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Abstract

of lymph node metastases and invasive tumor stages.

addition to focal therapy.

Background: Slow-growing prostate cancer (PC) can be aggressive in a subset of cases. Therefore, prognostic tools
to guide clinical decision-making and avoid overtreatment of indolent PC and undertreatment of aggressive disease
are urgently needed. PC has a propensity to be multifocal with several different cancerous foci per gland.

Results: Here, we have taken advantage of the multifocal propensity of PC and categorized aggressiveness of individual
PC foci based on DNA methylation patterns in primary PC foci and matched lymph node metastases. In a set of 14
patients, we demonstrate that over half of the cases have multiple epigenetically distinct subclones and determine the
primary subclone from which the metastatic lesion(s) originated. Furthermore, we develop an aggressiveness classifier
consisting of 25 DNA methylation probes to determine aggressive and non-aggressive subclones. Upon validation of
the classifier in an independent cohort, the predicted aggressive tumors are significantly associated with the presence

Conclusions: Overall, this study provides molecular-based support for determining PC aggressiveness with the potential
to impact clinical decision-making, such as targeted biopsy approaches for early diagnosis and active surveillance, in

Keywords: DNA methylation, Prostate cancer, Aggressiveness, Multifocal

Background

Prostate cancer (PC) is the most frequently diagnosed
non-skin cancer and the second most common cause of
cancer deaths in men in the United States. Although
PC incidence rates have increased over the past
25 years, mortality rates have largely remained un-
changed (https://www.cancer.gov/). The development
of prostate specific antigen (PSA) testing as a screening
tool for PC has resulted in increased diagnoses of PC;
however, many of these are less aggressive lesions with
unclear clinical significance. Thus, a central dilemma in
the management of clinically localized PC is whether to
postpone treatment and monitor until the disease
becomes more aggressive in order to minimize patient
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health side effects, or to treat immediately to avoid
progression and dissemination of disease. Treatment of lo-
calized PC with radical prostatectomy or radiation therapy
is associated with high cure rates; however, this is associ-
ated with significant side effects, including urinary in-
continence (5-20%), erectile dysfunction (30-70%), and
bowel toxicity (5-10%) [1, 2]. Generally, PC is a slow-
growing malignancy with decades of indolence, but the
aggressive forms display rapid growth, dissemination,
and lethality in a subset of cases (<20%) [3, 4]. Further-
more, no curative therapies are available for metastatic
PC patients. This highlights the need for novel prog-
nostic tools to guide clinical decision-making and avoid
both overtreatment of indolent PC and undertreatment
of aggressive disease [4].

Predicting tumor aggressiveness and likelihood of
progression is critical for clinical decision-making. PC is
graded using the Gleason system, in which tumors with
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higher Gleason Scores (GSs) tend to be more aggressive
[5, 6]. GS is calculated by summing the primary (largest
pattern) and secondary (second largest pattern) Gleason
grades, each of which ranges from 1 (well differentiated)
to 5 (poorly differentiated) [5]. However, the relationship
between individual GSs of clinically localized PCs and
those that progress to metastatic disease is poorly under-
stood [7]. The tumorigenic events during PC progression
have been difficult to investigate, and the ability to
characterize late stages of PC progression is lacking due
to limited availability of metastatic tissues. In addition,
60-90% of PCs are multifocal [8], in which one prostate
contains several seemingly unconnected locations of
cancer growth. The development of multifocal PC is still
highly debated and two models have been described [8].
One theorizes that an initially transformed cancer
spreads to multiple locations within the prostate (mono-
clonal), while the other model suggests that PC foci arise
independently in different areas of the same gland (mul-
tiple subclones) [9-18]. The latter option indicates the
possibility that aggressive and non-aggressive cancer foci
co-exist in the same prostate gland and is supported by
the finding that individual foci of multifocal PC often
present with unique GSs [19]. Consequently, the index
lesion (the cancer lesion with the largest volume or the
highest GS depending on the study) may not be rep-
resentative of PC behavior [20] and subsequently
complicates sample selection for analysis and clinical
decision-making. Therefore, previous studies that have
not accounted for prostate tumor multifocality, or
used only the index lesion, are potentially flawed.

Recently, focal therapy has been put forth as a novel
approach for destruction of only the index lesion (high-
est GS) in localized unifocal and multifocal PCs in order
to reduce adverse health side effects. GSs of individual PC
lesions, including index lesions, can differ amongst multi-
focal PC lesions [19], and treatment decisions are usually
based on the assumption that the index tumor drives PC
progression [21]. Therefore, accurate characterization of
the index tumor or aggressive lesion is a fundamental
issue for PC management.

