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Abstract

Gene loss, Novel traits

Background: Evolutionary origins of derived morphologies ultimately stem from changes in protein structure, gene
regulation, and gene content. A well-assembled, annotated reference genome is a central resource for pursuing
these molecular phenomena underlying phenotypic evolution. We explored the genome of the Gulf pipefish
(Syngnathus scovelli), which belongs to family Syngnathidae (pipefishes, seahorses, and seadragons). These fishes
have dramatically derived bodies and a remarkable novelty among vertebrates, the male brood pouch.

Results: We produce a reference genome, condensed into chromosomes, for the Gulf pipefish. Gene losses and
other changes have occurred in pipefish hox and dlx clusters and in the tbx and pitx gene families, candidate
mechanisms for the evolution of syngnathid traits, including an elongated axis and the loss of ribs, pelvic fins, and
teeth. We measure gene expression changes in pregnant versus non-pregnant brood pouch tissue and characterize
the genomic organization of duplicated metalloprotease genes (patristacins) recruited into the function of this
novel structure. Phylogenetic inference using ultraconserved sequences provides an alternative hypothesis for the
relationship between orders Syngnathiformes and Scombriformes. Comparisons of chromosome structure among
percomorphs show that chromosome number in a pipefish ancestor became reduced via chromosomal fusions.

Conclusions: The collected findings from this first syngnathid reference genome open a window into the genomic
underpinnings of highly derived morphologies, demonstrating that de novo production of high quality and useful
reference genomes is within reach of even small research groups.
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Background

Evolutionary novelties adorn the tree of life and yet their
genetic origins remain a problem for biologists. The
Modern Synthesis sparsely addressed novel traits but ra-
tionalized their incidence with neo-Darwinian models of
gradual change via accumulation of many small-effect
mutations [1]. Contemporary perspectives are more
accepting of discontinuous morphological change [2],
underlain by genetic changes diverse in nature. These
changes may include point mutations as well as gross
changes like gains and losses of genes or their regulatory
elements, but the common thread is their effect on de-
velopmental systems. Indeed, the origin of novelties is
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now routinely viewed through the lens of evolutionary
developmental biology, with an emphasis on how gene
regulatory networks arise de novo or are modified from
ancient ones [3] to orchestrate novel gene expression in
development [4].

This modern genetic and developmental understand-
ing of novel traits is an extremely difficult objective
without quality genomic resources. Past genome sequen-
cing efforts have been the purview of large, well-
populated research communities generally focused on
producing a resource beneficial for biomedical research.
In the midst of the current sequencing technology revo-
lution, however, the door is open for small research
groups to produce genome resources for a variety of
other questions, including those in ecology, conservation
biology, evolutionary biology, and population genomics.
As new evolutionary lineages are sampled, a valuable by-
product is that novel reference genomes can augment
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the study of other existing model genomes, in the way
the spotted gar (Lepisosteus oculatus) genome aids in
bridging between the tetrapod and teleost model organ-
isms [5]. We set out to genomically enable the study of
novel body plan and reproductive character evolution in
syngnathid fishes (pipefishes, seahorses, and seadragons)
by generating a high-quality reference genome for the
Gulf pipefish, Syngnathus scovelli.

Syngnathid fishes are widely recognized for their
highly divergent body plans [6-8], including the elongate
form of many pipefishes (Fig. 1), the upright body axis
and reduced craniovertebral angle of seahorses, and the
highly cryptic morphology of the seadragons. Derived
characters such as leafy appendages, prehensile tails, and
bony body armor are common across the family and, in
many cases, have evolved independently in multiple line-
ages [6, 8, 9]. A truly striking evolutionary innovation
shared by all syngnathid fishes is the somatic brooding
of offspring by males, crowned by those lineages that
have evolved complex, pouch-like structures for the
maintenance of homeostasis during pregnancy [10-13].
In total, these remarkable characters make syngnathids
an exceptional clade for the study of evolutionary nov-
elty. The Gulf pipefish represents the group well, given
its recent history as a choice subject for evolutionary
genetic and behavioral studies [14—17], its abundance
and amenability to experimental work, and its embodi-
ment of many of the derived syngnathid traits.

Comparative genomics and evolutionary developmen-
tal approaches to effectively study the evolution of new
forms, such as the diversification of the syngnathid body

Page 2 of 23

plan or the origin of male pregnancy, require advanced
genomic tools. The centerpiece of each toolkit is a prop-
erly assembled, well annotated genome model, which can
be directly compared at the sequence and structural levels
to other species and efficiently mined to design molecular
tools for manipulative genetic studies. To this end, we
produced an annotated chromosome-level genome model
[5] for S. scovelli by integrating a 176X-coverage, short-
read genome assembly with a linkage map constructed
from RAD-seq markers. We used this tool to reveal fea-
tures of chromosome structure evolution, to investigate
pipefish lineage-specific losses of genes associated with
morphological development, to infer the likely phylogen-
etic position of the syngnathids in the tree of ray-finned
fishes, and to describe a unique cluster of tandemly dupli-
cated patristacins [18] that demonstrate conspicuous ex-
pression changes in the brood pouch during male
pregnancy. Others have reviewed the approaches best
suited to small-scale genome projects [19], but our
intention here is to provide a biological case study and
methodological template for success, motivated by the de-
sire to better understand how novelties arise. We expect
our experiences to be of interest to similarly sized research
groups ready to reap the benefits of a reference genome in
their own pursuits of biological discovery.

Results

The pipefish genome assembly is of high quality and
completeness

The only published estimate of Gulf pipefish genome
size is based on Feulgen staining [20], from which a
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Fig. 1 A cartoon representation of key derived traits in pipefishes and their relatives. Syngnathid fishes such as the Gulf pipefish have increased
numbers of vertebrae and an elongated head, are missing pelvic fins and ribs, and have an evolutionarily novel structure, the male brood pouch.
Shown for comparison is the axial skeleton of a percomorph with more typical morphology, a threespine stickleback. Note that not all derived
syngnathid skeletal features are depicted in this cartoon. For detailed, anatomical illustrations of syngnathid skeleton attributes, please see other
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haploid genome size of 523.23 Mb was calculated for the
species. We obtained a short read k-mer-based genome
length estimate of 351.44 Mb using ALLPATHS-LG
[21]. Using the RAD markers from our genetic map to
estimate the number of RAD sites per scaffold and infer
the amount of sequence missing from the assembly by
estimating the number of missing RAD sites, we obtained
an estimated genome size of 334 Mb. These data suggest
that, consistent with the k-mer-based estimate, no more
than approximately 27 Mb, or 8% of sequence, is missing
from the assembly (not including repetitive sequence) and
that the Feulgen estimate is likely too large.

We assembled overlapping and mate-pair Illumina
paired-end 100 nt reads (176X total coverage of 351
Mb) into 2123 scaffolds, yielding an assembly length
of 307.02 Mb with 6.58% gaps. Contig and scaffold
N50 were 32.24 kb and 640.41 kb, respectively, and
the maximum scaffold size was 6.71 Mb. An analysis
of core eukaryotic genes (CEGs) using CEGMA [22]
revealed that our assembly contained complete infor-
mation for 245 of 248 CEGs and “partial” information
for the remaining three CEGs. These assembly quality
metrics are comparable to other recently published,
high-quality, scaffold-level genomes for fishes. Table 1
presents a side-by-side comparison of the Gulf pipe-
fish assembly with several other published ray-finned
fish assemblies.

The genome assembly of S. scovelli is comparable in
quality to three recently published fish reference ge-
nomes. Shown in Table 1 are assembly statistics calcu-
lated from scaffold-level genome assemblies, considering
scaffolds 1000 nt and longer, except for the 248-gene
CEGMA analysis, which was applied to all scaffolds. As-
sembly versions are N. furzeri GCA_000878545.1 [23],
A. mexicanus GCA_000372685.1 [24], and L. oculatus
GCF_000242695.1 [5]

Using MAKER [25], we initially generated 37,696 total
protein-coding gene annotations, but we retained only
20,834 of these based on biological evidence from pro-
tein databases, RNA-sequencing (RNA-seq) data, or pro-
tein domain detection. After manual annotation
correction for several genes of interest, the final annota-
tion included 20,841 protein-coding genes. Mean and
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median protein sequence length were 539.55 and 386.00
amino acids, respectively.

