. BaalChlIP allows the joint analysis of multiple
ChlIP-seq samples across a single variant and outperforms competing approaches in simulations. Using 548 ENCODE
ChlIP-seq and six targeted FAIRE-seq samples, we show that BaalChlP effectively corrects allele-specific analysis for
copy-number variation and increases the power to detect putative cis-acting regulatory variants in cancer genomes.
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Background

Allele-specific measurements of transcription factor (TF)
binding from ChIP-seq data have provided important
insights into the allelic effects of non-coding variants and
their contribution to phenotypic diversity [1-5]. Since
the majority of disease-risk-associated single-nucleotide
polymorphisms (SNPs) occur in non-coding DNA, many
of them might disrupt cis-regulatory elements. Thus, a
direct method of identifying functional SNPs is to use the
information obtained from allelic-specific binding (ASB)
of TFs. ChIP-seq data are commonly used to study ASB
of proteins at heterozygous non-coding SNPs and to infer
putative effects of such variants on gene regulation. Allele-
specific mapping corrects for environmental sources of
variation that alter gene regulation, since both alleles are
assayed in the same cellular context.
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Existing approaches to infer allelicimbalance

Previous studies have used ChIP-seq and RNA-seq to
identify ASB and allele-specific expression (ASE). These
studies have described methods to address technical and
methodological biases such as the sequence context of a
SNP [6], alignment biases to the reference allele [7, 8],
and the issue of increasing detection power by combin-
ing multiple SNPs in the same gene [9] or across multiple
ChIP-seq samples [10]. However, all of these approaches
are designed to examine the allelic imbalances in diploid
samples and do not address copy-number differences
between the two alleles, a ubiquitous feature of cancer
genomes (Additional file 1: Figure S1).

Few papers in the literature have tried to address
confounding effects arising from copy-number changes.
Some studies have analyzed tumor and normal samples
without making any adjustments to the applied method-
ology, which risks identifying false positives where the
detected ASE is mainly due to copy-number alterations
[11]. Others have removed all sites overlapping copy-
number variants [7, 12, 13], or used the genomic DNA
(gDNA) allelic ratios (ARs) to correct for the observed
allelic imbalances [14, 15] or to remove SNPs with allelic
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imbalances detected in the control input DNA [2], which
is feasible only when the coverage at any assayed heterozy-
gous site is high (>20x if a binomial test is to be applied
to reach adequate statistical power [9, 12]). Recently, Liu
et al. [16] developed cisASE, a likelihood-based method
for detecting ASE. cisASE has been shown to correct
successfully for copy-number alterations that hinder the
identification of ASE in RNA-seq data. Additional file 2:
Table S1 presents a summary of the different strategies of
allelic-specific mapping analyses to deal with regions of
altered copy number. While the analysis of ASE and ASB
are conceptually similar, in practice, methods tailored to
either ASE or ASB are not easily exchangeable, because
the data types and, thus, the biological and statistical
assumptions are different.

Bayesian analysis of ASB

To address the wide range of biases that can affect
the detection of ASB from ChIP-seq data we devel-
oped BaalChIP (Bayesian analysis of allelic imbalance
from ChIP-seq data) (Fig. 1). BaalChIP makes it possi-
ble to quantify the significance of the allelic imbalance
from ChIP-seq data in cell lines with genomic aberra-
tions, which is a major advance over previous approaches.
BaalChIP combines several important features. First, we
use several strategies to account rigorously for allelic map-
ping bias, including filtering of SNPs in problematic align-
ment regions as well as simulations to identify reads with
an increased risk of mapping bias. Second, we implement
a beta-binomial model for allelic read counts. This model
accounts for the observed variance in the data being larger
than expected from a standard binomial model, a phe-
nomenon known as overdispersion [9, 17, 18]. Third, we
take advantage of multiple TF ChIP-seq data, which may
be available for the same SNP, to improve ASB detection.
Finally, we use a Bayesian framework to account for the
influence of the background allele composition and the
reference mapping bias on the observed ChIP-seq allelic
read count.

We applied BaalChIP to 548 ENCODE samples [19]
obtained from a panel of 14 cell lines, representing dif-
ferent tissues and karyotypes, including eight cancer cell
lines (HeLa-S3, A549, MCF-7, T-47D, K562, HepG2, SK-
N-SH, and HL-60) and six non-cancer cell lines (H1-
hESC, GM12878, GM12891, GM12892, MCF10A-Er-Src,
and IMR90), as well as six FAIRE-seq samples obtained
from breast cancer cell lines (MDA-MB-134 and T-47D)
(Additional file 3: Table S2 and Additional file 4: Table
S3). We demonstrate that copy-number changes can eas-
ily give rise to spurious signals of allelic imbalance. We
are able to integrate the quantitative information obtained
from ChIP-seq data along with information about the
background allele composition to detect ASB accurately
and correct for artifacts caused by allele-specific losses or
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gains at the structural genomic level. Because of this inte-
grated modeling, we were able to detect a large number of
ASB events from ChIP-seq data, generating a resource for
future functional studies.

BaalChIP is implemented as an R package [20] and
it is freely available from the Bioconductor repository
(https://bioconductor.org/packages/release/bioc/html/
BaalChIP.html) [21].

Results

Overview of BaalChIP work flow

In this study, we aim to devise a method that allows us
to correct for copy-number changes and other biases in
the analysis of ASB from ChIP-seq or similar data. The
BaalChIP work flow requires three different sets of input
data (Fig. 1): the SNP variants file, ChIP-seq data sets (e.g.,
sets of BAM and BED files of ChIP-seq data obtained for
different proteins that may or may not be grouped into
replicates), and a corresponding set of gDNA files for each
individual sample. The SNP variants file and the BED files
are used to select the sites for the analysis, the ChIP-seq
BAM files are used to compute the allelic read counts,
and the gDNA files allow us to determine reference-allele
frequency (RAF) values to correct for effects of the back-
ground allele composition. Alternatively, RAF values may
be directly pre-computed from B allele frequency (BAF)
scores (Fig. 1a). It has been shown that removing dupli-
cate reads can reduce technical sources of biases at ASB
sites [22] and we suggest that BAM files are prepro-
cessed to contain only uniquely aligned reads or flagged
duplicated reads.

BaalChlP quality control

The BaalChIP work flow starts by first computing the
allelic read counts for each assayed heterozygous SNP
overlapping genomic intervals of interest (e.g., ChIP-seq
peaks). By default, only uniquely mapped reads (mapping
quality >15 ) and sites with base quality >10 are used
(Fig. 1b). In the next step, several quality control (QC)
filters are applied to consider technical biases that may
contribute to the false identification of regulatory SNPs
(Fig. 1b).

In a first round, BaalChIP excludes SNPs mapping to
regions of known problematic read alignment: blacklisted
regions [23], non-unique regions with a genomic mappa-
bility score of less than 1 (based on the UCSC mappability
track, 50 bp segments) [22], and collapsed repeat regions
[24]. The excluded regions contain genomic intervals that
are frequently enriched for repetitive elements and fre-
quently cause ambiguous read mapping and sequencing
artifacts [25].

