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Abstract

Based on an extensive simulation study, McGregor
and colleagues recently recommended the use of
surrogate variable analysis (SVA) to control for the
confounding effects of cell-type heterogeneity in DNA
methylation association studies in scenarios where no
cell-type proportions are available. As their
recommendation was mainly based on simulated
data, we sought to replicate findings in two large-
scale empirical studies. In our empirical data, SVA did
not fully correct for cell-type effects, its performance
was somewhat unstable, and it carried a risk of
missing true signals caused by removing variation that
might be linked to actual disease processes. By
contrast, a reference-based correction method
performed well and did not show these limitations. A
disadvantage of this approach is that if reference
methylomes are not (publicly) available, they will need
to be generated once for a small set of samples.
However, given the notable risk we observed for cell-
type confounding, we argue that, to avoid
introducing false-positive findings into the literature, it
could be well worth making this investment.
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Tissues often consist of multiple cell types that show differ-
ent methylation patterns. In association studies, these dif-
ferences can cause spurious findings when the relative
abundance of the cell types is related to the outcome of
interest. The inclusion of cell-type proportions as covariates
will prevent such false positives. To avoid performing cell
counts on all subjects in the study, these proportions can
be estimated by using a small set of reference methylomes
obtained using DNA from sorted cells [1]. However, refer-
ence methylomes might not always be (publicly) available
and or be difficult to generate. In these scenarios, latent
variables obtained by a decomposition of the methylation
data can be used as a proxy for cell-type proportions.
McGregor et al. [2] performed an extensive simulation
study comparing one reference-based and seven latent vari-
able methods. Although not always the best method, the
reference-based method performed well. For scenarios
where no reference is available, the authors recommended
the use of surrogate variable analysis (SVA) [3], which per-
formed adequately in all simulation scenarios.

As the recommendation by McGregor and colleagues [2]
was based mainly on simulated data, we studied SVA in
two large-scale empirical studies. The first involved 1149
Dutch subjects (825 cases with depression and 324 con-
trols) aged 18-65 years [4] and the second 1448 Swedish
subjects (774 schizophrenia cases and 674 controls) aged
25-92 years [5, 6]. Using whole-blood samples from six US
subjects, cell populations were isolated by positive selection
using EasySep™ kits (Stemcell Technologies), which apply
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magnetic nanoparticles coated with antibodies against a
particular surface antigen (CD molecules). Specifically, we
used CD3, CD19, CD20, CD14, and CD15 to isolate all
common cell types in blood. All methylation data were
generated using methyl-CG binding domain sequencing
(MBD-seq) [7, 8], but the schizophrenia study was con-
ducted on an older sequencing platform with a slightly dif-
ferent laboratory protocol. We used a permutation test to
examine whether our top methylome-wide association
study (MWAS) results were enriched for sites showing sig-
nificant methylation differences among cell types. The
MBD-seq procedure assays almost all 28 million common
CpGs in the human genome. As the SVA package could
not process all sites simultaneously, it was performed on
12 randomly selected subsets of 100,000 CpG sites.

Table 1 indicates that, if no cell-type correction is applied,
MWAS findings show a greater than sixfold enrichment of
CpG sites exhibiting cell-type differences in methylation.
This was consistent with the significant case-control differ-
ences in estimated cell-type proportions (across cell types/
studies, the median P value was 8.0 x 10™°) and stresses the
need to control for this confounder. The enrichment disap-
pears when using the reference-based method. By contrast,
significant enrichment remained after SVA correction in all
studied scenarios. The performance of SVA was associated
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with the number of surrogate variables (SVs), which varied
considerably across the 12 randomly selected CpG subsets
within each study. However, even when as many as 84 SVs
were included, SVA failed to control for more-subtle cell-
type effects. To enable a simultaneous analysis of all sites,
analyses were repeated using principal component analysis
(PCA) [9], which also corrects for cell types by using latent
variables. However, this did not improve results.