A genetic map integrates 87% of the genome assembly
into chromosomes

To order and orient scaffolds and to unite them into
chromosomes, we generated an F1 pseudo-test cross
genetic linkage map from a cross of wild S. scovelli with
108 progeny. Of 21,680 RAD tags, 4779 polymorphic
tags were informative and met our criteria for inclusion
in the genetic map (see “Methods”). The genetic map
readily coalesced into 22 distinct linkage groups (see
Additional file 1: Figure S1 for schematics of the consen-
sus genetic map). Markers could be aligned to 553 scaf-
folds, thereby tying nearly 2663 Mb — 87% - to
chromosome models (see Additional file 2: SH1, which
tabulates markers and scaffolds in the map). A total of
271 scaffolds (49%) were anchored at more than one
map position with two or more markers, which allowed
us to assign an orientation. Unplaced scaffolds tended to
be shorter and more depauperate of annotated genes, on
average, than scaffolds incorporated into chromosomes
(see Additional file 1: Figure S2 for plotted lengths and
gene densities of the scaffolds). Possibly the same se-
quence characteristics that make assembly difficult — a
higher occurrence of repetitive DNA — could help ex-
plain the lower gene density of these smaller scaffolds.
There were few initial conflicts between the genome as-
sembly and the linkage map and none that could not be
ruled out as artefactual due to poor support. For in-
stance, three scaffolds were initially tied to more than
one linkage group; in all three cases, however, only a sin-
gle marker, with equivalent alignments to multiple loca-
tions, created this conflict and could be reasonably ruled
incorrect, particularly when patterns of conserved syn-
teny were taken into account. There were also apparent
within-linkage group conflicts, which in most cases
could be resolved by movement of markers without any
cost to the linkage map. In total, five scaffolds where
conflicts remained were split by our software Chromo-
nomer (see “Methods”) to reconcile the map and the as-
sembly; in each of these cases, a small scaffold (1.2 to
3.1 kb) was inserted into a gap in a larger scaffold. Only

Table 1 Scaffold-level assembly statistics for the Gulf pipefish genome

Genome Scaffolds (n)  Longest  Scaffold N50  Contig N50  Assembly  Gaps in assembly (%) CEGs complete (%)
scaffold length

Gulf pipefish (Syngnathus scovelli) 2104 6.7 Mb 6404 kb 322 kb 307.0 Mb 6.6 98.8

African turquoise killifish 29,054 0.7 Mb 119.7 kb 8.7 kb 10109 Mb 7.7 94.8

(Nothobranchius furzeri)

Blind cave fish (Astyanax mexicanus) 10,542 9.8 Mb 17753 kb 14.7 kb 1191.1 Mb 19.1 879

Spotted gar (Lepisosteus oculatus) 2105 213 Mb 6928.1 kb 68.3 kb 9458 Mb 8.1 90.7
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the largest of these small scaffolds contained an anno-
tated gene, and in that case, its insertion into the larger
scaffold agreed with the relative position of its ortholog
in other teleost genomes.

Chromosome evolution is revealed by patterns of
conserved synteny
Evidence based on ancestral state reconstruction sup-
ports an ancestral chromosome number of 24 in the tel-
eosts [26]. Though chromosome number has been
shown to vary across the broad group of Syngnathidae,
the 22 linkage groups that coalesced in this linkage map
in S. scovelli accords well with published karyotypes for
two other species in Syngnathus, S. abaster, and S. typhle
[27]. Using a genome-wide synteny analysis, we investi-
gated how this change from the ancestral chromosome
number likely occurred. Genes are called syntenic when
they lie on the same chromosome or chromosomal seg-
ment and a pair of compared genomes show “conserved
synteny” when orthologous genes that are syntenic in
one genome also lie together, though not necessarily in
the same gene order, in the comparator genome. The
pattern of conserved synteny between Gulf pipefish and
other teleosts, such as southern platyfish (Xiphophorus
maculatus), which has the ancestral number of chromo-
somes (Fig. 2a), suggests that the reduced chromosome
number in Syngnathus resulted simply from two
chromosomal fusions (Fig. 2b). Two large blocks covering
the length of one linkage group in S. scovelli have strong
conserved synteny of orthologs along both platyfish LG 1
and 24, respectively, and another pair of blocks covering
all of a second pipefish linkage group are orthologous to
platyfish LG 14 and 23 (Fig. 2b). The resulting pipefish
chromosomes, which we here name LG 1 and 14 to reflect
this orthology, are the largest in the genome. Several scaf-
folds linked to pipefish LG1 and LG14 contain genes
orthologous to the two ancestral chromosomes that con-
stitute each of them (Fig. 2b), suggesting that intra-
chromosomal rearrangements have blended the original
margins of the chromosomes since they became fused.
Other within-chromosome rearrangements relative to
various teleost reference genomes can be confidently in-
ferred using the pipefish assembly and linkage map,
where they provide mutual support. It is beyond the
scope of this paper to catalogue such chromosomal dif-
ferences and is the subject of other studies. As an ex-
ample, however, pipefish LG 16 can be used to illustrate
a subset of these rearrangements because all scaffolds
that map to this linkage group are ordered and all but
two very small scaffolds are oriented, with strong map
support. Here, likely inversions and transpositions can
be discerned in a comparison between pipefish and pla-
tyfish, based on stretches of conserved synteny of pro-
tein coding genes (Fig. 2c).
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Phylogenomic analysis supports an alternative hypothesis
for the position of syngnathiform fishes among the
Percomorpha

Knowing the phylogenetic placement of syngnathid
fishes relative to other teleosts with sequenced genomes
is critical for using comparative genomic approaches to
polarize the evolution of traits in the Syngnathidae. Con-
flicting hypotheses regarding the origin of syngnathid
fishes and their relatives are a barrier to this understand-
ing, and resolving phylogenetic relationships for the
crown clade of teleosts (Superorder Percomorpha) in
general has been a problem [28-30].

Ultraconserved elements (UCEs) offer a genome-wide
alternative to small panels of nuclear and mitochondrial
phylogenetic markers because they exist by the hundreds
or thousands in vertebrate genomes, are often easily
identifiable as well-conserved, single-copy orthologs that
contain divergent regions, and can be used to address
hypotheses over a broad range of phylogenetic scales
[31]. Faircloth et al. [32] used UCEs to produce a well-
supported phylogeny at both deep and shallow time
scales for ray-finned fishes. We added to this dataset
UCEs from Gulf pipefish, Pacific bluefin tuna (Thunnus
orientalis), and southern platyfish and performed phylo-
genetic analysis. Interestingly, our phylogenomic analysis
provides an alternative hypothesis regarding the relation-
ships among Scombriformes (tunas and their relatives)
and Syngnathiformes (Syngnathid fishes and their rela-
tives). Briefly, the two orders would not be interpreted as
a monophyletic clade from our topology, in contrast to
conclusions based on trees inferred by others [29, 30, 33].
Statistical support for clades bracketing this region of the
topology was high (Fig. 3), but should be interpreted with
caution given evidence that phylogenetic discordance
across different regions of the genome can limit the accur-
acy of species-level inferences based on concatenated se-
quence data [34, 35]. We recovered all relationships
reported by Faircloth et al. [32] and found, consistent with
previous studies [29, 30, 33], that the Syngnathiformes are
not nested within the clade containing species commonly
used in genetic and genomic studies (i.e. medaka, platy-
fish, stickleback, and pufferfish). Given this phylogenetic
hypothesis for the origin of syngnathids, the Gulf pipefish
genome fills a useful outgroup role in comparative gen-
omics studies using these model species. The currently
understood relationships also highlight a need for phylo-
genetic analyses including fish lineages that diverged just
prior to origin of the syngnathids, in order to help under-
stand the unusual derived traits in the Syngnathidae.