The second QC filter performs read-alignment simu-
lations to consider an additional type of read mapping
bias named the intrinsic bias [6, 17]. This bias occurs due
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Fig. 1 Description of BaalChIP model. a The basic inputs for Baal are the ChiP-seq raw read counts in a standard BAM alignment format, a BED file
with the genomic regions of interest (such as ChiP-seq peaks), and a set of heterozygous SNPs in a tab-delimited text file. Optionally, genomic DNA
BAM files can be specified for RAF computation. Alternatively, the user can specify the pre-computed RAF scores for each variant. b The first module
of BaalChlIP consists of (1) computing allelic read counts for each heterozygous SNP in peak regions and (2) a round of filters to exclude heterozygous
SNPs that are susceptible to generating artifactual ASB effects. (3) The reference mapping (RM) bias and the reference-allele frequency (RAF) are
computed internally and the output consists of a data matrix where RM and RAF scores are included alongside information about allele counts for
each heterozygous SNP. The column Peak contains binary data to indicate the called peaks. € The second module of BaalChlIP consists of calling ASB
binding events. (4) BaalChlIP uses a beta-binomial Bayesian model to consider RM and RAF bias when detecting ASB events. d The output from
BaalChlP is a posterior distribution for each SNP. A threshold to identify SNPs with allelic bias is specified by the user (default value is a 95% interval). (5)
The output of BaalChlP is a credible interval (lower and upper) calculated based on the posterior distribution. This interval corresponds to the true AR
in read counts (i.e, after correcting for RM and RAF biases). An ASB event is called if the lower and upper limits of the interval are outside the 0.4-0.6
interval. Alt alternative, AR allelic ratio, ASB allelic-specific binding, gDNA genomic DNA, Het. heterozygous, MAPQ, mapping quality, NA not applicable,
RAF reference-allele frequency, Ref reference, Rep repeat, RM reference mapping, SNP single-nucleotide polymorphism, TF transcription factor
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to intrinsic characteristics of the genome that translate
into different probabilities of read mapping. Even when
reads differ only in one location, reads carrying one of
the alleles may have a higher chance of matching multiple
locations (i.e., have many repeats in the genome) and may,
therefore, be mapped to an incorrect locus. This, in turn,
results in the underestimation of read counts and may
cause both false-positive and false-negative inferences
of ASB.

The third QC filter selects those SNPs that pass all filters
in all replicated samples, provided that replicated samples
exist. This step will mainly remove SNPs in regions where
the ChIP-seq signal is not consistently detected across all
replicates (for instance, when coverage is zero in one of
the replicates).

The final QC filter consists of removing possible
homozygous SNPs by removing any site where only one
allele is observed [4, 26].

BaalChlIP detection of ASB events

The filtered SNPs and their allelic read counts are merged
into a table with the total number of read counts in the
reference (Ref) and alternative (Alt) alleles. No data is
entered (missing data, NA) if a SNP did not pass the
previously applied QC step for that sample (Fig. 1c).

BaalChIP considers two additional biases that may lead
to inaccurate estimates of ASB: the reference mapping
(RM) and the RAF biases. The RM bias occurs because the
reference genome represents only a single reference allele
at each SNP position. Reads that carry the non-reference
allele have an extra mismatch to the reference sequence.
Previous work has shown that this creates a marked bias
in favor of the alignment of reads that contain the refer-
ence genome and could, therefore, affect the accuracy of
ASB estimates [6].

The RAF bias occurs due to alterations in the back-
ground abundance of each allele (e.g., in regions of copy-
number alterations) and the correction for this bias is
one of the key features of BaalChIP. RAF values at each
heterozygous variant are used in the model likelihood
to correct the observed ChIP-seq read counts relative
to the amount of the reference allele. These are given
as relative measures from 0 to 1, where values between
0.5 and 1 denote an underlying bias to the reference
allele and values between 0 and 0.5 to the alternative
allele. RAF scores can be obtained from SNP array BAFs
by assigning the correct reference and alternative alle-
les to allele A and B generic labels (RAF is equal to
BAF if the reference allele corresponds to the B allele;
RAF is equal to 1 — BAF if the reference allele corre-
sponds to the A allele). Alternatively, if whole-genome
DNA sequencing samples are given as an input, BaalChIP
calculates the RAF values directly from the gDNA allelic
read counts.
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Finally, BaalChIP uses a beta-binomial distribution to
model read count data, therefore it accounts for extra
variability (overdispersion) in allelic counts, which is
often observed in sequencing data [9, 17]. The output of
BaalChIP is a posterior distribution of the estimated allelic
balance ratio in read counts observed after considering all
sources of underlying biases (Fig. 1c).

Evaluation of BaalChlIP performance

In a controlled simulation study, we compare BaalChIP
with the two major competing methods to infer allelic
imbalance: the binomial test and iASeq [10]. The bino-
mial test is the method most frequently used to ana-
lyze allele specificity from ChIP-seq data [1-4, 7]. In
a recent study [15], biases caused by differences in
copy number were accounted for by weighting the bino-
mial null with the ARs observed from the gDNA sam-
ples (the number of reads mapping to each allele in
the gDNA). Therefore, to take this strategy into con-
sideration, we set the null hypothesis on the probabil-
ity of success to the estimated RAF bias, instead of
0.5. iASeq is another available method that has been
shown to improve the detection of ASB [10]. The iASeq
method uses a Bayesian framework to combine informa-
tion from different experiments or replicates, and mod-
els the read counts with a beta-binomial distribution,
instead of a simple binomial distribution, to account for
extra-binomial variation caused by technical variability.
Although iASeq was not originally designed to overcome
copy-number biases, we included it in our simulation
study because of its improvement over the traditional
binomial test.

All three methods are tested on synthetic data sets with
varying sequencing depth, number of TFs binding to a
SNP, and copy-number states. In addition, we also exam-
ine the robustness of the methods against a wide range
of true allelic balance ratios. The allelic imbalance calling
performance is assessed by receiver operating characteris-
tic (ROC) curves. In the absence of copy-number changes,
i.e., RAF is 0.5, the performance of the three methods is
similar (Fig. 2a, d, and g).

In the presence of copy-number changes, BaalChIP
shows significant improvements in the identification of
true ASB events. In Fig. 2, we highlight results on data sets
with RAF set to either 0.3 or 0.1, which represent a modest
and severe background allelic imbalance due to copy-
number changes. Significant improvements can be found
across various sequencing depths and across the number
of TFs considered. In particular, in the data sets with mod-
est copy-number changes, the performance of BaalChIP
is like its performance in the absence of copy-number
changes, whereas the performance of both the binomial
test and iASseq suffers badly. When RAF is 0.1, BaalChIP
is still able to achieve relatively good performance. In
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Fig. 2 The ROC curve comparison between BaalChIP and other allele-specific SNP finding methods: binomial test and iASeq, using a simulated data
set. The BaalChlP result is shown by solid red line. Binomial test and iASeq are shown in dashed blue and black lines. The number of TFs able to bind at
a given SNP and the number of reads per TF increases from TF = 3, Reads per TF =1 (a, b, €) to TF = 5, Reads per TF = 8 (d, e, f) to TF = 15, Reads
per TF = 15 (g, h, i). RAF is decreasing from 0.5 (a, d, g) to 0.3 (b, e, g) to 0.1 (¢, f, i)

addition, the performance of BaalChIP benefits greatly in the data set. In particular, in regions with copy-number
from aggregating binding data for multiple TFs at a SNP  changes, BaalChIP shows significant improvements over
(Additional file 1: Figure S3). the state-of-the-art baselines. Thus, BaalChIP offers a

Overall, the simulation results show that BaalChIP is  robust analysis of ASB in samples obtained with frequent
robust and performs well across a wide range of variations  copy-number changes.
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Case study 1: ENCODE data

We applied BaalChIP to 548 samples from the ENCODE
project [19]. In total, 271 ChIP-seq experiments were ana-
lyzed, assaying a total of eight cancer and six non-cancer
cell lines representing different tissues. The data con-
tained either two or three replicates per experiment and
four to 42 DNA-binding proteins per cell line (Additional
file 1: Figure S4 and Additional file 4: Table S3 show a sum-
mary of the cell lines, tissues, and number of ChIP-seq
experiments used in this case study).