The use of a reference-based method ensures that only
variation linked to differences in cell-type proportions is
eliminated. SVA can eliminate any general source of
variation in the methylation data. This carries the risk of
missing true signals when some SVs capture part of the
disease processes (e.g., a pathway). Table 1 reports add-
itional variance explained by SVs in case-control status
compared with a multiple-regression model that in-
cluded technical covariates, age/sex, and cell-type pro-
portions. Depending on the number of SVs, the
additional variance ranged from 1 to 9%. This illustrates
the risk of SVA potentially eliminating true signals in a
MWAS. To mitigate this risk, one could avoid regressing
out SVs associated with the case-control status. How-
ever, as cell-type proportions are related to both case-
control status and SVs, such a modified analysis might
be even less effective in controlling for cell-type effects.

Table 1 Comparison of reference-based and latent variable cell-type corrections in two empirical DNA methylation studies

Depression MWAS study

Schizophrenia MWAS study

Enrich. Enrich. Number of Increase r’ Enrich. Enrich. Number of Increase r’

ratio P value SVs ratio P value SVs
No cell-type correction 6.04 <0.001 - - 6.13 <0.001 - -
Reference-based correction 1.08 0.084 - 0.0% 1.02 0.029 - 0.0%
SVA subset 1 1.1 0.001 84 8.1% 6.54 0.001 5 0.8%
SVA subset 2 1.26 0.001 83 8.7% 724 <0.001 10 33%
SVA subset 3 1.85 0.004 19 2.0% 6.45 0.001 5 0.9%
SVA subset 4 1.28 <0.001 83 9.3% 7.01 0.001 12 2.8%
SVA subset 5 3.05 0.001 14 1.9% 6.79 0.002 6 1.2%
SVA subset 6 1.30 0.001 81 7.8% 6.59 <0.001 6 0.9%
SVA subset 7 1.07 <0.001 78 9.2% 642 <0.001 0.7%
SVA subset 8 1.28 0.004 79 9.2% 6.48 <0.001 4 0.7%
SVA subset 9 113 0.003 84 9.2% 746 0.001 10 2.7%
SVA subset 10 1.07 0.003 80 84% 6.71 0.003 8 1.7%
SVA subset 11 1.06 0.006 21 2.7% 6.48 <0.001 8 1.3%
SVA subset 12 117 0.004 84 7.4% 6.49 0.001 5 0.8%

We used a permutation test to examine whether our top methylome-wide association study (MWAS) results were enriched for sites showing significant methyla-
tion differences among cell types. Our test preserved the correlation structure of the data by shifting the CpG coordinates of the case-control and cell-type MWAS
by a single random number in each permutation. We examined multiple cut-offs (1, 5, and 10%) to define “top results” in the case-control and cell-type data and
selected the most significant combination. We accounted for this “multiple testing” by also selecting the most significant finding in each permutation. The “No
cell-type correction” model includes laboratory technical covariates, age, and sex. The other models include these same covariates where the “Reference-based
correction” model adds estimates of cell-type proportions, and the SVA models add latent variables. “Enrich. ratio” is the ratio of the number of CpGs showing
methylation differences between cell types among the top MWAS finding relative to the number expected under the null hypotheses assuming no enrichment;
“Enrich. P value” is the probability under this null hypothesis, as determined through permutations; “Number of SVs” is the number of latent variables selected by
SVA; “Increase r*” is additional variance explained by SVs in case-control status compared with a multiple regression model that included technical covariates, age/

sex, and cell-type estimates. SV surrogate variable, SVA surrogate variable analysis
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With empirical data, SVA did not adequately correct
for cell-type effects, had somewhat unstable perform-
ance, and carried a risk of missing true disease signals.
The PCA suggested that these limitations might not be
specific to SVA but are inherent to the use of latent
variables—that is, whereas these corrections assume that
cell-type heterogeneity impacts many sites, cell-type
effects seem more subtle and cannot be fully captured
by just the main latent variables. For this reason, we ex-
pect our findings to generalize to methylation platforms
other than MBD-seq. By contrast, the reference-based
method was superior in all respects. If reference methy-
lomes are not (publicly) available for a given tissue and
methylation assay, they will need to be generated once
for a small set of samples. However, given the notable
risk we observed for cell-type confounding, to avoid
introducing false-positive findings into the literature it
could be well worth making this investment.
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