DNA methylation alterations occur in every cancer
type and, importantly, DNA methylation levels change
concordantly with tumor aggressiveness in most types of
cancer [22]. Epigenetic alterations can drive tumorigen-
esis and determine tumor aggressiveness and, therefore,
can be used for diagnostic purposes [23] as well as to
inform therapeutic approaches [24, 25]. Although PC
has been shown to harbor a great hereditary element
[26, 27], only an estimated 30% of these factors have
presently been accounted for in PC patients [28]. Interest-
ingly, recent studies have been able to connect genetic al-
terations and DNA methylation changes, indicating that
DNA methylation changes hold information regarding the
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clonal evolution of PC. For example, multiple metastases
within a PC patient have been shown to arise from a single
precursor cancer cell, or focus, by copy number alter-
ations (CNAs), mutation and gene expression patterns,
and DNA methylation changes [21, 29, 30], suggesting
that only one focus of a multifocal PC is responsible for
the development of the metastatic lesions. Moreover,
unified evolution of DNA methylation and CNAs was
identified in five cases of monofocal PC and their matched
lymph node metastases [11].

In this study, we have approached the issue of PC ag-
gressiveness from a novel perspective. We have taken
advantage of the multifocal propensity of PC and catego-
rized aggressiveness of individual PC foci based on DNA
methylation patterns in primary PC foci and matched
metastases. In a set of 14 patients with multifocal PC,
we demonstrate that over half of the multifocal PC cases
have multiple subclones and determine the primary
subclone from where the metastatic lesion(s) originated.
Overall, we describe a unique approach to identify ag-
gressive PC lesions using DNA methylation markers,
which have potential utility in clinical decision-making
regarding whether the patient should undergo treatment
or be monitored by active surveillance.

Results
DNA methylation patterns of lymph node metastases
indicate the potential primary focus/foci of origin
In this study, we hypothesize that the aggressive primary
cancer focus/foci can be identified from multifocal PC
by the degree of correlation of DNA methylation to
lymph node metastases, which are representative of an
aggressive trait (Fig. 1a). Our hypothesis relies on four
assumptions: 1) a subset of multifocal PCs arise from
independent and sporadic genetic/epigenetic changes,
effectively implying that distinct cancer foci develop
through different molecular mechanisms/pathways and
harbor unique proliferative, migration, and aggressive-
ness potential; 2) DNA methylation changes inform
about clonal evolution and will not change substantially
upon dissemination [11, 30, 31]; 3) PC metastases have
the same clonal origin [21, 30]; and 4) pelvic lymph
nodes drain from a cancerous prostate and are likely the
initial site of metastatic spread. Thus, nodal metastases,
along with advanced pathologic stage, constitute aggres-
sive traits, which are surrogates for metastatic potential.
We used the Illumina Infinium HumanMethylation450
BeadArray (HM450) platform to measure genome-scale
DNA methylation of matched primary tumors and pelvic
lymph node metastases in 16 patients who underwent
radical prostatectomy for multifocal disease (Additional
file 1: Table S1). Prostate and nodal tissue samples
stored in formalin-fixed, paraffin embedded (FFPE) tis-
sue blocks were sectioned, stained with hematoxylin and
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Fig. 1 Strategy and sample selection. a A prostate gland with four cancer foci (green and orange areas) and a pelvic lymph node with metastasis
marked by a purple star. Our hypothesis is that we can determine the primary focus of metastasis origin based on matching DNA methylation in
the lymph node metastasis, and this in turn will represent the most aggressive cancer subclone. By determining the aggressive subclone in
multifocal PCs, we will obtain groups of aggressive and non-aggressive samples, which will form the basis for developing a classifier to determine
the aggressiveness of primary PC foci. b An overview of the samples from patient 41 is shown in the upper left corner. P patient, T primary tumor
focus, NL tumor-negative lymph node, PL tumor-positive lymph node. The physical location of the five prostate samples and the two lymph node
samples collected are shown on schematics of the dissected prostate gland (middle) and the lymphatic system (lower left corner), respectively
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eosin (H&E) (Fig. 1b), and examined by two specialized
genitourinary pathologists. All areas of cancer were marked
and assigned a GS, including primary tumor foci (T),
adjacent-normal (AN) prostate tissues, tumor-negative
lymph nodes (NLs), tumor-positive lymph nodes (PLs),
and, when possible, prostatic intraepithelial neoplasia
(PIN), summing to a total of 92 samples (“Methods”). Sam-
ple purity was tested for either infiltration of normal cells
or leukocytes caused by inflammation using DNA methyla-
tion data (“Methods”; Additional file 1: Figure S1). Two
primary tumor foci were removed due to low tumor cell
content (P17_T3 and P23_T3) and two PL metastases were
removed due to high leukocyte content (P15_PL and
P32 _PL), thereby excluding all samples from patients
15 and 32. HM450 DNA methylation data from the
remaining 14 patients were compared in a multidimen-
sional scaling (MDS) plot, in which samples are placed
in two-dimensional space based on dissimilarity
(Additional file 1: Figure S2). Primary tumors and
lymph node metastases were highly heterogeneous with
no obvious subgroups, whereas normal prostate and
lymph node tissues formed a tight cluster, as expected,

indicating that cancer-specific DNA methylation alter-
ations are evident in our sample cohort.