Convergent and unique gene losses have occurred in the

pipefish hox clusters

The hox clusters, which include tandem arrays of
homeobox genes interspersed with non-coding RNAs
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Fig. 2 Chromosomal rearrangements inferred from a conserved synteny comparison. a Pipefish and platyfish chromosomes are broadly
congruent. Strings connecting orthologous genes between the species’ genomes are colored by pipefish chromosome. b Pipefish LG 1 and 14
are each orthologous to two platyfish chromosomes, likely because chromosome fusions occurred in the syngnathid lineage. Several scaffolds
from fused chromosomes 1 and from 14, including those shown in the insets, show blocks of conserved synteny to both “ancestral” chromosomes in
platyfish (LG 1 and 24 or LG 14 and 23). This pattern indicates that some number of intra-chromosomal rearrangements blended segments across the
chromosomal junction after the chromosomes fused. Strings connecting orthologs are color-coded by platyfish chromosome. Pipefish scaffolds are
shown in alternately shaded rectangles along the chromosome. ¢ On LG 16, differences in the orientation and location of orthologous gene blocks
suggest inversions and transpositions have occurred since the last common ancestor of pipefish and platyfish. Strings connecting orthologous genes

pipefish LG 16, shown above

are colored according to the pipefish scaffold each gene resides on. Support for scaffold order and orientation can be seen in the linkage map for

that regulate hox and other genes, are critical for pat-
terning the body axis and paired appendages (reviewed
in [36-38]). Pipefish have elongated bodies, including
more trunk and especially more caudal vertebrae than
relatives like medaka and threespine stickleback, and
they lack pelvic fins, key examples of derived traits
depicted in cartoon form in Fig. 1. We therefore scruti-
nized the gene content of the hox clusters for differences
from pipefish’s percomorph relatives (including

pufferfish, medaka, stickleback, and tuna). Just as in
many other gene families, differential loss of hox genes
among lineages followed the whole genome duplication
that occurred near the base of the teleost lineage (e.g.
[39]). Gulf pipefish appears to share some of these losses
with other percomorph fishes, to the exclusion of the
outgroup lineage zebrafish (Fig. 4). A parsimonious in-
terpretation of the pattern of losses suggests that
hoxb10a, hoxb8b, hoxd13a, the entire hoxcb cluster, and
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Fig. 3 Phylogenomic inference supports a syngnathiform clade distinct from the clade containing commonly studied fish models. A well-supported
maximum likelihood tree of UCEs places Syngnathiformes as an outgroup relative to fellow percomorph species used as genetic models, consistent
with previous work regarding the molecular systematics of Percomorpha [29, 30, 33]. Note, however, that our topology is not consistent with a
monophyletic group including Syngnathiformes and Scombriformes, as previously reported. Bootstrap and SH-alLRT support is listed for
each node; a single number is listed where both values agree
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Fig. 4 The pipefish hox clusters have experienced convergent and unique gene losses. A cartoon of the hox clusters in S. scovelli, with boxes
representing genes arranged along chromosome segments of different linkage groups, summarizes gene content changes relative to other
teleosts. Seven gene losses, of both coding and non-coding genes, are here labeled shared losses among the compared percomorph lineages
because these genes are retained by the non-percomorph outgroup, zebrafish. Six other pipefish gene losses are inferred to be convergent losses
with respect to some members of Percomorpha because other species that are not pipefish sister lineages have also lost these genes. hox
cluster-associated evenskipped gene evel (@ member of the evx paralogy group) is missing in pipefish, a loss that has not been reported in other
teleosts. Though percomorphs likely share the loss of the hoxcb cluster, comparison via conserved synteny with zebrafish shows that the

orthologous region is on pipefish LG 20

mirl96¢ were absent in the common ancestor of pipefish
and other percomorphs. Several other /ox cluster genes
have been lost in pipefish as well as in some but not all
model percomorphs; based on the topology of the phylo-
genetic tree in Fig. 3 and those inferred by others [29,
30, 33], we conclude that these losses are likely to be
convergent (Fig. 4). These include hoxaZa, hoxb7a,
hoxc3a, hoxcla, mirl96b in the hoxba cluster, and
mirlOa in the hoxbb cluster. For example, hoxb7a was
likely lost independently at least three times (in puffer-
fish, medaka, and pipefish), but it is still present in
stickleback and tuna. hoxa7a was lost independently in
both pipefish and pufferfish, leaving both lineages with
no hox7 paralog in any cluster. By contrast, zebrafish
and all of the other percomorphs surveyed here retain
either hoxaZ7a or hoxb7a or they have both of these
genes. There is a remnant of the pipefish hoxaZa se-
quence, found between hoxaSa and hoxa9a; it is likely a
pseudogene, as there is no trace of the sequence for the
homeobox-containing second exon and an early stop
codon in the first exon is predicted also to eliminate the
hexapeptide. In addition to these losses, the pipefish
hoxba cluster remarkably no longer has evenskipped
gene evel, a gene that is present in zebrafish and all
other percomorphs compared here (Fig. 4). We detected
pipefish sequences for orthologs of long non-coding
RNA genes hotairml between hoxala and hoxa2a, and
hottip between evxl and hoxal3a (not shown). hotairml
is missing in zebrafish and so far unreported in any tele-
ost (though annotated in the Ensembl reference genome
for spotted gar, an actinopterygiian basal to the teleosts).

Syngnathus scovelli dix gene clusters are missing deeply
conserved non-coding elements

The vertebrate dix genes, a family of homeobox tran-
scription factors important for patterning the central
nervous system, head skeleton, and limbs, are arranged
in tandem pairs associated with specific hox clusters.
Some percomorphs, like stickleback and pufferfish, re-
tain dix1/2a, dix3/4a, dix3/4b, and dix5/6a clusters,
while medaka appears to lack a dix3/4a cluster, and zeb-
rafish (a non-percomorph) has lost dix3a but has
retained an unpaired dlx2b not found in percomorphs
[40]. We found the four typical percomorph clusters, to-
taling eight genes, in the Gulf pipefish genome and per-
formed a search via mVISTA [41, 42] for conserved
non-coding elements (CNEs) within the dix clusters by
comparing sequences from mammals and other teleosts.
We found that pipefish retains some non-coding ele-
ments conserved between mammals and teleosts, as well
as other CNEs shared only among teleosts [40, 43]
(Fig. 5; see Additional file 1: Figure S3 for VISTA com-
parisons of the dlx3/4a, dix3/4b, and dix5/6a clusters).
For example, we identified pipefish orthologs of two in-
ter-dlx CNEs (Fig. 5) that were found previously to be
conserved between mouse, zebrafish, and pufferfish and
that were shown to direct reporter gene expression in
subsets of dix domains [43]. A third CNE that was not
functionally tested but was conserved in both zebrafish
and pufferfish [43] is not preserved in pipefish. We iden-
tified two other notable losses in this pipefish cluster: S.
scovelli has lost an inter-dlx1/2a CNE that we find con-
served in the other percomorphs, and it also lacks an
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element in the intron between coding exon 1 and exon 2
of dixla, a CNE that is conserved in both mammals and
other teleosts. There are no gaps in the assembly in these
regions of the pipefish genome. Several other CNEs are
missing from other clusters, including two elements on ei-
ther side of the last exon of dix4a that are, notably, con-
served between other percomorphs such as pufferfish and
stickleback and cod, a non-percomorph (Additional file 1:
Figure S3).

Syngnathid hindlimb loss implicates modification of the
tbx4-pitx1 pathway

Pipefish, seahorses, and seadragons all lack paired pelvic
fins. thx4, pitxl, and pitx2 are genes at the top of the
regulatory cascade described in vertebrate hindlimb devel-
opment, including teleosts that have pelvic fins [44—46].
We found no trace of the protein-coding sequence for thx4
in the pipefish genome assembly. The genomic segments
flanking thx4 were also not identified, as pipefish orthologs
of genes adjacent to tbx4 in other teleosts were either un-
detected, as in the case of thx2b, or were on small scaffolds
not anchored to the genetic map. TBLASTN also failed to
identify thx4 among our de novo assembled gene tran-
scripts generated from RNA-seq data. Gulf pipefish pitx1 is
present in the assembly but divergent. The predicted

pipefish Pitx1 amino acid sequence, supported by tran-
scriptome sequencing, contains homopolymeric expan-
sions of alanine and proline, and an amino acid insertion
in the conserved OAR domain not seen in orthologs from
other fish lineages or from human (Fig. 6). A fragment
amplified with degenerate polymerase chain reaction
(PCR) primers shows that a second syngnathid species, the
messmate pipefish (Corythoichthys haematopterus), shares
one of the alanine expansions (Fig. 6). Both Gulf pipefish
and human Pitx3, a protein associated more strongly with
eye and neural development than limb development
[47, 48] also have polyalanine runs in different locations
from those found in Pitx1. Pitx2 aligns well with other fish
orthologs and apparently contains no homopolymeric
expansions.