The initial number of genotyped heterozygous SNPs per
cell line ranged from 139K to 356K. We selected those
SNPs that occurred within ChIP-seq peaks in the cor-
responding cell lines, which amounts to between 1.6%
and 5.8% of all SNPs. To ensure we had a reliable set
of heterozygous SNPs, we applied the BaalChIP QC step
with the default parameters and options. We removed
an average of 30.4% of all SNPs that hit peaks (Addi-
tional file 1: Figure S5b); 0.8% of the excluded sites were
found in regions of problematic read alignments; 7.4%
had biases in simulations (Additional file 1: Figure S5a);
16.4% were not consistent between replicates; and 5.8%
had only one observable allele (Additional file 1: Figure
S5c¢). After BaalChIP QC, the number of heterozygous
SNPs considered for downstream analysis ranged from
1636 to 12,097.

Allele-specific copy-number alterations change ChlP-seq read
densities

First, we examined how allele-specific copy-number alter-
ations affect the ARs observed from ChIP-seq data (Fig. 3).
The relative presence of each allele is measured by BAF
obtained from SNP arrays [27].

BAF values lie in the interval [0, 1]. A BAF value of 0.5
indicates the equal presence of the two alleles and is the
expected value for heterozygous sites (AB) in a diploid
genome, while values of 0 and 1 indicate homozygous
genotypes (AA and BB). In a normal non-contaminated
diploid sample, a BAF plot will have three bands: one
centered at 0.5 for AB genotypes, and two bands at
0 and 1 for the AA and BB homozygous genotypes,
respectively.

Figure 3a presents the BAF plots for chromosome 1
of three cancer cell lines (MCF-7, K-562, and SK-N-SH)
and one non-cancer cell line obtained from normal blood
(GM12878). As expected, the BAF plot of GM12878 is
characterized by a typical diploid pattern of BAF val-
ues distributed around 0, 0.5, and 1, corresponding to
the diploid genotypes AA, BB, and AB. The few small
deviations from these values can be attributed to germ-
line-based copy-number aberrations [28, 29]. The BAF
plot for the SK-N-SH cell line, a glioblastoma cancer cell
line known to have a near diploid karyotype [30], is also
relatively stable. In contrast, the MCF-7 and K-562 cancer
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cell lines show more complex BAF plots due to a variety of
copy-number aberrations.

To evaluate the effects of allele-specific copy-number
alterations on the ChIP-seq read densities, for all four cell
lines we compared the BAF scores with ChIP-seq ARs
obtained at heterozygous SNPs (Fig. 3b). We report ChIP-
seq ARs as the proportion of total reads carrying the
reference allele. We observed a clear correlation between
the BAF scores and the imbalance in the ChIP-seq ARs
in the MCF-7 and K-562 cancer cell lines (Spearman
p = 0.704 and 0.525, respectively), while this correlation
is not observed in the near-diploid SK-N-SH (Spearman
p = 0.001) and the normal GM12878 cell lines (Spearman
0 = 0.036).

The same effect can be observed in all other cell lines
(Additional file 1: Figure S6a) and is particularly striking in
cancer cells with the highest proportion of extreme BAF
scores (<0.4 or >0.6; Additional file 1: Figure S6b). Taken
together, these results demonstrate the need to adjust for
the background genomic abundance of the alleles when
attempting to identify putative cis-acting regulatory SNPs
from ChIP-seq data. These data also support our assump-
tion that for allelic changes that do not change TF affinity,
the allele frequency in ChIP-seq data is proportional to the
presence of these alleles in the gDNA.

Allele-specific amplification events explain most of the
imbalances observed in ChIP-seq data in cancer cell lines
Having obtained a reliable set of heterozygous SNPs
per cell line, we next applied the Bayesian framework
implemented in BaalChIP to each of the 14 cell lines
individually. To assess the importance of adjusting for
copy-number biases, we performed the analysis with and
without adjusting for the RAF bias. In a diploid sample,
the ARs are expected to be distributed around the 0.5
average, assuming that only a small proportion of sites
carry an imbalance towards one of the alleles. However,
as shown in Fig. 3, copy-number alterations can affect
read densities, which will have an effect on ARs, in par-
ticular in cancer cells. Additional file 1: Figure S7a shows
the observed AR values in ChIP-seq data compared to the
values before and after RAF correction for all analyzed
cell lines. We observed that after the RAF copy-number
correction, the corrected ARs become more evenly dis-
tributed around an average of 0.5. This effect is particu-
larly notable in data obtained from cancer cell lines.
Overall, we found 2438 ASB sites across all cell lines
(Additional file 5: Table S4), with an average of 3.1% SNPs
displaying ASB using our chosen cutoffs. Additional file 1:
Figure S7b demonstrates that the copy-number correction
has a strong effect in cancer cell lines. In the most extreme
cases, the number of allele-specific imbalances is reduced
by fourfold. In normal cells and in cancer cells with near
diploid genomes, such as HL-60 and SK-N-SH [30, 31], the
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Fig. 3 Examples of cancer and non-cancer cell lines from SNP and ChIP-seq ENCODE data. a B allele frequencies (BAFs) for chromosome 1 for three
cancer cell lines (MCF-7, K562, and SK-N-SH) and one non-cancer cell line (GM12878). Individual SNPs are colored according to genotype values:
homozygous AA or BB (blue) and heterozygous AB (orange). b Correlations between the BAF values and the ChIP-seq AR of heterozygous SNPs. RAF
corresponds to the BAF value with respect to the reference allele (RAF is equal to BAF if the reference allele corresponds to the B allele; RAF is equal
to 1 — BAF if the reference allele corresponds to the A allele). The fitted linear model (blue line) and the Spearman correlation coefficient (cor) show
the relationship between BAF and ChiP-seq ARs at heterozygous sites. AR allelic ratio, BAF B allele frequency, chr1 chromosome 1, cor correlation,
RAF reference-allele frequency, SNP single-nucleotide polymorphism

total number of identified ASB sites due to copy-number
effects is much lower (Additional file 1: Figure S7b).
This is consistent with non-cancer cell lines carrying far
fewer copy-number aberrations. Because ASB is more
easily detected in regions of high sequence coverage due
to increases in statistical power (Additional file 1: Figure
S8), we repeated the same analysis after selecting only
SNPs with 30—40x read coverage to control for read depth
biases and verify the same effect (Additional file 1: Figure
S7c). Importantly, the data shown here demonstrate that
by adjusting for RAF, we are able to remove artifacts that
are caused by copy-number alterations in cancer cell lines.