In order to investigate if DNA methylation patterns
hold information about clonal evolution in PC, Pearson
correlations amongst all the samples were calculated,
plotted, and visualized using heatmaps (Fig. 2a). Firstly,
primary foci from the same patient showed more vari-
able correlation coefficients (0.89-0.99) compared to
interpatient AN—AN samples (0.96-0.99) and interpati-
ent AN-NL samples (0.90-0.94), indicating that mul-
tiple cancer subclones are present in some patients
(Fig. 2b) and in turn may hold distinct tumorigenic po-
tential. Secondly, lymph node metastases consistently
showed the highest correlation to one or more of the
primary tumor foci from the same patient (0.94-0.98;
Fig. 2c). Thus, DNA methylation profiles had not
diverged to such a degree that metastases and primary
tumors remained comparable. Taken together, these
results demonstrate that a subset of multifocal PCs
show independent epigenetic changes, indicating that
cancer foci develop from unique subclones. Further-
more, the DNA methylation profiles of lymph node
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Fig. 2 DNA methylation of metastasis and primary site from the same patient is highly similar. a Between-sample correlation plot. Sample names
are shown to the /eft of the plot. At the top and the feft of the plot are colored sidebars showing sample type and patient identifier. The sidebar to
the right of the plot shows the correlation coefficient color key, red being high correlation and blue low correlation. P patient, AN adjacent normal,
T primary tumor focus, NL tumor-negative lymph node, PL tumor-positive lymph node. b Enlargement of correlation amongst primary tumor foci
in patient 41. ¢ Enlargement of correlation between all primary tumor foci and all positive lymph nodes

metastases are highly correlative to a focus/foci from
individual patients.

Next, we investigated the DNA methylation profiles of
PC foci among individual patients. To identify the focus
of origin of lymph node metastasis, we selected the top
1% most variably methylated probes between all sam-
ples, excluding PLs, for each patient. The DNA methyla-
tion levels of these probes from all samples, including
PLs, were then compared by unsupervised hierarchical
clustering and heatmap visualization. Based on similar
DNA methylation levels, we expect PLs to cluster with
one or more primary tumors, thereby providing infor-
mation regarding the potential clonal relationship
between primary PCs and PLs. Heatmaps after unsuper-
vised clustering of these probes for two representative
patients, patients 41 and 54 (Fig. 3a, b, left panels), as
well as for the remaining 12 patients with lymph node
metastases (Additional file 1: Figure S3) are shown. In
all 14 cases with lymph node metastases, the PLs clus-
tered with one or more of the matched primary tumor
foci and no PLs clustered with the AN prostate tissues,
normal lymph nodes, or PIN lesions (Fig. 3; Additional
file 1: Figure S3). In addition, PLs clustered and were
highly correlated in two patients (P23 and P56) with
multiple PLs (0.99 and 0.98, respectively; Additional file
1: Figure S3), supporting the assumption (assumption 3)
that metastases have the same clonal origin.

The PL DNA methylation profile for patient 41 clus-
tered very closely with the T2 and T3 primary tumor
foci, while the T4 and T1 foci were more dissimilar, as
shown by the dendrogram at the top of the heatmap
(Fig. 3a). For this patient, the T2 and/or T3 foci are the
most likely origin(s) of the metastasis. Furthermore, the

physical juxtaposition of T2 and T3 within the prostate
specimen (Fig. 1b) suggests these two foci diverged from
the same population of transformed cells during tumori-
genesis. In addition, patient 41 also displayed tumor foci
with very different DNA methylation profiles, indicating
the occurrence of multiple independent transformation
events and, therefore, multiple subclones (Fig. 3a).
Patient 54 had two primary foci (T1 and T2) and the PL
DNA methylation data were very similar to both tumor
foci. Hence, both patients displayed multiple primary
tumor foci with very similar DNA methylation profiles,
indicating a monoclonal origin of these PCs.

In order to validate these findings, we took advantage
of the recent evidence that the HM450 DNA methyla-
tion platform can also be used to determine CNAs by
summing the methylated and unmethylated signal inten-
sities of the probes [32, 33]. This analysis provided
additional evidence that the T2 and T3 foci were very
similar to the PL in patient 41. Both T2 and T3 foci had
deletions on chromosomes 2, 10, 11, and 16 and gains
on chromosomes 7, 8, and 10; however, these regions
were not altered in the T1 or T4 foci, which show differ-
ent CNA patterns (Fig. 3a, right panel). All three sam-
ples from patient 54 presented with multiple shared
alterations, as well as deletion of the short arm and
amplification of the long arm of chromosome 8, both
common features of PC [34, 35] (Fig. 3b, right panel).
Overall, the CNA analysis supports our findings of mul-
tiple subclonal origins in patient 41 (Fig. 3a) and a
monoclonal origin in patient 54 (Fig. 3b) based on DNA
methylation analysis. Moreover, the CNA results also
support our finding that the origin of lymph node me-
tastasis can be determined by DNA methylation data.
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Similarly, all PLs clustered with one or more primary
tumor foci from the remaining 12 cases using our DNA
methylation-based approach (Additional file 1: Figure S3).
Furthermore, nine patients (P23, P24, P26, P41, P43, P56,
P84, P88, and P98) showed clearly distinct DNA methyla-
tion patterns among the primary foci, indicating the exist-
ence of independent tumor subclones. Taken together,
these results suggest that the PL. DNA methylation pattern
can be used to identify the potential primary focus/foci of
origin of metastasis and that PC patients may contain sub-
clones with aggressive and non-aggressive potential.