Pregnancy-specific gene expression in the brood pouch is
widespread and reflects regulation of the innate immune
system

We aligned to the annotated genome RNA-seq data from
six pregnant male brood pouches (excluding embryonic
tissue) and six non-pregnant male pouches. Based on
these digital gene expression data, the transcriptional
landscape of male brooding tissues differed substantially
as a consequence of pregnancy, as 26.19% of the total
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p
WRKRERNQQLDLCKGGYVPQFSGLVQPYED-VYA-- -~~~ AGYS- YNNWARKSL-APAPLSTKSFTF - FNSM- - SPLSSQ- - SMF - SA- PSSISSMTM- - - - - - - PSSMGPGAV ~ human
WRKRERNQQMDLCKNGYVPQFNGLMQSYDE-MYA- - - - - - - GYH- YNNWATKSL - TPAPLSTKGFTF - FNSM- - SPLPSQ- - SMF - SA- PSTISSMNM- - - - - - - SSTMGHSGV ~ coelacanth
WRKRERNQQMDLCKNSYLPQFSGLVQPYDD-MYP- - PPTMAHTAV gar
WRKRERNQQMDLCKNSYLPQFSGLMQPYDD-VYP ASGMGHSAV  zebrafish
y— WRKRERNQQMDLCKSGYLPQFSGLVQPYED-MYP ASGMAHSAV  cavefish
>< ERNQOMDLCKNSYLPQFSGLMQPYDD-MYP SSGMGHSAV  ghost pipefish
4> WRKRERNQOMDLCKNAYLPQFSGLMQPYDDPMYPAAAAARAAYT - YNNWPNKSLHGP KNFPF - FNSM- - SPLTSQPVTMFSSS - PAPITTMSVQAAAAAAAARHAHGGM  Gulf pipefish
o — ERNQQMDLCKNTYLPQFSGLMQPYED-MYP AAYT- YNNWTNKGLHGPTAPLAAKNFPFFNSM- - SPLASQ- - SVFSSSPTSISGMSMQHAAAAAASAGMAHSGV ~ messmate pipefish
D_ WRKRERNQQMDLCKNSYLPQFSGLMQPYDD-MYP ASGMGHSAV  medaka
WRKRERNQOMDLCKNSYLPQFSGLMQPYDD-MYP- - ASGMGHSAV tilapia
WRKRERNQOMDLCKNSYLPQFSGLMQPYDD-MYP ASGMGPSAV  pufferfish
WRKRERNQQMDLCKSSYLPQFSGLMQPYED-MYP APGMGPPAA  stickleback
WRKRERNQQAELCKNGFGPQFNGLMQPYDD-MYP- - - - - - - GYS-YNNWAAKGL- TSASLSTKSFPF - FNSMNVNPLSSQ- - SMF- SP- PNSISSMSM- - - - - - - SSSMVPSAV  human
WRKRERNQQAELCKNGFGPQFNGLMQPYDD-MYP------- SYS-YNNWAAKGL-TSASLSTKSFPF - FNSMNVNPLSSQ- - TMF - SP- PNSISSMSM- - - - - - - SSSMVPS-V  coelacanth
WRKRERNQQAELCKNGFGPQFNGLMQPYDD-MYP- - --- -~ SYT-YNNWAAKGL-TSASLSTKSFPF - FNSMNVNPLSSQ- - TMF - SP- PNSISSMSM- - - - - - - SSSMVPSAV  gar
Al WRKRERNQQAELCKNGFGPQFNGLMQPYDD-MYP- - - - - - - SYT-YNNWAAKGL- TSASLSTKSFPF - FNSMNVNPLSSQ- - TMF- SP- PNSISSMSM- - - - - - - SSSMVPSAV  zebrafish
%< WRKRERNQQAELCKGGFGAQFNGLVQPYED-MYA- - -SYPPYNNWAAKSL-APASLSAKSFPF-FNSVNVSPLSSQ- -AVF-SP-PTSISSMSV- SSGMVPT--  cavefish
45 WRKRERNQOAELCKNGFGPQFNGLMQPYDD-MYP- - -GYT- YNNWAAKGL - TSASLSTKSFPF - FNSMNVNPLSSQ- -AMF - SP- PNSISSM- - TSGMVPSAV  Gulf pipefish
=== WRKRERNQQAELCKNGFGPQFNGLMQPYDD-MYP- - -SYT- YNNWAAKGL - TSASLSTKSFPF - FNSMNVNPLSSQ- - TMF - SP- PNSISSM- - TSSMVPAAV ~medaka
D_ WRKRERNQQAELCKNGFGPQFNGLMQPYDD-MYP------- SYT- YNNWAAKGL-TSASLSTKSFPF - FNSMNVNPLSSQ- - TMF- SP- PNSISSM--------- TSSMVPSAV tilapia
WRKRERNQQAELCKNGFGPQFNGLMQPYED-MYP----- -~ SYT-YNNWAAKGL- TPASLSTKSFPF - FNSMNVNPLSSQ- - TMF - SPAPNSISSM----- - - - - TSGMVPSAV  pufferfish
WRKRERNQQAELCKNGFGPQFNGLMQPYED-MYP- - - - - - - SYT-YNNWAAKGL- TSASLSTKSFPF - FNSMNVNPLSSQ- - TMF - SP-SNSISSM--------- TSSMVPSAV  stickleback
WRKRERSQQAELCKGSFAAPLGGLVPPYEE-VYP------- GYS-YGNWPPKAL-A-PPLAAKTFPFAFNSVNVGPLASQ- - PVF-SP-PSSIAASMV------- PSAAAAPGT human
WRKRERNQQAELCKNGFGAQFNGLMQPYDD-MYS------ - GYS- YNNWATKGL-ATSPLSAKSFPF - FNSMNVSPLSSQ- - PMF - SP-PSSIASMTM- - - - - - - PSSMVPSAV  coelacanth
WRKRERNQQAELCKNGFGAQFNGLMQPYDD-MYS- - - - - - - GYS-YNNWATKSL-ATSPLSAKSFPF - FNSMNVSPLSSQ- - PMF-SP-PSSISSMNM- - - - - - - ASSMVPSAV  gar
WRKRERNQQAELCKNGFGAQFNGLMQPYDD-MYS- - - - - - - GYS-YNNWATKSL-ASSPLSAKSFPF - FNSMNVSPLSSQ- - PMF-SP-PSSIPSMNM- - - - - - - ASSMVPSAV  zebrafish
m WRKRERNQQAELCKNGFGAQFNGLMQPYDD-MYS------- GYS-YNNWATKSL-ASSPLSAKSFPF - FNSMNVSPLSSQ- - PMF-SP-PSSIPSMNM- - - - - - - ASSMVPSAV  cavefish
X WRKRERNQQAELCKNGFGAQFNGLVQPYDD-MYA- - -GYS- YNNWASKSL-AGGQLSAKSFPF - FNSMNVSPLSSQ- - PMF - SP- PSSMPSMNM - ASGMVPSAV  Gulf pipefish
= WRKRERNQOAELCKNGFGAQFNGLMQPYDD-MYT- - -GYS- YNNWATKSL-ASSPLSTKSFPF - FNSMNVSPLSTQ- - PMF - SP- PSSIPSMNM- ASSMVPSAV  medaka
D_ WRKRERNQQAELCKNGFGAQFNGLMQPYDD-MYT- - -GYS-YNNWATKSLAASSPLSAKSFPF - FNSMNVSPLSSQ- - PMF - SP- PSSIPSMNM- ASSMVPTAV tilapia
WRKRERNQQAELCKNGFGAQFNGLMQPYDD-VYS------- GYS-YNNWAAKGL-ASSPLSAKSFPF - FNSMNVSPLSSQ- - SMF-SP-PSSLPSMNM- - - - - - - ASSMVPSAV  pufferfish
WRKRERNQQAELCKNGFGSQFNGLMQPYDD-MYT- - - - - - - GYS-YNNWATKSL-ASSPLSAKSFPF - FNSMNVSPLSSQ- - PMF-SP-PSSIPSMNM- - - - - - - ASSMVPSAV  stickleback
PGM- - PNSGLNN- INN-LTG--------- SPYSVYRDTCNSSLASLRLKSKQ-HSSFGYGGLQG- - PASGLNACQYNS---- human
PGM- - PTSSLNN- INN-LNNI - -SPYSVYRDTCNTSLASLRLKSKQ-HSTFGYSSLQS - - PGSSLNACQYNS----  coelacanth
PGM- -SASSLNN-ISS-LNNI------NSSS-INS----- AISSPACPYGPPG-------- SPYSVYRDTCNSGLATLRLKSKQ-HPTFGYSGLQS- - PGSSLNACQYNS----  gar
PGM- - PTTGLNN-IGN-LNGI- - - - - -GGST- INP- - - - - AMSSSTCPYGPPG-------- SPYSVYRDTCNSSLATLRLKSKQ-HPSFGYSGLQS - - PGSSLNACQYNS----  zebrafish
P----- TAGINN-ISN-LNGI------GSSS-IGS----- SMSSTPCPYGPPT-------- TPYSVYRDSCSSSIAPLRLKPKQ-HPSFSY----S--PGS----CQYNS---- cavefish
- PGM- - PAPGLNN-ISN-LNGI------GTSG-INT----- AMSSPACPYGAPG-------- SPVQRLPGH ghost pipefish
_?S PSMGGPPPGLNN- IGN - LNTAPPPPPHGPPG-LNA- - - -AGMSSSACPYAAAG- - -SPYGVYRETCNPSLATLRLKSKQHHSSFGYGGLQS - - PASGLNACQYNS----  Gulf pipefish
=== DPSMGAP-PGLNN-IGN-LNAI - -AGMSSPACPYGAAG- --SPYSVYRDT messmate pipefish
D_ PGM- - PTPGLNN- ISN-LNGI ---AMSSSACPYGPPG- - -SPYSVYRDTCNSSLATLRLKSKQ-HPTFGYSGLQS- - PGSSLNACQYNS---- medaka
PGM- - PTPGLNN-ISN-LNGI- - - - - -GTSG- INS- - - - -AMSSSACPYGPPG- - - - - - - - SPYSVYRDTCNSSLASLRLKSKQ-HPTFGYSGLQS - - PGSSLNACQYNS--- - tilapia
PGM- - PAPGLNN-ISN-LNGI- - - - - -GTSG- INS- - - - -AMSSPACPY-PPG-------- SPYSVYRDTCNSSLATLRLKSKQ-HPTFGYSGLQS - - PGSGLNACQYNS----  pufferfish
P------ PGLN- - - -N-LNGI------GASG-INS-----GMSPSACPYGPPG-------- SPYSVYRDTC----- TLRLKSKQ-HPSFGYGGLQG- - PGTSLNACQYNS---- stickleback
TGV - -PGSSLNS-LNN-LNNL- - - - - -SSPS-LNS- - - - -AVPTPACPYAPPT- - - - - - - - PPY-VYRDTCNSSLASLRLKAKQ-HSSFGYASVQN- - PASNLSACQYAVDRPV ~human
TGV- - PGSSLNS-LNN-LNNL- - - - - -SNPS-LNS- - - - -AVPTPACPYAPPT------ - - PPY-VYRDTCNSSLASLRLKAKQ-HSSFGYASVQN- - PASNLSACQYAVDRPV ~ coelacanth
TGV- - PGSGLNS-LNN-LNNL- - - - - -SNPS-LNS - - - - -GVPTPACPYAPPT- - - - - - - - PPY-VYRDTCNSSLASLRLKAKQ-HSSFGYASVQN- - PASNLSACQYAVDRPV ~ gar
Al - -PPY-VYRDTCNSSLASLRLKAKQ-HSSFGYASVQN- - PASNLSACQYAVDRPV  zebrafish
- -PPY-VYRDTCNSSLASLRLKAKQ-HSSFSYAGVQT- - P- SNLSACQYAVDRPV  cavefish
_?5 - -PPY-VYRDTCNSSLASLRLKAKQ-HSSFGYAGVQS - - PATNLSACQYAVDRPV  Gulf pipefish
=== TGV--PGSSLNS-LNN-LNNL- - ----SNPS-LNS- - - - -GVPTPACPYAPPT-------- PPY-VYRDTCNSSLASLRLKAKQ-HSSFGYASVQN- - PATNLSACQYAVDRPV ~medaka
D_ -------- PPY-VYRDTCNSSLASLRLKAKQ-HSSFGYASVQN- - PATNLSACQYAVDRPV tilapia
TGV--PGSSLNS-LNN-LNNL- - - - - -SNPS-LNS - - - - -GVPTSACPYAPPT- - - - - - - - PPY-VYRDTCNSSLASLRLKAKQ-HSSFGYASVQN- - PATNLSACQYAVDRPV  pufferfish
TGV- - PGSSLNS - LNN-LNNL- - - - - - SNPS-LNS- - - - -GVPTSACPYAPPT- - - - - - - - PPY-VYRDTCNSSLASLRLKAKQ-HSSFGYASVQN- - PATNLSACQYAVDRPV  stickleback
VPG- - PGALQGL-GGG- PPGL human
TGV- - PGSSLNN-LGN- INNL coelacanth
TGV - - PGSGLNN-LGN-LNNL gar
AGV- - PGSGLNN-LGN - LNNL zebrafish
(4p] TGV- - PGSGLNN- LGN - LNNL - -SPY-MYRDTCNSSLASLRLKAKQ-HANFAYPAVQN- - PVSNLSPCQYAVDRPV  cavefish
>< PGV--PGTGLNN-LGN-LNSL- - - - - -NSPTALNSAAAAAAAAAATCPYAGAA-------- SPY-MYRDTCNSSLASLRLKAKQ-HTNFTYPSVQNS - - VSNLSPCQYAVDRPV  Gulf pipefish
= AGV--PAAGLNN-LGN-LNNL- - - - - -NSPTALNS - - - -VAVTAATCPYATTA- - - - - - - - SPY-MYRDTCNSSLASLRLKAKQ-HTNFAYPTVON- - PVSNLSPCQYAVDRPV ~medaka
D_ AGV- - PATSLNN-LGN-LNNL- - - - - -NSPSALNS - - - - VAVTAATCPYATTA- - - - - - - - SPY-MYRDTCNSSLASLRLKAKQ-HTNFAYPAVQN- - PVSNLSPCQYAVDRPV tilapia
AGV- - PAAGLNN-LGN-LNNL- - - - - -NAPTALNS - - - -VAVSAATCPYAPSA-------- GPY-MYRDTCNSSLASLRLKAKQ-HANFSYPAVQN- - PVANLSPCQYAVDRPV  pufferfish
AGV- - PSTGLNN-LGN-LNNL- - - - - -NSPTALNS - - - - VAVTAATCPYATTA- - - - - - - - SPY-MYRDTCNSSLASLRLKAKQ-HTNFAYPAVON- - PVSNLNPCQYAVDRPV  stickleback