We observed higher rates of ASB on chromosome X of
female cell lines (GM12878, GM12892, IMR90, MCF10,
MCF-7, and SK-N-SH) than in autosomal chromosomes
(Additional file 1: Figure S9, x2 test p < 2.2 x 10716
for chromosome X versus autosomal identified sites,
compared for all six cell lines). These cases might be
explained by the extent of X inactivation. In normal tis-
sue, X inactivation is random. However, in clonal cell
lines, the same X chromosome will continue to be silenced
and most X-linked genes are expressed in a mono-allelic
fashion [32].

ASB events are consistent within and between cell lines
We evaluated the correlation of ARs between pairs of
biological replicates, between distinct proteins bound at
the same site, and at identical ASB sites in different cell
lines. The ARs of all shared heterozygous SNPs are cor-
related well across biological replicates (Additional file 1:
Figure S10). Secondly, different proteins binding to the
same SNP also display concordant ARs (Additional file 1:
Figure S11) across cell lines. Our observations are consis-
tent with the concordance of ASB of different co-bound
TFs described in previous studies [1-3, 10, 12, 33, 34]. The
Spearman correlation coefficients of all pairwise com-
parisons (between replicates and within cells between
different DNA-binding proteins at the same SNP) are plot-
ted as a box plot in Additional file 1: Figure S12a. Positive
Spearman correlation coefficients are observed in every
case, and in the majority of the cases we observe corre-
lation coefficients >0.8. Therefore, overall, we find that
BaalChIP generates highly reproducible results, across
separate ChIP-seq experiments.

In addition, we analyzed if heterozygous sites shared by
cell lines had ARs that were skewed towards the same
allele or not. Of the identified ASB sites, only a small
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proportion (149 out of 2438; 6.1%) were shared between
cell lines (Additional file 1: Figure S12b). Of these ASB
sites, 91% (136 out of 149; Additional file 6: Table S5)
show an agreement in the direction of the allelic bias.
Discordant cases may be explained by environmental or
epigenetic factors, by the different genomic context in
different cells [1, 2], or by the low sequencing cover-
age of ChIP-seq data. The high proportion of ASB with
the same allelic bias further supports the robustness
of BaalChIP.

Functional annotation of ASB sites

We then examined the genomic distribution of the iden-
tified ASB SNPs. A large proportion of ASB SNPs overlap
introns and intergenic regions, and a considerable pro-
portion is found at promoter-proximal regions, mainly
reflecting the binding patterns of the ChIPed proteins
(Additional file 1: Figure S13). A large proportion of ASB
SNPs overlap previously predicted enhancer regions and
histone modifications associated with active enhancers
(H3K4mel and H3K27ac), with an average of 70.2%
of ASB SNPs occurring within cell-type-specific puta-
tive enhancer regions (Additional file 1: Figure S14).
However, this enrichment is not significant when com-
pared to non-ASB SNPs (Additional file 7: Table S6,
x% p > 0.05), and it possibly mainly reflects the
distribution of the binding sites (ChIP-seq peak regions)
from which the initial set of heterozygous SNPs
was sampled.

Finally, to examine the putative functional mechanisms
of ASB SNPs, we assessed if they modulated TF binding
affinity. We used predictions from HaploReg to assess if
the observed ASB SNPs alter canonical TF binding motifs.
We found that 88% of ASB SNPs (range 83 to 92%) are
motif-disrupting SNPs but this enrichment was not statis-
tically significant, since 85% of all tested SNPs under ChIP
peaks were also found to alter motif scores. No signifi-
cant difference in the magnitude of the change in binding
affinity was observed between motif-disrupting ASB SNPs
when compared to all tested motif-disrupting SNPs using
the Kolmogorov—Smirnov test (Additional file 1: Figure
S15). To determine which TF motifs are most likely to
be disrupted, we grouped SNPs according to the DNA-
binding proteins as identified by ChIP-seq peaks, and
identified the top motifs disrupted by ASB SNPs com-
pared to non-ASB SNPs. In the majority of cases, the top
disrupted motifs match the DNA-binding proteins used to
generate the ChIP-seq data (Additional file 8: Table S7).
Overall, these results provide good evidence that an ASB
we identify represents a true biological phenomenon.

Case study 2: FAIRE-seq data
To demonstrate the generality of our approach, we applied
BaalChIP to targeted FAIRE-sequencing data obtained
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from two breast-cancer cell lines, MDA-MB-134 and T-
47D. FAIRE stands for formaldehyde-assisted isolation of
regulatory elements and is an effective method of identi-
fying DNA regions in the genome associated with open
chromatin [35]. The method is based on formaldehyde
cross-linking being more efficient in nucleosome-bound
DNA than it is in nucleosome-depleted regions of the
genome. Thus, FAIRE-seq identifies regions of open chro-
matin. One advantage of FAIRE-seq over ChIP-seq is that
the assayed chromatin is not limited to the location of
specific DNA-associated proteins.

We chose to focus on the fraction of the genome that
has been previously associated with breast-cancer risk.
To do so, we selected 75 previously known breast-cancer-
risk regions (Additional file 9: Table S8) [36] covering a
total of 4.93 Mb of the human genome. We performed
targeted sequencing of three replicated FAIRE samples
per cell line and the corresponding gDNA controls. Tar-
geted sequencing of the gDNA samples allowed us to
determine with confidence the genotype of a high num-
ber of sites at the assayed breast-cancer-risk regions. We
identified a total of 3208 and 1624 heterozygous SNPs in
MDA-MB-134 and T-47D cells, respectively. In this data
set, the sequenced gDNA samples were used for the RAF
correction step, i.e., ARs at each SNP position were cal-
culated directly from gDNA samples and used for bias
correction. We first applied the BaalChIP QC pipeline
to eliminate biases. We noticed that none of the SNPs
in the selected targeted regions overlapped regions of
potential problematic alignments, and only a small pro-
portion of sites were eliminated during the BaalChIP QC
step (<0.3%).

We observed a high correlation between ARs in the
gDNA and FAIRE samples (Fig. 4a), indicating that
observed allele specificity in FAIRE-seq samples is pri-
marily due to copy-number alterations and must, there-
fore, be corrected for. Figure 4b shows the observed ARs
obtained for the FAIRE-seq samples compared to the val-
ues after correcting for gDNA. After correction, the ARs
are more evenly distributed around the average of 0.5.
We found that approximately 0.65% (MDA-MB-134) and
0.56% (T-47D) of the tested sites in the selected risk
regions were allele-specific. These correspond to a total
of 21 sites in MDA-MB-134 and nine sites in T-47D cell
lines (Table 1).

Out of the 21 SNPs identified in the MDA-MB-134
cell line, 11 cluster in the 10q26.13 region. This cluster
includes the rs2981579 SNP in the second intron of the
FGFR2 gene (Table 1), which is the SNP with the strongest
association with breast cancer in genome-wide analysis
[37]. In the 10q26.13 region, we identify two breast-
cancer-risk SNPs, rs2981579 and rs2981578, with a strong
allelic imbalance towards their risk alleles, rs2981579-A
and rs2981578-C, respectively.
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Comparing BaalChIP to competing methods

We applied two competing methods, the binomial test and
the iASeq [10] method, to the ENCODE and FAIRE-seq
data sets.