Development of a panel of DNA methylation markers as a
classifier for PC aggressiveness
Next, we devised a DNA methylation-based PC aggres-
siveness classifier to categorize primary PC foci as either
aggressive or non-aggressive. The unsupervised hier-
archical clustering approach effectively identifies the pri-
mary origin of lymph node metastases; however, in order
to categorize the aggressiveness of individual foci in a
quantitative, unbiased, and objective manner, we calcu-
lated Euclidean distances between any two samples
within a patient using all filtered HM450 probes. Euclid-
ean distance, like Pearson correlation, compares sample
similarities, but maintains data variability, and is also su-
perior for analysis of differential gene expression analysis
[36]. We divided the scale of Euclidean distances into
discrete categories (aggressive, non-aggressive, and
undecided) for all primary tumor foci. Since the purpose
of this categorization method is to assemble groups of
genuinely aggressive and non-aggressive tumors for bio-
marker development, we included a gap of 10 Euclidean
distance units (undecided category) to reduce the risk of
misclassification. Sample categorization for each patient
is shown using DNA methylation-based phylogenetic
trees, where samples are colored as a function of aggres-
siveness (Fig. 4a; overview in Additional file 1: Table S2).

Taken together, our developed categorization approach
found that eight patients (patients 23, 24, 26, 41, 43, 56,
84, and 98) showed independent DNA methylation
profiles indicative of multiple subclones. Five patients
(patients 14, 17, 54, 85, and 88) showed similar DNA
methylation patterns, indicating a monoclonal origin,
and one patient (patient 52) was categorized as un-
decided (Fig. 4a; Additional file 1: Table S2). These find-
ings are in agreement with the unsupervised clustering
data (Fig. 3; Additional file 1: Figure S3) with the
exception of patient 88, who did not show discrete
subclones as indicated by the heatmap and dendrogram.
In this patient, the top 1% most variably methylated
probes were not representative of the potential clonal
relationship.

We next searched for differentially methylated probes
between the aggressive and non-aggressive groups (false
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discovery rate (FDR)-adjusted p < 0.05) but found that
the DNA methylation levels of no single probe were
significantly different between the two groups. Using an
FDR cutoff of 0.3, 231 probes were identified. Still, we
continued to search for a set or panel of probes able to
distinguish these groups from a larger panel. First, we
generated a list of the 3000 most differentially methyl-
ated probes between the assembled aggressive and non-
aggressive groups based on mean DNA methylation
differences (Additional file 1: Figure S4), which was
subsequently used as input for the GLMnet algorithm
[37] along with information about normal, aggressive,
and non-aggressive sample groups. The GLMnet model
generates outputs in the form of probabilities of group
membership, which are functions of the DNA methylation
values for a given set of probes that differentiate the
groups. Upon numerous iterations and refinement of the
input probes list (“Methods”), we found a set of 25 probes
(Additional file 1: Table S3) that optimally predict normal,
non-aggressive, and aggressive categories (Fig. 4b). Of the
25 probes in the classifier, 21 (84%) were among the
probes with FDR-adjusted p<0.3 for either aggressive
versus non-aggressive, aggressive versus normal, or non-
aggressive versus normal comparisons.

The Cancer Genome Atlas PC cohort validates the
potential of our aggressiveness classifier

To test the classifier on an independent dataset, we took
advantage of the publically available prostate adenocar-
cinoma (PRAD) HM450 DNA methylation data and
accompanying clinical information from The Cancer
Genome Atlas (TCGA) project. We tested 496 prostate
samples (tumor and AN) using the classifier. For each
sample, the probabilities of normal, aggressive, and non-
aggressive groups sum to 1, and the group with the
highest probability is the predicted phenotype of a given
sample. Of the TCGA PRAD samples (n =351; 312 tu-
mors and 39 AN samples), 70% were predicted with a
probability above 0.67 (see 100 random samples as an
example in Fig. 5a). Of the 39 AN prostate TCGA sam-
ples, 38 were predicted as normal and one as aggressive.
Of the 312 primary tumors (see Additional file 1: Figure
S5 for distribution of clinical information), 233 were
predicted as aggressive, 67 were predicted as non-
aggressive, and 12 were predicted as normal, thus result-
ing in a 97.4% specificity and a 96.2% cancer sensitivity
for PCs compared to AN tissue samples (Fig. 5b). Upon
evaluation of the consistency between our predictions
and the sample diagnoses (PC versus AN) based on the
histological microscopic examinations performed by
TCGA, the classifier has a 76% negative predictive value
and a 99.7% positive predictive value (Fig. 5c). The pre-
ponderance of high GSs (about 50% of tumors in G8—
10; Additional file 1: Figure S5a) and advanced T3-T4
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are separated into three distinct groups and show no overlap

Fig. 4 Building an aggressiveness classifier. a Phylogenetic reconstruction showing clonal relationships in each patient based on all filtered
HM450 probes. Averaged normal prostate and normal lymph node samples were used for each tree. Sample types are colored with black (normal
and PIN), orange (aggressive primary tumor), green (non-aggressive primary tumor), yellow shaded (undecided primary tumor), and purple (lymph
node metastasis). Below each tree the longest Euclidean distance between any two samples in the tree are denoted so as to serve as a reference
between the different trees. b MDS plot based on a 25-probe classifier generated by GLMnet of the samples used for the analysis. The samples

stage (over 70% of tumors; Additional file 1: Figure S5b)
in TCGA PRAD tumor may explain the high proportion
of cancers predicted as aggressive (Fig. 5). Indeed, we do
find this result strengthens the validity of our classifier.