Fig. 6 Pipefish Pitx1, a vertebrate protein important for hindlimb and tooth development, contains several homopolymeric expansions. Shown
are well-aligned regions of Pitx proteins across several vertebrate species, starting from the last five amino acids of the homeodomain (shaded
gray). Poly-alanine and poly-proline expansions (shown in red) in pipefish Pitx1 and Pitx3 between the homoedomain and the OAR domain
(shaded turquoise) are not found in the Pitx proteins of other compared fish; however, there is a poly-alanine expansion at a different location in
human Pitx3. One of the Pitx1 polyalanine expansions is shared with the messmate pipefish (Corythoichthys haematopterus), a distantly related
syngnathid [11], and none are present in the robust ghost pipefish (Solenostomus cyanopterus), a member of a close, pelvic-fin-bearing outgroup
to the syngnathids [72, 73]. Gulf pipefish also has a single amino acid insertion (also shown in red) in the conserved OAR domain

multivariate dissimilarity among the 12 individual tran-
scriptomes was explained by pregnancy status (Additional
file 1:
Univariate tests of differential expression between preg-
nant and non-pregnant males revealed different transcript
abundances for 1145 genes of 15,253 genes (false discov-
ery rate (FDR)=0.1) expressed robustly across at least
four of 12 individuals. In total, 526 genes were pregnancy-

Figure S4a; perMANOVA: F; 1, = 3.55, p=0.004).
of differentially expressed genes).