When applying the iASeq method to the ENCODE data
set, the existence of missing data created an error. Missing
data occur for those samples that do not contain ChIP-seq
peaks at the SNP in question, or if the SNP did not pass the
previously applied QC step for that sample. To overcome
this limitation of iASeq, we replaced every missing data
point by zero, with the caveat that this ad hoc approach
may create unknown biases in our results.

When applying the binomial test, for each cell line,
we pooled read count data from different experiments
and replicates. While this approach maximizes statistical
power, it may mask heterogeneity in ASB obtained from
different experiments. Previous studies have shown that
at least 20x read coverage at a particular SNP position
is necessary to reach adequate statistical power with the
binomial test [9, 12]. Therefore, we restricted our analysis
to SNPs with a coverage of at least 20 reads in the pooled
data. We included two different ways of performing the
binomial test, either by setting the probability of success to
0.5 or by weighting the binomial null with the RAF scores.
In real data, unlike simulations, we are not able to access
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the true-positive and false-positive rates and compute
ROC curves. For this reason, we mainly focused on test-
ing whether BaalChIP is comparable to existing methods
while improving the biased ASB detection in high copy-
number regions (Fig. 5a) or the problem of overdispersion
in the data (Fig. 5b).

First, for consistency of the analysis, we obtained a set
of heterozygous SNPs to test using the BaalChIP QC step.
We then compared BaalChIP to the binomial test method
with (p = RAF) and without (p = 0.5) copy-number
correction based on how many of the identified ASB
SNPs were in Copy number alterations (CNA) regions.
For the comparison with the iASeq method, we computed
the estimated posterior probability obtained for SNPs
for different regions of altered copy numbers. Figure 5a
shows that the binomial test (without RAF correction) and
the iASeq method show a substantial bias towards the
increased detection of ASB events in regions of altered
copy number, as expected.

Both BaalChIP and iASeq employ a beta-binomial dis-
tribution to model read count data, which accounts for
extra-binomial variability (overdispersion). To check for
the effect of overdispersion in the ENCODE and FAIRE-
seq data, we considered only SNPs at regions with normal
or close to normal copy numbers (RAF between 0.4 and
0.6) and computed the percentage of detected ASB sites
in bins of increasing depth of coverage. Overdispersion is
often more accentuated for sites of higher coverage (>200
pooled total counts), which creates a particularly sensitive
scenario for the detection of ASB sites using the binomial
distribution. Figure 5b demonstrates clearly the effect of
overdispersion in the FAIRE-seq data, particularly visible
at sites of high coverage, which shows the advantage of
BaalChIP and iASeq over the binomial model. This effect
is less pronounced in the ENCODE data, where the depth
of coverage is overall lower (Additional file 1: Figure S16).

These results suggest that for higher read counts, ran-
dom fluctuations in ARs should be modeled with a beta-
binomial distribution, rather than a binomial distribution,
to reduce the number of false-positive results.

Discussion
ASB analysis is an important method for identifying puta-
tive regulatory SNPs that might have an effect on TF
binding and gene expression and might be associated
with disease phenotypes. Our method for the Bayesian
analysis of allelic imbalances from ChIP-seq data, called
BaalChIP, has been motivated by the need to address the
issue of detecting allelic-specific imbalances from ChIP-
seq data obtained specifically from cancer cell lines, which
frequently carry copy-number alterations.

While allele-specific copy-number alterations can be
associated with changes in transcript abundance [38] and
are possibly implicated in cancer phenotypes, they can
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Table 1 Heterozygous SNPs identified as allele-specific and the correspondent cell lines and alleles in the FAIRE-seq data set
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D Chrom Pos Ref Alt ASB allele Allelic imbalance Gene name Location
12373062 2 218322137 G C T47D-G 0.76 DIRC3 Intron
1s9682063 3 4737842 A G T47D-G 0.34 [TPR1 Intron
19292122 5 56087910 G A T47D-G 0.81 Intergenic
rs201314815 7 144115683 C T T47D-T 0.28 Intergenic
15201949580 7 144115698 T G T47D-G 0.30 Intergenic
rs200312388 7 144115704 T G T47D-G 0.29 Intergenic
15200496470 8 128323987 A G T47D-G 0.15 CASC8 Intron
rs111929748 M 69379287 G T T47D-T 032 Intergenic
rs12939887 17 53162672 A G T47D-A 0.67 STXBP4 Intron
1572650670 1 114394681 G A MDAMB134-G 0.76 PTPN22 Coding
1116782319 5 158260122 A T MDAMB134-T 033 EBF1 Intron
rs12670370 7 144118594 C A MDAMB134-C 0.79 Intergenic
12392922 8 129166840 A G MDAMB134-A 0.79 Intergenic
rs17793170 8 129205679 G A MDAMB134-A 033 Intergenic
152666763 10 22101608 G A MDAMB134-A 0.29 DNAJC1 Intron
1s2941733 10 22241656 T C MDAMB134-T 0.74 DNAJCT Intron
154752570 10 123337066 T C MDAMB134-C 0.32 FGFR2 Intron
12912780 10 123337117 C T MDAMB134-C 0.69 FGFR2 Intron
152912779 10 123337182 T @ MDAMB134-T 0.72 FGFR2 Intron
rs2981579 10 123337335 A G MDAMB134-A 0.71 FGFR2 Intron
12912778 10 123338654 G A MDAMB134-G 0.73 FGFR2 Intron
rs11200017 10 123339685 G A MDAMB134-A 0.26 FGFR2 Intron
1s2981578 10 123340311 C T MDAMB134-C 0.88 FGFR2 Intron
111599804 10 123340664 G A MDAMB134-A 0.16 FGFR2 Intron
1534032268 10 123341525 A @ MDAMB134-C 0.19 FGFR2 Intron
152936870 10 123348902 T C MDAMB134-T 0.69 FGFR2 Intron
rs3135718 10 123353869 @ T MDAMB134-C 0.67 FGFR2 Intron
rs112536831 19 17424329 G A MDAMB134-G 0.75 DDA1 Intron
1s113207944 19 17438923 C T MDAMB134-C 0.74 ANO8 Intron
rs10416361 19 44294617 A G MDAMB134-A 0.75 Intergenic

Chrom and Pos are the coordinates in the hg19 human reference genome
Alt alternative, ASB allelic-specific binding, Ref reference

confound the identification of ASB at potential regulatory
sites. Traditional methods of identifying ASB have not
been able to distinguish between effects that are caused
by allele-specific amplification of binding sites versus the
effects caused by ASB by specific TFs. Our method now
allows us to distinguish these and will, therefore, help us
to delineate better the causal mechanisms of disease.
BaalChlIP is a general framework applicable to a wide
range of assays. We have applied it to ENCODE ChIP-
seq and our own FAIRE-seq samples, and demonstrated
the utility of BaalChIP to identify ASB events from can-
cer genomes. Each of these chromatin assays has its own
advantages in the detection of ASB. ChIP-seq precisely

determines the location of specific DNA-associated pro-
teins, while FAIRE-seq identifies broader regions of open
chromatin, which might be less informative in terms of
pinpointing the functional regulatory elements of the
genome. On the other hand, the ChIP assay is limited to
the availability of high-quality antibodies and only one fac-
tor can be tested per experiment. It is still an open ques-
tion which chromatin assay will be the most informative
for understanding ASB differences.