To evaluate the prognostic performance of the classifier,
we consulted available clinicopathological covariates asso-
ciated with PC aggressiveness, including pre-operative
PSA, tumor size, pathological GS, presence of lymph node
metastases, and tumor stage, for samples with probabil-
ities above 0.67. Aggressiveness was significantly (p < 0.02)
associated with the investigated covariates except tumor
size (Fig. 6; Additional file 1: Figure S6). Pre-operative
PSA levels were higher in the aggressive group compared
to the non-aggressive group (p = 0.005; Fig. 6a; Additional
file 1: Figure S6). However, similar tumor sizes between
groups (Fig. 6a; Additional file 1: Figure S6) indicate that
aggressiveness and tumor size are independent as has also
been suggested previously [13]. Interestingly, we found a
significant association between PC aggressiveness and GS
using a Chi square test (p = 0.018). Importantly, we found
that significantly more patients classified as having an ag-
gressive PC presented with lymph node metastases at the
time of surgery compared to patients with predicted
non-aggressive tumors (p=9.2x107% Fig. 6a). Also,
the pathological evaluation of tumor stage (Fig. 6a)
showed significantly more organ-confined stage T2 tu-
mors in the non-aggressive group (p=2.2x1077) and
significantly more of the capsule-penetrating and sem-
inal vesicle invasive stage T3 tumors in the aggressive
group (p=7.7x1077).

Upon further examination, tumors with high GSs (GS
8-10) were significantly associated with the aggressive
group (p =0.022), but no such association was seen for
tumors with low (GS 6) and intermediate (GS 7) scores
(p=0.059 and p =0.254, respectively; Fig. 6a). GSs are
well correlated with PC aggressiveness, especially at the
low (GS 6) and high (GS 8-10) ends of the scale [5, 6],
and Gleason scoring is a valuable tool in PC treatment.
However, additional information is required to deter-
mine aggressiveness for the intermediate (GS 7) tumors.
Interestingly, the GS 7 tumors, which comprise nearly
one-half of all TCGA PC tumors (Additional file 1:
Figure S5), were not significantly associated with non-
aggressive or aggressive groups (Fig. 6a), indicating that
this large group in particular may benefit from our DNA
methylation-based classifier in order to determine

whether active surveillance or ablative treatment is the
best course of action. In support of this, we also found
that the GS 7 tumors classified as non-aggressive were sig-
nificantly associated with tumor stage T2 (P =1.5 x 1074,
while GS 7 tumors classified as aggressive were signifi-
cantly associated with tumor stage T3 (p=1.2x107%
Fig. 6b). Furthermore, we tested whether the primary and
secondary patterns of the GS 7 tumors showed a correl-
ation to the aggressive or non-aggressive groups (Fig. 6b).
GS is calculated by summing the primary (largest pattern)
and secondary (second largest pattern) Gleason grades,
each of which ranges from 1 (well differentiated) to 5
(poorly differentiated) [5]. Interestingly, there was no
difference in the distribution between 3 +4 and 4 +3
tumors and indicates that tumors of this large inter-
mediate Gleason 7 group can be further and more ac-
curately stratified using our molecular-based classifier
to help determine whether active surveillance or ablative
treatment should be performed.

Taken together, the strong correlation between cancer ag-
gressiveness and tumor stage holds great promise for our
classifier if developed into a molecular DNA methylation-
based assay for needle biopsy samples, since the patho-
logical tumor stage cannot be obtained until after surgery.

Discussion

Identification of PC aggressiveness is fundamental to im-
proving clinical decision-making in patients diagnosed
with organ-confined PC regarding treatment or active
surveillance. By implementing our study design of exam-
ining DNA methylation in primary multifocal PC and
matched lymph node metastases, we were able to exam-
ine the relationships amongst primary foci as well as the
relationships between primary foci and metastases. Im-
portantly, we found that more than half of the patients
in our cohort showed multiple subclones, findings simi-
lar to previously reported studies [9, 11-14, 16-18], and
also that DNA methylation of a lymph node metastasis
is similar to a cancerous focus/foci from the same patient.
Taking advantage of these findings, we developed a
method to categorize the subclonal relationship and ag-
gressiveness of individual PC foci. The resulting aggressive
and non-aggressive sample groups, along with adjacent-
normal samples, were used to search for biomarkers to
distinguish the three groups, and the outcome was a
25-probe aggressiveness classifier. The classifier showed
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promising prognostic potential when it was applied to
samples from the PC cohort from TCGA and merits
validation in future studies including longitudinal
monitoring of patients.