» «

cades,

enriched and 619 were pregnancy-depressed, demonstrat-
ing fold change differences as extreme as 215 (Tables 2
and 3; see Additional file 2: SH2 for a complete tabulation

We identified several KEGG pathways enriched for
genes subject to strong pregnancy-specific expression
patterns, including “complement and coagulation cas-
cytokine-cytokine receptor interaction,

” o«

calcium
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Table 2 List of the top 15 pregnancy-enriched pouch tissue genes
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Gene ID Fold change  CPM p value Gene description KO ID
SSCG00000006913 15.66 722 213E-24  WNTI-inducible-signaling pathway protein 2 isoform X2 K0oeg27
SSCG00000005974 21.04 6869.88  1.87E-18  patristacin, partial K08778
SSCGO0000007802 4.5 9344  7.69E-16  podocan

SSCG00000014514 3.15 4638  145E-15  fos-related antigen 2-like

SSCG00000015977 12.38 22924  139E-14  myocilin-like

SSCG00000006209 6.53 472 491814  dickkopf-related protein 2 K02165
SSCG00000007875 293 18872  881E-14  neuroepithelial cell-transforming gene 1 protein

SSCG00000013720 513 23389  3.85E-13  lipopolysaccharide-binding protein/bactericidal permeability-increasing protein
SSCG00000011252 2.88 7211 272E-12  beta-galactoside alpha-2,6-sialyltransferase 1-like isoform X1 K00778
SSCG00000004944 6.64 2973 733E-12  collagen alpha-2(Vl) chain-like K06238
SSCG00000006480 3.10 1893  1.81E-11  CTTNBP2 N-terminal-like protein

SSCG00000013244 230 34.04  210E-11  LIM domain transcription factor LMO4-B-like

SSCG00000004636 3.22 386.88  3.62E-11  NA

SSCG00000002072 29.24 1.59  3.77E-11  potassium channel subfamily K member 2-like K04913
SSCG00000007792 521 706  420E-11  excitatory amino acid transporter 5-like K05618

Included are the fold change (pregnant/non-pregnant), average expression level across 12 pouch libraries in copies per million (CPM), edgeR negative binomial
exact test p value, gene description from top BLASTP hit, and the assigned KEGG orthology ID for each pipefish gene. See Additional file 2 SH2 for the full list

signaling,” and “neuroactive ligand-receptor interaction”
(See Additional file 2: SH3 for a full tabulation of KEGG
pathways enriched for differentially expressed genes).
Many pipefish genes within the first two of these path-
ways, which include innate immune system cascades, were
expressed at higher levels in pregnant, relative to non-
pregnant, pouch tissues. For example, members of the
complement membrane attack complex (MAC), which
are cell membrane pore-forming toxins [49] (reviewed in
[50]), tended to be expressed at higher levels in pregnant

Table 3 List of the top 15 pregnancy-depressed pouch tissue genes

males (Additional file 1: Figure S5a, S6a). Pro-
inflammatory chemokines I18, Cxcl9, Cxcl10, and Cxcl12
of the Cxc subfamily were also expressed at higher levels
in pregnant males, as were several members of the Cc
subfamily (Additional file 1: Figure S5b). Not all transcrip-
tional signatures of the immune system reflected this pat-
tern, however. A suite of genes belonging to the natural
killer cell cytotoxicity response pathway, for example, was
expressed at higher levels in non-pregnant males
(Additional file 1: Figure S4d). Furthermore, genes in

Gene ID Fold change CPM p value Gene description KO ID
SSCG00000006879 27.36 56.49 791E-43 Serine/threonine-protein kinase WNK2 K08867
SSCG00000018539 12.37 15.96 2.04E-26 FXYD domain-containing ion transport regulator 12

SSCG00000007973 4.73 5334 1.66E-24 A disintegrin and metalloproteinase with thrombospondin motifs 6, partial K08621
SSCG00000013585 10.78 19.10 1.07E-23 Tetratricopeptide repeat protein 18

SSCG00000005985 214.58 652.27 7.29E-23 patristacin, partial K08076
SSCG00000008728 14.12 6.03 2.22E-22 Uridine-cytidine kinase-like 1 K00876
SSCG00000000969 432 19.82 1.256-17 ras-like protein family member 11A K07852
SSCG00000017729 6.14 359.52 1.71E-17 nidogen-2-like isoform X5 K06826
SSCG00000004506 6.00 12.98 4.08E-17 syntaxin-2-like isoform X1 K08486
SSCG00000010275 1447 3.28 1.00E-16 acid-sensing ion channel 1

SSCG00000016046 6.75 8.51 151E-16 leucine-rich repeat-containing protein 4-like K16351
SSCG00000014649 10.15 767 1.77E-16 homeobox protein MSX-2-like K09341
SSCG00000019217 66.66 3.26 1.82E-16 leucine-rich repeat-containing protein 3-like

SSCG00000007661 5.19 24.20 2.23E-16 cytochrome P450 27C1-like K17951
SSCG00000005388 19.81 144 5.60E-16 glutamate receptor ionotropic, delta-2 isoform X5 K05207

Included are the fold change (non-pregnant/pregnant), average expression level across 12 pouch libraries in copies per million (CPM), edgeR negative binomial
exact test p value, gene description from top BLASTP hit, and the assigned KEGG orthology ID for each pipefish gene. See Additional file 2 SH2 for the full list
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KEGG pathways associated with the adaptive immune sys-
tem, including “antigen processing and presentation,” “T
cell receptor signaling pathway,” and “B cell receptor sig-
naling pathway,” were transcriptionally less sensitive to
pregnancy status than those in innate immunity KEGG
pathways (Additional file 1: Figure S6b). Consistent
with a characterization of the immune gene repertoire
in Syngnathus typhle [51], we failed to detect MHC
class II alpha and beta chain genes in the genome of
S. scovelli, so the potential for some functionality of
the adaptive immune system in this pipefish genus
may be limited in general.

Gene Ontology terms overrepresented among
pregnancy-enriched genes included those related to the
complement system, coagulation, and immunity, consist-
ent with the KEGG analysis, but we also identified terms
related to hemopoiesis, homeostasis, proteolysis, and
others (Additional file 2: SH5). GO terms overrepre-
sented among pregnancy-depressed genes included those
related to developmental processes, cell-to-extracellular
matrix (ECM) adhesion, and protein glycosylation (Add-
itional file 2: SH6).

Lineage-specific duplication of patristacins associated
with male pregnancy

As documented previously in S. scovelli and S. flori-
dae [52], two similar astacin-like metalloproteases
demonstrated strikingly opposite patterns of gene ex-
pression: one markedly pregnancy-enriched and the
other highly pregnancy-depressed (Table 2, Table 3,
Fig. 7b, c). We here find that these “patristacins” [18]
are adjacent genes belonging to a small cluster of du-
plicates that includes two additional patristacins
expressed at lower levels in the brooding tissues at
the stages examined (Fig. 7b, c). This cluster, located
on scaffold 62 of pipefish LG4, also included a fifth,
partial coding sequence for which we could identify
neither a likely start methionine nor the first three
typical patristacin exons. A phylogenetic analysis in-
cluding astacin-like metalloprotease sequences from
global searches of five ray-finned fish genomes sug-
gests that the patristacin cluster is a gene family ex-
pansion unique to the lineage leading to syngnathids
(Fig. 7a). We found protein-coding genes from platy-
fish and green spotted puffer genomes that share a
recent common ancestor with patristacins, but these
sequences were not nested within the patristacin sub-
clade. Furthermore, patristacins and their closest ho-
mologs most likely diverged via gene duplication from
the subfamily of 6-cysteine astacins that includes zeb-
rafish nephrosin, given the topology of our current
gene tree and that all paralogs share the same gen-
omic region on pipefish LG4.
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Discussion

Despite the explosive teleost species radiation over the
last 300 million years, these fishes have been conserva-
tive in karyotype evolution relative even to the much
younger mammalian lineage, with the majority of teleost
species having a haploid number of 24 or 25 [53]. Varia-
tions from the inferred ancestral number of 24 [26] do
exist across the teleost radiation, stemming from
chromosome duplications, fissions, and fusions. We have
shown that two chromosomal fusions in an ancestor of
Syngnathus scovelli have likely led to a haploid karyotype
of 22 (Fig. 2a and b). Comparisons of sequenced ge-
nomes suggest that interchromosomal rearrangements
(translocations) are relatively uncommon in teleosts [53]
and this is reflected in the striking one-to-one corres-
pondence of chromosomes across most of the genome
between Gulf pipefish and other percomorphs, such as
southern platyfish (Fig. 2a). The stability of teleost ge-
nomes simplifies comparisons and increases confidence
in correctly determining orthology of genes and chromo-
some segments based on observed patterns of conserved
synteny. We have exploited the exceptional conservation
of synteny among sequenced teleosts to explore the evo-
lution and behavior of genes that might play a role in
syngnathid innovations.