Cancer cell lines carry frequent copy-number alter-
ations. Therefore, an important issue is the determination
of the background biases in allele frequency observed in
regions of altered copy number. For the ENCODE data
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set, we have demonstrated that BAF scores obtained from
microarrays could be used to correct for these effects in
the ARs; however, it is also noteworthy that the microar-
ray technology used by the ENCODE study did not
generate BAF scores comprehensively for all possible het-
erozygous sites, limiting the number of SNPs at which
the allele specificity could be assayed. Therefore, for the
majority of the samples in the ENCODE case study, it is
likely that the regulatory potential of true causal SNPs
was not directly assayed. As demonstrated by the anal-
ysis of FAIRE-seq data, this issue can be overcome by
including gDNA-sequencing as control samples to detect

allele-specific biases, provided that there is sufficient read
coverage at each site.

The identified ASB sites may form the basis for future
functional analysis of the genome. Of particular interest,
within the FGFR2 gene, rs2981578 has been previously
suggested to be the key causal variant. Indeed, this SNP
displays the highest allelic imbalance in a breast-cancer
cell line (Table 1).

BaalChIP has been designed for data from cell lines, not
tumor samples [39]. Normal contamination and the exis-
tence of different clonal subpopulations in tumor samples
pose additional challenges and can distort the expected
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distribution of heterozygous variant allele fractions. In
the future, these challenges can potentially be overcome
by combining the ideas implemented in BaalChIP with
probabilistic methods developed for dissecting genetic
heterogeneity and cancer evolution [40].

Conclusions

In summary, BaalChlIP is a rigorous probabilistic method
to detect allelic imbalance by correcting for the effect
of background allele frequency on observed ChIP-seq
read counts. BaalChIP implements stringent filtering and
preprocessing steps and allows the joint analysis of mul-
tiple ChIP-seq samples across a single variant. In simu-
lations, BaalChIP outperformed competing approaches,
and when applied to 548 ENCODE ChIP-seq and six tar-
geted FAIRE-seq samples, BaalChIP effectively corrected
the allele-specific analysis for copy-number changes and
increased the power to detect putative cis-acting regula-
tory variants in cancer genomes.

Methods

BaalChlIP quality control and filtering

The QC and filtering steps implemented in the BaalChIP
R package are:

1. Keep only reads with mapping quality >15 and with
base quality >10.

2. Within each cell line, consider only heterozygous
SNPs overlapping TF binding sites (TFBSs),
identified by ChIP-seq peak calling.

3. Exclude sites susceptible to allelic mapping bias in
regions of known problematic read alignment
[22-24].

4. Apply simulation-based filtering to exclude SNPs
with intrinsic bias to one of the alleles [6, 17].

5. Consider only SNPs that are represented in all
replicated samples after applying all previous filters.

6. Exclude possibly homozygous SNPs where only one
allele was observed after pooling ChIP-seq reads
from all examined samples [4, 26].

Generating allele counts per SNP

For each SNP, the number of reads carrying the ref-
erence and alternative alleles are computed using the
pileup function and the PileupParam constructor
of the Rsamtools package [41]. For each BAM file,
BaalChIP considers only heterozygous SNPs overlapping
the genomic regions in the corresponding BED files
(peaks). Two arguments of the PileupParam construc-
tor can be manipulated by the user: min mapgqg, which
refers to the minimum mapping quality for an alignment
to be included in pileup (reads with a mapping qual-
ity lower than this threshold are ignored; default is 15),
and min_base quality, which refers to the minimum
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quality for each nucleotide in an alignment (bases at a par-
ticular location with base quality lower than this threshold
are ignored; default is 10).

Data sources for regions of problematic alignments

By default, BaalChIP considers three sets of regions
known to be of problematic read alignment: (1) blacklisted
regions downloaded from the UCSC Genome Browser
(mappability track; hgl9, wgEncodeDacMapabilityCon-
sensusExcludable and wgEncodeDukeMapabilityRegion-
sExcludable tables), (2) non-unique regions selected
from the DUKE uniqueness mappability track of the
UCSC genome browser (hgl9, wgEncodeCrgMapabil-
ityAlign50mer table), and (3) collapsed repeat regions
downloaded from [24] at the 0.1% threshold. Sets of filter-
ing regions used in this filtering step are fully customized
and additional sets can be added by the user as Genomi-
cRanges objects [42].

Simulations to identify SNPs with intrinsic biases

For each heterozygous site, BaalChIP simulates every pos-
sible read overlapping the site in four possible combina-
tions: reads carrying the reference allele (plus and minus
strands) and reads carrying the alternative allele (plus
and minus strands). The simulated reads are constructed
based on published methodology (scripts can be shared by
Degner et al. upon request) [6] without taking into con-
sideration different qualities at each base in the read or
different read depths of coverage. As described by Degner
et al,, these parameters were sufficient to predict the SNPs
that show an inherent bias [6].

Reads are then aligned to the reference genome and
BAM files are generated using Bowtie version 1.1.1 [43]
and Picard Tool version 1.47. The pipeline used to gen-
erate and align simulated reads can be fully customized
with other aligners (e.g., BWA) and it is available under the
file name run simulations.sh found in the folder
extra of the BaalChIP R package. Simulated allelic read
counts are computed using the pileup function and
the PileupParam constructor of the Rsamtools pack-
age [41]. For each SNP, the correct number of reads that
should map to the reference and non-reference alleles is
known (it corresponds to twice the read length for each
allele). Sites with an incorrect number of read alignments
are discarded from the analysis.

Estimating reference mapping bias

The reference mapping bias is calculated as described in
[4, 26]. First, reads are combined across all heterozygous
sites that pass the previous QC steps. The expected AR
(reference/total) for each cell line is then calculated sepa-
rately for each allele combination. A minimum of 200 sites
is required for each category. If there was less, a global
estimate was used for that category. For each SNP, this
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computation results in an AR u € (0,1). These ARs are
used as part of a prior distribution in the Bayesian model
described in the next section.

BaalChlIP Bayesian model description

BaalChIP is designed to infer an allelic imbalance from
read counts while integrating copy-number and technical
bias information. We assume that we are given a set of
N data sets covering a SNP position. We jointly infer the
allelic imbalance from signals in all data sets covering the
same SNP.