For this study, we relied on the assumption that DNA
methylation can inform on clonal evolution. Several
studies have addressed the connection between DNA
methylation and clonal evolution with high precision
[11, 21, 30] and, recently, Costello and colleagues

reported that phyloepigenetic relationships robustly
recapitulate phylogenetic patterns in gliomas and their
recurrences [31]. Two or more foci originated from the
same subclone in 11 of 14 patients in our cohort
(Fig. 4a), indicating that an initial subclone seeded mul-
tiple locations through migration. We cannot definitively
rule out that these are not actually one large or
branched focus, since a fine physical connection can be
hard to clearly distinguish in a pathological sample.
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Therefore, we do not attempt to determine which focus
from the same subclone gave rise to the PL.

While clinical tools and techniques have improved
immensely [1, 3, 38—41], the determination of tumor ag-
gressiveness prior to physical manifestation must rely on
biomarkers measured biochemically or at a molecular
level. One impediment to success is how to define tumor
aggressiveness with respect to a clinical end point. Often
GS or time to PSA recurrence is used as a surrogate for
PC aggressiveness, which would be more appropriately
evaluated using metastatic progression or mortality. In
this study, we used a novel approach in defining aggres-
siveness as the ability to give rise to lymph node metas-
tases. The presence of lymph node metastases is an
indication of tumor cells having acquired the ability to
leave the primary site and proliferate in a secondary site
and thus acts as an indicator for the capacity of the can-
cer to establish distant metastases. In addition to this
type of lymphatic dissemination, metastases can also
arise through hematogenous dissemination to brain,
lungs, liver, and bone marrow [42]. Secondary cancer
growths at these sites are not routinely removed during
treatment for metastatic PC and, thus, the tissue for re-
search is not available until postmortem. Although we
recognize that distant metastases do not exclusively arise
through lymphatic dissemination, we show that this clin-
ical end point is very relevant alone or in concert with
other clinicopathological parameters (Figs. 5 and 6).

Gleason score 7 (GS 7) tumors are among the most dif-
ficult and poorly established backgrounds for making clin-
ical decisions [43, 44]; however, our study demonstrated
that aggressiveness of PCs with GS 7 using our classifier is
highly correlated with pathological tumor stage but not
specific for primary or secondary Gleason patterns (4 + 3
or 3 +4; Fig. 6b). Because of this, our classifier may chal-
lenge the current standard for clinical care and may result
in placing select PC patients into active surveillance and
avoidance of unnecessary invasive treatments.

A limitation to the presented study is that our discovery
set is effectively only 14 patients, from whom we have 79
total samples. A larger discovery set would improve the
study and would probably result in an enlargement of the
classifier to more than 25 probes due to the vast PC het-
erogeneity [45]. Despite the modest size of the discovery
set, we were able to validate the aggressiveness classifier
and, thus, our study approach using publicly available
TCGA PRAD DNA methylation data from 496 primary
tissues. Upon correlating our predictions with the TCGA
clinicopathological information, we found a significant as-
sociation (p<0.02) between aggressiveness and pre-
operative PSA levels, pathological GS, presence of lymph
node metastases, and tumor stage; interestingly, however,
we did not find any correlation with tumor size. We do
recognize that different clinical endpoints would be better
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suited to describe poor clinical outcome, however, but re-
gret that the average follow-up period of the TCGA PRAD
cohort was only 3.16 years. As a result, we found that too
few patients had recurred and thus only found a signifi-
cant difference between the groups for tumor status
(Additional file 1: Figure S7). Taken together, the pre-
sented data suggest the novelty of using DNA methylation
data to identify aggressive lesions more specifically than
any currently used approach, and is especially promising
due to its potential clinical applications for early detection
in PC biopsy specimens.

Upon suspicion of PC, prostate biopsies are performed
as the standard-of-care method for PC diagnosis [46].
Currently, prostate needle biopsies are most commonly
performed trans-rectally in a systematic, yet random for-
mat. This systematic, random biopsy strategy has a high
rate of misdiagnosis, since the non-targeted needles may
either miss the clinically significant cancer focus, capture
only a clinically insignificant cancer focus, or completely
miss all cancer foci [20, 47]. Thus, the significant
sampling error of traditional systematic, random pros-
tate biopsies renders them unreliable for accurate
characterization of index tumor location, volume, and
GS [47]. The recently developed image-guided targeted
prostate biopsy technique, which fuses magnetic reson-
ance and three-dimensional transrectal ultrasound im-
ages, can reliably identify the location and the primary
Gleason pattern of index lesions [40, 41]. By combining
image-guided targeted biopsies and our DNA methyla-
tion classifier (following further clinical validation), we
expect to enhance the ability to identify aggressive foci
and subsequently characterize biopsy-detected PC foci
more accurately. The ability to determine aggressiveness
in a biopsy sample mapped to a particular prostate loca-
tion also holds great promise for making more informed
clinical decisions regarding the choice between active
surveillance of non-aggressive PC foci and surgery or
targeted focal ablation therapy of the aggressive PC foci,
although it should be noted that several steps remain
before approval for clinical use. Initially, the aggres-
siveness classifier should be developed into a more
cost- and labor-efficient test in the form of a custom
DNA methylation array or multiplexed PCR-based
assay (MSP or MethyLight) [48, 49]. Moreover, the
test should undergo extensive clinical validation in
retrospectively collected samples—prostate biopsies,
blood, or urine samples—before finally being tested in
a clinical trial environment.