The remarkable morphology of syngnathids was noted
in “The History of Animals” by Aristotle, who construed
the peculiar phenomenon of pipefish live birth as a split-
ting open of the body. Prior to our characterization of
the Gulf pipefish genome, however, with the exception
of a few transcriptomic resources [51, 52, 54], virtually
no information existed for how key developmental genes
and their modification might be responsible for derived
syngnathid phenotypes. Now, with the availability of the
genome of Syngnathus scovelli, and likely other related
genomes soon to follow, we expect researchers inter-
ested in the developmental genetic underpinnings of
novel vertebrate morphologies to make the critical ex-
perimental connections between genomic differences in
syngnathids and their functional consequences. In antici-
pation of exciting functional genomics work enabled by
the latest genome editing approaches [55, 56], here we
highlight a few especially promising examples of mo-
lecular signatures with implications for hallmark traits of
pipefishes, seahorses, and their relatives.

We explored the constitution of the syngnathid /hox
genes because these Vertebrate Hox clusters are tandem
arrays of transcription factor genes with many develop-
mental roles, including segmental identity in the axis
and in limb morphogenesis (reviewed in [36, 57]). Our
investigation of Gulf pipefish hox cluster content re-
vealed that the evolution of an elongated, ribless body
was not accompanied by drastic reorganization of the
hox genes. While there are multiple losses of pipefish
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Six-cysteine containing astacin (Zc6ast1-4 clade)
Hatching enzyme

Six-cysteine containing astacin (Zc6ast5-6 clade)
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Fig. 7 Gene duplication of patristacins preceded the evolution of diverse expression patterns related to male pregnancy. Patristacins are unique,
tandemly arrayed C6 astacin-like metalloprotease genes presumably co-opted during the evolution of male pregnancy [18]. a A maximum likelihood
gene tree inferred from astacin-like metalloprotease amino acid sequences, representing five fish genomes, is rooted assuming Meprin1b proteins as
an outgroup. Different protein subfamily clades (colored by clade and including terminology from Kawaguchi et al. [89]) mostly correspond to
conserved syntenic regions. Clade support values are SH-aLRT, but see Figure S8 (in Additional file 1) for bootstrap values and tip accession
numbers. Zebrafish sequences with annotated Ensembl gene names are labeled for reference. Patristacins comprise a monophyletic group nested
within the Zcéast1-4 clade, suggesting pipefish or syngnathid lineage-specific duplication events. Note the absence of pipefish orthologs from the
Zcbast5-6 clade (colored gray). In medaka, orthologs from this group are expressed exclusively in the developing jaw [89]. Also note the red asterisk in
the hatching enzyme clade, which corresponds to intron loss in the pipefish lineage. b The physical arrangement of patristacins in the Gulf pipefish
genome, with two other genes in the region (small text). Arrows indicate the direction of the sense strand and vertical bars reflect coding exons. Note
that the status of "pastn-like orf" as a gene is uncertain, so it is depicted by open bars and a question mark where three missing exons would normally
be. ¢ Patristacin expression levels from RNA-seq data for six non-pregnant male brood pouch samples (blue), six pregnant pouch samples not including
embryos (orange), and a pooled embryo library (black). Y-axis values are copies per million (com) on a log scale. Individual data points and boxplots are
shown. Note the extreme expression differences between pastn1 and pastn2

hox genes and the hox-regulating microRNA genes that
are interspersed among them, many of these same genes
have been lost from other percomorphs that have less
modified skeletons (Fig. 4).

Two gene losses from the Gulf pipefish hox clusters
stand out, however. The loss of evel is unique among
described teleost hox clusters. This gene belongs to the
evenskipped (evx) gene family, whose members reside at
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the ends of particular clusters. In zebrafish embryogen-
esis, the hoxba cluster-associated evel gene is expressed
during gastrulation and in the extending tail tip; its
knockdown suppresses trunk and tail development,
prompting the experimentalists to suggest evel acts as a
posterior organizer [58] (but see [59] for another inter-
pretation). It is therefore remarkable that evel is deleted
in pipefish (Fig. 4). It is possible that some of these early
ontogenetic functions of evel have been distributed to
the remaining two pipefish evx genes or otherwise com-
pensated for. However, syngnathids have neither oral
nor pharyngeal teeth, consistent with evolutionary loss
of evel, the only reported evx gene that is expressed during
teleost tooth development [60, 61]. In addition, it appears
that pufferfish and pipefish lineages have independently lost
all copies of hox7, a paralogy group that when experimen-
tally knocked out in mouse causes reduction and mispat-
terning of ribs [62]; consistent with this biological role for
hox7, both pufferfish and pipefish lack ribs.

A uniting trait of the Syngnathidae is an absence of
pelvic fins. Two other percomorphs that have evolution-
arily lost pelvic fins appear to have done so by alteration
of a hindlimb-positioning hoxd9a expression boundary
(pufferfish [63]) or by loss of pitxl expression in the
developing hindlimb (freshwater threespine stickleback
[64, 65]). Pitx1, a transcription factor, directly activates
initial expression of thx4 in the hindlimb primordium
[66] and tbx4 is required for initial limb bud outgrowth
[67]. We found that pipefish pitxI has an amino acid in-
sertion in the OAR, a functional domain thought to
modulate DNA binding [68], and unusual homopoly-
meric alanine and proline repeat expansions between the
homeodomain and OAR (Fig. 6). Homopolymers are
known to cause several developmental diseases in
humans (reviewed in [69]) and to affect subcellular
localization, protein-protein interaction, and transcrip-
tional regulation [70, 71]. In particular, expansions of
alanine and proline homopolymers within transcription
factors can modulate the proteins’ ability to regulate
transcription of gene targets. A distantly related pipefish
species, the messmate pipefish, shares one of the homo-
polymeric repeats (Fig. 6), suggesting that this diver-
gence of pitx] began early in the syngnathid lineage. It is
conceivable that changes in the amino acid sequence of
syngnathid Pitx1 have had functional consequences for
the protein’s interaction with its gene targets (such as
tbx4), affecting hindlimb development. We found no
pipefish ortholog of tbx4. Failure to find pipefish thx4 in
the genome assembly does not necessarily mean the
gene has been evolutionarily lost; however, the possible
loss of this gene with an apparently narrow developmen-
tal role in teleosts — in hindlimb development [46] — is
consistent with the evolutionary loss of the hindlimb it-
self in syngnathids. Loss of the pelvic fins in a
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syngnathid ancestor may have occurred shortly before or
after the origin of the lineage, because the closest extant
relatives — the ghost pipefishes (Family Solenostomidae)
[72, 73] — have large, clasping pelvic fins in which fe-
males brood the embryos [74]. Interestingly, Pitx1 in ro-
bust ghost pipefish (Solenostomus cyanopterus) lacks the
homopolymeric repeats described above (Fig. 6).

A family of homeodomain transcription factors im-
portant for limb, brain, and craniofacial development,
the DIx genes, are arranged in gene pairs associated with
specific Hox clusters. Within and near the DIx gene
pairs are CNEs recognizable by alignment among se-
quences from even distantly related vertebrates. Several
teleost dlx clusters, for example, have CNEs in common
with mammals [40, 75]. Putatively these CNEs are pre-
served because they have a function, perhaps in regulat-
ing gene expression of the dlx genes themselves. For
instance, two CNEs that fall between dix1 and dix2 and
that are conserved between teleosts and mammals direct
reporter gene expression in the developing forebrain and
first and second pharyngeal arches in murine [43] and in
zebrafish [75] embryos. We found that pipefish has
retained these two ancient CNEs but has apparently lost
a third element that is as deeply conserved (i.e. between
mammals and teleosts), from within an intron of dixla.
In addition, at least two more CNEs in the intergenic re-
gion of dlx1/2a that are conserved among other perco-
morphs are lost or diverged beyond recognition in
pipefish (Fig. 5). Experimental mutation of mouse Dix1/
2 genes creates defects in the development of pharyngeal
arch derivatives, such as the mandible and teeth [76].
Knockdown of these genes in zebrafish causes embryos
with shortened faces and mispatterning of first and sec-
ond arch cartilages and a reduced ethmoid (a cartilage of
the ventral neurocranium) [77]. In addition, dix2 genes
are expressed in developing teeth in cichlids, catfish, and
cyprinids [78-80], and dlx2a is expressed in migrating
neural crest that will form the anterior pharyngeal arch
cartilages [77, 81]. Pipefish embryos show modified de-
velopment of the anterior skull including cartilage deriv-
atives of the first and second pharyngeal arches,
particularly elongation of the hyosymplectic (a cartilage
of the second arch), as well as unusual early curvature
and later elongation of the ethmoid cartilage (see
Additional file 1: Figure S7 for a view of pipefish cranio-
facial development), implicating changes in expression
of early acting genes such as dlx2a, involved in cranial
neural crest survival and patterning. Functional testing
in other teleosts could reveal whether the CNEs here
shown to be erased in pipefish are functional units that
modulate expression of the dix1/2a cluster genes and
possibly affect pharyngeal arch or tooth development.