For the nth data set, let d,, € N denote the total number
of reads covering a SNP position and 4, € N the number
of reads reporting the reference allele. BaalChIP models
a, with a beta-binomial distribution, i.e., the binomial dis-
tribution in which the probability of success is integrated
out given that it follows the beta distribution:

play, | dy, o, B) = BetaBin(ay, | d,, o, B). (1)

The beta-binomial distribution controls for overdisper-
sion, i.e., that the increased variance in next-generation
sequencing data cannot be captured in the standard bino-
mial model [18]. To gain a more intuitive interpretation of
the parameters, we re-parameterize o and § in terms of
the precision of the beta-binomial distribution, A, and the
mean probability that a reference read is observed, 6:

a = 0A, (2)
B=(1-0)A. (3)

Including reference mapping bias

In the next level of our model, we place a beta distribution
over 0, which allows us to include naturally the technical
reference mapping bias:

p(O | ag, Bo) = Beta (6 | o, Bo) , (4)

where, as before, we re-parameterize the shape parame-
ters «g and By by the mean and variance of the distribu-
tion. Denoting the variance by A and using as the mean the
reference mapping bias 1 € (0, 1), as discussed above, we
get:

o = ((I;M) _1) MZ’ (5)
"
- (l_ﬂ)_l 2
ﬁo—( . M)(/L n). (6)

As a consequence of this re-parameterization, the ref-
erence mapping bias has a very intuitive interpretation as
the a priori mean probability that a read reporting the
reference allele is observed.
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Including reference allele frequency
Next, we re-parameterize 6 as a function of the allelic
balance ratio 1 and reference allele frequency p:

np
o+ @1 —nA—p)

Intuitively, this parameterization implements Bayes’s
rule with the following definitions:

0 Ef(’?: p) = (7)

0 = Prob(allele = Ref | binding = Yes),
n = Prob(binding = Yes | allele = Ref),
1 — n ~ Prob(binding = Yes | allele = Alt),
0 = Prob(allele = Ref),
1 — p = Prob(allele = Alt).

The auxiliary condition on binding status in the defini-
tion of 0 reflects that we analyzed only peaks and, thus, it
assumes that observed ChIP-seq reads are obtained after
TF binding. Equation 7 then formulates a ChIP-seq exper-
iment as a process to obtain the posterior probability of a
TF binding to the reference allele. In this model, the allelic
balance ratio acts as the likelihood for TF binding to the
reference allele and the RAF as the prior.

To understand better how this model works, we will dis-
cuss two illustrative scenarios. Example 1: Assuming no
copy-number alterations, i.e., RAF p = 0.5, and no allelic
imbalance, i.e., n = 0.5, then

B 0.5 x 0.5 B
T 05%x054+05x%x05

0.5,

which shows that BaalChIP contains the assumption of
the previous approaches as a special case. Example 2: In
the event of Loss of heterozygosity (LOH) on the alter-
native allele, RAF p = 1, then irrespective of the allelic
balance ratio, all observed reads will report the reference
allele, which is reflected by

nx1
92 :1
nx1+1—-n)x0

Posterior distribution of allelicimbalance

To represent the uncertainty in the data rigorously, we
adopt a full Bayesian approach targeting the posterior dis-
tribution of the allelic balance ratio 7. Since the change of
variables in Eq. 7 and the prior on 0 directly define a prior
over 7, namely

of (n, p)

plp, s 1) = p(f (n, p) s A) o )
we can write the posterior of 1 as follows:
p (n{ans (b)Y 0, Ay 1 1) ©)

af (n, p)

N
o [ [ p(@nlduf @, 0, M p(f (1, )12, 2) 0

n=1

’
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where
af (n, p) _ P 3 np(2p — 1)
an m+A-—mnA—-p) Mp+A—-nA-—p)?

(10)

Inference of allelicimbalance

We use the Metropolis—Hastings algorithm with the ran-
dom walk proposal to approach this distribution. In prac-
tice, we fix A = 1000 and A = 0.05, which in our
experience results in robust performance across a wide
range of simulated and real data sets. Allelic imbalance
calling is based on the highest posterior density interval,
which is constructed from the Markov chain Monte Carlo
trace of n as the shortest interval containing 95% of the
sampled values. An allelic imbalance is called if the highest
posterior density does not contain the value 0.5, which is
a rigorous way to decide that the data cannot be explained
well by balanced alleles.

In silico validations
To thoroughly test the performance of the allelic imbal-
ance calling performance of BaalChIP, read count data
are generated using a wide range of parameter settings.
Specifically, we varied the number N of data sets from 1
to 45, p from 0.1 to 0.9 in steps of size 0.1, and d from
1 to 100 in steps of size 7. Then, 1000 values of n were
evenly sampled from 0.1 to 0.9. These settings result in a
set of 6,075,000 SNPs. The detailed simulation protocol is
as follows.

For each n €[1,...,N], p €[0.1,...,09] and n €
[0.1,...,0.9]:

1. Draw the number of available reference alleles:
t, ~ Binomial(d,, p).

2. Draw the read counts reporting a reference allele:

Ifn <0.5:
a, ~ Binomial(¢,, 2n).

Ifn > 0.5:
b, ~ Binomial(d, — t,,2(1 — n)),
a, =d, — b,.

The performance is measured by ROC curves. The true
allelic imbalance is determined if the true n is outside the
interval [0.45, 0.55].

Baseline methods

We compared BaalChIP against two baseline approaches:
the binomial test and iASeq [10]. Two-sided binomial tests
are performed with the R function binom. test. To cor-
rect for reference mapping bias, the null hypothesis on
the probability of success is set to be the previously esti-
mated reference mapping bias (RAF), instead of 0.5. We
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pooled data from all ChIP-seq samples for each analyzed
cell line to maximize power. In the analysis of real data,
binomial test p values were corrected for multiple test-
ing using the false discovery rate (FDR) threshold of 0.01.
FDR was calculated with the p.adjust function in R.
For the simulated data, the ROC curves for the binomial
test are constructed based on the distance between the
reference mapping bias and the mean of the 95% confi-
dence intervals for the probability of success. All iASseq
analyses are performed with the function iASegmotif
where the number of non-null motifs is set to be a vec-
tor [1,2,...,5], the maximum number of iterations is 300,
and the tolerance level of error is 0.001. The ROC curves
for iASseq are constructed with bestmotif$p.post,
which is the posterior probability for each SNP being an
allele-specific event.

Cell culture

MDA-MB-134 and T-47D human breast cancer cells were
cultured in Roswell Park Memorial Institute medium
(RPMI) (Invitrogen) supplemented with 10% fetal bovine
serum and antibiotics. All cells were maintained at 37 °C,
5% CO;. All cell lines were from the CRUK Cambridge
Institute biorepository collection. Cell lines were authen-
ticated by short tandem repeat genotyping using the
GenePrint 10 (Promega) system and confirmed to be
mycoplasma free.

FAIRE and gDNA purification

FAIRE was performed as previously described [35] with
minor adaptations. Briefly, cells were fixed for 10 mins
in 1% formaldehyde in fetal calf serum-free medium,
washed, and frozen. Nuclei from MDA-MB-134 (3 x 107
cells/tube) and T-47D (1.5 x 107 cells/tube) were isolated
and sonicated using 300 pl volumes in 1.5 ml Eppendorfs,
using a Diagenode Bioruptor. Sonication was performed
for 20 cycles of 30 s on/off at the high setting. The sonicate
was subjected to three consecutive phenol—chloroform-—
isoamyl alcohol (25:24:1) extractions and reverse cross-
linked overnight. DNA was purified by ethanol precipi-
tation and quantified by Quanti-iT. gDNA was isolated
using a Qiagen DNeasy Blood and Tissue Kit according to
the protocol.