Conclusions

Our study demonstrates the relevance for translational
medicine in spanning from collected PC samples and
large-scale datasets to a DNA methylation biomarker
panel with potential clinical applicability.
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Methods

Study design

Sixteen patients diagnosed with multifocal PC having
metastasized to one or more pelvic lymph nodes were
enrolled in the study following informed consent
(Additional file 1: Table S1). All patients had radical
prostatectomies and removal of pelvic lymph nodes in
the period 1991-2013. No anti-androgen treatments
were administered prior to surgery. The prostate and
lymph node tissue samples were stored in FFPE tissue
blocks. FFPE blocks were sectioned and H&E stained
(Fig. 1b). Two trained pathologists examined all slides
covering the entire prostate and dissected lymph nodes,
and all areas of cancer were marked and given a GS. In
addition, AN and PIN regions were marked when pos-
sible, summing to a total of 92 samples. The marked
H&E slides were used to guide the dissection of AN/
PIN/PC cells from 8-10 unstained slides (5-10 pm).

Deparaffinization and purification

The dissected tissue samples were deparaffinized using a
double xylene wash followed by a double ethanol wash and
drying of the pellets. For DNA extraction, the pellets were
resuspended in 240 ul of PKD buffer and Proteinase K
(Qiagen, miRNeasy FFPE kit), then incubated at 55 °C over-
night and finally 85 °C for 15 min. After cooling the sam-
ples, 500 ul RBC buffer was added and the samples were
run through gDNA Eliminator columns (RNeasy plus mini
kit) using RPE buffer to wash and EB buffer for elution.

DNA methylation profiling

Genomic DNA (200-500 ng) from each FFPE sample
was treated with sodium bisulfite and recovered using
the Zymo EZ DNA methylation kit (Zymo Research) ac-
cording to the manufacturer’s specifications and eluted
in a 10 pl volume. An aliquot (1 pl) was removed for
MethyLight-based quality control testing of bisulfite
conversion completeness and the amount of bisulfite
converted DNA available for the Illumina Infinium
HM450 DNA methylation assay [48]. All samples that
passed the quality control tests were then repaired using
the Illumina Restoration solution as described by the
manufacturer. Each sample was then processed using
the Infinium DNA methylation assay data production
pipeline as described in [50].

After the chemistry steps, BeadArrays were scanned
and the raw signal intensities were extracted from the
*IDAT files using the R package methylumi. The inten-
sities were corrected for background fluorescence and
red-green dye-bias [51]. The beta values were calculated
as (M/(M +U)), in which M and U refer to the (pre-
processed) mean methylated and unmethylated probe
signal intensities, respectively. Measurements in which
the fluorescent intensity was not statistically significantly

Page 12 of 15

above background signal (detection p value >0.05) were
removed from the data set. In addition, probes that over-
lap with known SNPs as well as repetitive elements were
masked prior to data analyses. Specifically, all HM450
probes that overlapped with common SNPs with a
minor allele frequency of greater than 1% (UCSC cri-
teria) at the targeted CpG site, as well as probes with
SNPs (minor allele frequency >1%) within 10 bp of the
targeted CpG site were masked. HM450 probes that
were within 15 bases of the CpG lying entirely within a
repeat region were also masked prior to data analyses.
The end result was a dataset of corrected beta-values for
396,020 probes spanning ~21,000 genes.

Calculation of tumor purity

To investigate the degree of leukocyte infiltration in each
sample, public HM450 data from 96 male peripheral
blood samples (GSE53740 and GSE51388) were down-
loaded using Marmal-aid [52]. All HM450 probes with
beta values >0.2 in male peripheral blood were excluded.
The remaining probes were used to subset 500 probes
that were hypermethylated in 43 TCGA AN prostate
samples, and thus hypomethylated in peripheral blood.
Tissues of prostate origin from our study with mean
DNA methylation of these probes below 0.6 were
excluded from further analysis. Two lymph node metas-
tases were excluded due to high blood content. Four
GSTP1 HM450 probes (cg06928838, cg09038676, cg222
24704, ¢g26250609) were used for tumor purity analysis
as described in Brocks et al. [11]. Primary tumors with
mean DNA methylation beta values <0.4 were excluded
from further analysis. Two tumor samples were excluded
due to high normal content.

Unsupervised hierarchical clustering

For each patient, probes with masked beta values (detec-
tion p value >0.05) were excluded and the top 1% most
variably methylated probes between all the samples ex-
cept the PL(s) were selected. Heatmaps were used to dis-
play the DNA methylation levels and the unsupervised
hierarchical clustering was performed with the hclust
function in R (method = “complete”).

CNA analysis

CNAs were analyzed using the Champ package for R [53]
using 28 AN prostate samples purified from FFPE tissues
(12 from this study and 16 from unpublished data) as a
reference. Imported beta values were run through champ.-
norm and champ.CNA (filterXY = FALSE, batchCorrect =
T, freqThreshold = 0.3). The generated segment mean-files
were intersected with the Infinium probe locations
using BedTools and the resulting chromosomal loss
and gain were illustrated in heatmaps using Matlab.
Most of the samples showed noisy profiles, likely due
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to DNA breakage accumulated during the storage in FFPE,
and the analysis could not be completed for all samples.

PC tumor aggressiveness categorization

Euclidean distances were calculated between any two
samples using all 396,020 filtered probes. Averaged nor-
mal prostate and normal lymph node samples showed
minimal variance and were used for the analysis. Normal
prostate samples were considered to be very similar be-
cause only 0.65% (2561/396,020) of standard deviations
for all the probes were >0.15. Normal lymph node sam-
ples were considered to be very similar because only
0.98% (3875/396,020) of standard deviations for all
probes were >0.15. The primary focus with the shortest
Euclidean distance to the lymph node metastasis (T-PL
dist 1) was categorized as aggressive. The additional dis-
tance to the other primary foci (T-PL dist 2; actual T-PL
dist — T-PL dist 1 = T-PL dist 2) were assessed in a dens-
ity graph and a division of the scale based hereon
(Additional file 1: Figure S8). If T-PL dist 2 values were
only 0-10 units longer, they were also categorized as
aggressive. This ensured that the foci of monoclonal ori-
gin would all be grouped as aggressive. Next, T-PL dist 2
values longer by >20 units were categorized as non-
aggressive origins and T-PL dist 2 values of between
10-20 were categorized as undecided (overview in
Additional file 1: Table S2). In the two patients with
two PLs the division of the primary tumors was done
based on the PL with the shortest distance to a pri-
mary focus, namely P23_PL2 and P56_PL1.

Phylogenetic reconstruction

DNA methylation-based phylogenetic trees were in-
ferred by the minimal evolution method [54]. Euclidean
distances were calculated using all 396,020 filtered
probes.

Calculation of differential methylation

Differential methylation between any two groups of sam-
ples was calculated using the champ.MVP() function
from the ChAMP package utilizing either FDR <0.05 or
FDR <0.3.

Developing the DNA methylation-based PC aggressiveness
classifier

By combining the categorized samples into groups of ag-
gressive (n=31) and non-aggressive (1 =10), we gener-
ated a list of 3000 most variably methylated CpG sites
(probes) between the groups as follows. The mean beta
values of all filtered probes were calculated for aggres-
sive and non-aggressive groups. The differences between
the two groups were calculated, the absolute values were
ordered, and the top 3000 probes were used for further
analysis. This list was used as input for the GLMnet
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algorithm [37] to predict a multinomial outcome: nor-
mal (n = 12), non-aggressive (1 = 10), and aggressive (n =
31) prostate sample groups. The GLMnet algorithm out-
puts a set of probes able to differentiate groups of sam-
ples based on their DNA methylation profile. Following
15 iterations, each output was evaluated by 1) the separ-
ation of the three groups (input as normal, aggressive,
non-aggressive) in multidimensional scaling (MDS) plots
like those in Fig. 4b and Additional file 1: Figure S2; 2)
the DNA methylation levels of the probes in heatmaps;
3) the prediction probabilities in Manhattan plots like in
Fig. 5a for each set of probes run back on the input sam-
ples. Different random starts of the algorithm resulted in
different final models. Following 15 random starts, a
total of 39 probes were utilized by at least one model.
More random starts did not provide additional probes
over and above the 39. We re-ran the GLMnet algorithm
utilizing these 39 probes as input and a set of 25 probes
(Additional file 1: Table S3) was found to be the optimal
predictor of our sample set according to normal, non-
aggressive, and aggressive categories.

Testing the aggressiveness classifier on TCGA DNA
methylation data

TCGA PRAD HM450 DNA methylation data were down-
loaded from TCGA Data Portal (https://tcga-data.nci.nih.-
gov/tcga/). After filtering samples based on the same
criteria as for our own samples, 499 samples (45 normal,
453 tumor, and one metastatic) remained. After removing
samples with missing values among the 25 predictor
probes, 496 samples remained (45 normal, 450 tumor, and
one metastatic). The classifier was run on these samples
and 70% were predicted with a probability above a cutoff
of 0.67. A cutoff of 0.67 was chosen because as a conse-
quence the probability for either of the two other groups
must be 0.33 or less. Clinicopathological data were avail-
able for most samples in Biotab-files and are shown for
the samples predicted above the 0.67 cutoff.

Statistics

In Fig. 6a, b, Welch two sample t-tests were used to cal-
culate statistical significance. In Fig. 6¢c—e, Fisher’s exact
two-tailed tests were used to calculate significance. P
values <0.05 were considered significant.

Additional file

Additional file 1: Figure S1. Sample purity. Figure S2. Sample
dissimilarity. Figure S3. Unsupervised clustering and heatmaps. Figure S4.
Input probes for GLMnet analysis. Figure S5. Distribution of clinical
information for the 312 TCGA tumor samples predicted by our classifier.
Figure S6. Beeswarm plots. Figure S7. Clinical follow-up information for
predicted TCGA tumor samples. Figure S8. Density graph of T-PL dist 2. Table
S1. Patient information. LN lymph node. Table S2. PC foci aggressiveness by
patient. Table S3. 25-probe aggressiveness classifier. (PDF 1585 kb)
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