Agilent SureSelect amplification, library preparation, and
sequencing

DNA fragments were prepared for sequencing using the
recommended protocol for SureSelect-Illumina sequenc-
ing. Altogether, 69 known breast-cancer-risk-tagging
SNPs were retrieved from [36]. The SNAP Proxy Search
was used to find SNPs correlated with the 69 tagging
SNPs (r2 > 0.6 for 59 of the risk loci and 72 > 0.8
for eight of the risk loci, within a distance of 500 bp)
using 1000 Genomes pilot 1 data. Genomic intervals were
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defined by the leftmost to the rightmost SNP in each
Linkage disequilibrium (LD) block with an additional 400
bp of flanking regions. An additional set of seven SNPs
with 500 bp of flanking sequences were added manu-
ally to include the CCND1 (rs75915166 and rs494406),
MAP3K1 (rs10461612, rs112497245, and rs17432750) and
TERT gene regions (rs2736107 and rs7705526). In total,
we targeted 69 non-overlapping regions comprising 4.93
Mb using the SureSelect method (Additional file 9: Table
S8). DNA obtained from the SureSelect solution-based
sequence capture was subjected to [llumina HiSeq paired-
end sequencing (Illumina). Paired-end sequencing was
performed according to the manufacturer’s protocols.

Preprocessing ENCODE samples

We used publicly available ENCODE ChIP-seq and
genotype data sets for a total of 548 samples repre-
senting 271 different experiments. We included eight
cancer and six non-cancer cell lines representing dif-
ferent tissues. The accession numbers of all public
ChIP-seq data sets used in this study are provided in
Additional file 3: Table S2. Additional file 4: Table S3 is
a summary of all tissues, cell lines, and the number of
experiments included in this study. The ChIP-seq data
were downloaded as reads mapped to the hgl9 genome
(BAM files) and corresponding peak calling files (BED
files). Duplicated reads were marked using Picard Tool
version 1.47. ChIP-seq peak files were merged between
replicates using mergePeaks of HOMER version 5.4
with the default option -d to consider only peak ranges
that overlapped for all replicates. Heterozygous SNPs
and BAF tracks were retrieved from the UCSC
Genome browser (hgl9, wgEncodeHaibGenotype track,
wgEncodeHaibGenotypeBalleleSnp2015-03-04.tsv, and
wgEncodeHaibGenotypeGtypeSnp2014-09-15.tsv  files).
The initial number of genotyped SNPs in the ENCODE
files is 1.2 million. We considered only SNPs listed in
dbSNP (version 137 [44]). Homozygous SNPs (i.e., BAF
> 0.9 or < 0.1) and SNPs with missing BAF scores were
removed from the BAF tracks. BAF scores were converted
to RAF scores using the information about A and B alleles
in the manifest file for the Illumina Human1M-Duo Bead-
Chip (v3.0) downloaded from http://support.illumina.
com/array/array_kits/humanlm-duo_dna_analysis_kit/
downloads.html.

Preprocessing FAIRE-seq samples

For sequence data from all FAIRE-seq and control sam-
ples, sequences were aligned to the human reference
genome (GRCh37) using BWA version 0.7.12 [45]. Dupli-
cates were removed using Picard Tool version 1.47 and
overlapping reads were clipped using the clipOverlap tool
from the bamUltil repository version 1.0.14 with default
parameters. SNPs were identified from gDNA samples
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using the Genome Analysis ToolKit 3.4-46 [46] across
all gDNA samples simultaneously. As per GATK Best
Practices recommendations [47, 48], duplicated reads
were removed and local realignment and base quality
recalibration were employed prior to SNP calling. Called
SNPs were filtered using a hard filtering criteria (Qual-
ByDepth (QD) < 2.0, FisherStrand (FS) > 60.0, RMSMap-
pingQuality (MQ) < 30.0, MappingQualityRankSumTest
(MQRankSum) < —12.5, ReadPosRankSumTest (ReadPos-
RankSum) < —8.0).

Applying BaalChIP to ENCODE and FAIRE-seq samples

To ensure that we had a reliable set of heterozygous SNPs,
we applied the BaalChIP (version 0.1.9) quality control
step and considered only uniquely mapping reads with
mapping quality > 15 and base call quality > 10. For the
ENCODE data set, we removed from the analysis sets of
SNPs based on the default six QC filters implemented
within the BaalChIP pipeline. The FAIRE-seq samples
contained paired-end sequenced reads of 125 bp. Since
longer and paired-end reads reduce the uncertainty of
read alignment, we did not consider two of the QC fil-
ters that are more relevant for shorter read lengths (of less
than 50 bp): the unique mappability and intrinsic bias fil-
ters. BaalChIP (version 0.1.9) ASB Bayesian analysis was
performed with the default parameters and options [21].

Consistency of ARs

Consistency of the ARs observed at ASB SNPs was ana-
lyzed (i) between replicates: pairs of replicated samples,
(ii) within cell lines: pairs of ChIP-seq data sets from dif-
ferent proteins (pooled replicate data) in the same cell
line, and (iii) between cell lines: pairs of cells (pooled data
for each cell line). Correlations were calculated with the
Spearman correlation and required at least 15 shared ASB
sites.

SNP annotations relative to genes

To annotate ASB SNPs with respect to gene annotations
(5" untranslated region, 3" untranslated region, promoter,
splice site, coding, intron, or intergenic), we used the Vari-
antAnnotation package (version 1.8.13) in R. To obtain the
list of known genes and coordinates, we used known gene
annotations from the UCSC genome browser obtained
from the TxDb.Hsapiens.UCSC.hg19.knownGene library
(version 2.6.2) in R [20].

Overlap with predicted enhancers

To determine if ASB SNPs were enriched in any of the
putative enhancer regions, we calculated the overlap
of intergenic ASB SNPs in putative enhancer regions.
The significance of an observed overlap was deter-
mined by a x? test by comparing the fraction of ASB
SNPs in putative enhancer regions with the fraction
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of non-ASB heterozygous SNPs in putative enhancer
regions. Putative enhancer regions were retrieved
for six cell lines (GM12878, H1hESC, HelLa, HepG2,
K562, and A549) based on predicted weak and strong
enhancer sites and/or H3K27ac and H3K4mel chro-
matin marks. Enhancer site predictions were retrieved
from human segmentations previously generated based
on ENCODE data using Segway (downloaded from the
wgEncodeAwgSegmentation UCSC genome browser
track).

TF motif disruption analysis

To annotate the potential regulatory effects of the tested
SNPs on TFBS motifs, the publicly available HaploReg
v2 database (accessible at http://www.broadinstitute.
org/mammals/haploreg/haploreg_v2.php) was used. Hap-
loReg calculates allele-specific changes in the log-odds
(LOD) scores for the position weight matrices of a reg-
ulatory motif based on a library of position weight
matrices constructed from TRANSFAC, JASPAR, and
protein-binding microarray experiments [49]. The mag-
nitude of the change in binding affinity was calculated
as the absolute difference (delta) of LOD scores (delta
= LOD(ref) — LOD(alt)). The Kolmogorov—Smirnov test
was used to compare the distributions of the abso-
lute delta scores of motif-disrupting ASB SNPs and all
tested motif-disrupting SNPs. To determine which TFBS
motifs that ASB SNPs were more likely to disrupt, SNPs
were grouped according to DNA-binding proteins as
identified by ChIP-seq peaks. For each group, a Fisher
exact test was used to identify TFBS motifs that were
more significantly disrupted by ASB SNPs compared to
non-ASB SNPs.
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