Male pregnancy in syngnathid fishes is a true example
of evolutionary novelty. In many lineages, including S.
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scovelli, males gestate developing embryos in a tightly
regulated environment defined by a complex brood
pouch. Extensive cellular and developmental changes in
the pouch occur leading up to and during pregnancy, in-
cluding proliferation of epithelial cells, development of
specialized secretory cells, and angiogenesis [10, 82, 83].
These specializations are likely the consequence of adap-
tation, as they enable functions directly relevant to fit-
ness, including solute, gas, and nutrient delivery to a
male’s brood [12, 13, 84], as well as immune priming of
offspring [85]. Consistent with this functional diversity,
our genome-based analysis of male pregnancy in S. sco-
velli revealed a transcriptionally rich brood pouch in
which over 73% of annotated genes were expressed ro-
bustly and over 1000 were differentially expressed as a
consequence of pregnancy (Additional file 2: SH2). Pre-
vious studies, based on de novo transcriptome assem-
blies, characterized pregnancy-specific gene expression
in pipefish species of Symgnathus [52] and in the sea-
horse Hippocampus abdominalis [54], but lack of a ref-
erence genome in those surveys limited insights into the
transcriptional breadth of the pouch and single gene
resolution for transcript abundance measurements. Our
differential expression analysis comparing early-stage
pregnant to non-pregnant male pouch tissue echoes
many of the patterns described in the comprehensive
seahorse study [54], including evidence for positive regu-
lation of developmental processes, lipid transport,
homeostasis, and the immune system during pregnancy.
Interestingly, we noted a more pronounced signature of
pregnancy-specific gene expression for innate, relative to
adaptive, immune pathways in Gulf pipefish (Additional
file 1: Figure S6). This observation is likely in part a con-
sequence of pipefishes in Syngnathus having lost import-
ant genetic components of MHC class II mediated
immunity [51], although MHC class I components re-
main intact. Syngnathid fathers face unique demands
with respect to immunity and pregnancy, given that the
brood pouch is a non-urogenital organ more directly ex-
posed to the environment than internal uterine struc-
tures of other vertebrates. A seemingly difficult balance
among pathogen control, maintenance of beneficial mi-
crobes, and mitigation of attack against non-self (embry-
onic) tissues must therefore be struck. Although future
work regarding the details of this balance will be re-
quired to say so, perhaps a uniquely fine-tuned division
of labor between innate and adaptive immunity has been
an evolutionary outcome of male pregnancy, a balance
we hypothesize differs across syngnathid lineages with
varying brood pouch complexity.

The significance of gene duplication to adaptation and
biological diversification in general is continually of
interest to evolutionary biologists [86—88]. We identified
at least four clustered members of the patristacin gene
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subfamily on a single scaffold of LG4 in the Gulf pipefish
genome (Fig. 7). Given the striking patterns of gene ex-
pression for pastnl and pastn2 with respect to preg-
nancy, it is possible that gene duplication followed by
neo- or subfunctionalization played a key role in the
evolution of male pregnancy, although surveys of other
syngnathid genomes and those of their closest relatives
are needed to test this hypothesis. Our interpretation of
the evolution of patristacins is distinct from that of
Harlin-Cognato et al. [18], who suggested that one patri-
stacin, identified without the advantage of a complete S.
scovelli genome, took on a novel role in male pregnancy
by a spatiotemporal shift in gene expression and not via
gene duplication. Our genome-wide approach has pro-
vided additional information, however, by revealing the
complete coding sequence for multiple patristacin para-
logs in S. scovelli. Because the two patristacins with
exceptional pregnancy-specific gene expression (pastnl
and pastn2) likely diverged by gene duplication after
pipefish separated from the other fish lineages in our
comparison, we provide evidence for a role of relatively
recent gene duplication in patristacin evolution. Our
phylogenetic analysis highlights a second, large expan-
sion of patristacin-like genes in the genome of Xipho-
phorus maculatus, suggestive of high duplicate retention
in multiple live-bearing fish lineages.

The specific functional roles patristacins play in male
pregnancy are currently unknown, but our current
phylogenetic understanding of their place among teleost
Astacin-like metalloproteases suggests that they may be
more functionally similar to Nephrosin-like proteins
than hatching enzyme components (Fig. 7a, Additional
file 1: Figure S8). Kawaguchi et al. [89] showed, for ex-
ample, that medaka 6-cysteine astacin genes mic6astl
and mc6ast2, orthologs of zebrafish c6ast! and zebrafish
c6ast3/4, respectively, were expressed in a wide range of
tissues, in contrast to medaka hatching enzymes, which
were expressed exclusively in pre-hatching embryos. An-
other member of this gene subclade, cimpl, is expressed
epithelially in the developing cichlid jaw and may play a
role in ECM turnover during development [90]. We
hypothesize that patristacins evolved from an already
transcriptionally promiscuous ancestor and now, following
subsequent duplication events, work in concert to regulate
the remodeling of the pouch epithelium necessary for the
sustenance of pregnancy. Our characterization here of
their structural organization and expression patterns in
the brood pouch will inform and facilitate future func-
tional studies of these gene duplicates and their specific
roles in male pregnancy.

Conclusions
We present the first annotated reference genome assem-
bly, organized into chromosomes, for a syngnathid fish.
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Our comparisons of the Gulf pipefish genome to other
fish genomes reveal two chromosomal fusions in the
syngnathid lineage. We provide additional evidence sug-
gesting that syngnathiform fishes are an outgroup relative
to fellow percomorph fishes commonly used in compara-
tive genomics studies. The Gulf pipefish genome will
therefore serve as a useful comparator in studies that aim
to understand rates of genome evolution among perco-
morphs for which there are existing genomic resources.
We show that losses of both genes and CNEs have oc-
curred in pipefish gene families important for vertebrate
craniofacial, tooth, hindlimb, and axial development, all
features that are highly modified in syngnathids. In
addition, we detail aspects of the molecular biology of
male pregnancy, a unique and unifying feature of the pipe-
fish, seahorses, and seadragons; in particular, we exploited
the annotated Gulf pipefish genome and transcriptional
profiling to show how pregnancy is associated with clear
changes in gene expression in the male brood pouch
tissue, a broad example being regulation of the innate
immune system and a specific example being regulation
of duplicated patristacins.

Methods

Genome sequencing libraries and genome sequence
assembly

We isolated genomic DNA from a single adult male
pipefish purchased from Gulf Specimen Marine Labora-
tories, Inc. (Panacea, FL, USA) in 2010 using standard
organic extraction. We generated four different 100 nt
paired-end Illumina libraries for whole genome shotgun
assembly: (1) a short (~180 bp) insert length library; (2)
a 2.5-5 kb insert length jumping library; (3) a 5-10 kb
insert length jumping library; and (4) a 11-15 kb insert
length jumping library. To construct the 180 bp library,
we sheared 1 pg of genomic DNA to less than 500 bp
using sonication in a Bioruptor (Diagenode) and size se-
lected fragments by agarose gel electrophoresis, followed
by end repair of the fragments, addition of adenosine
overhangs, ligation of Illumina sequencing adapters, and
12 cycles of PCR amplification with Phusion polymerase
(NEB). We used the Illumina Nextera Matepair Sample
Preparation Kit (Illumina, cat. #FC-132-1001) to gener-
ate the three jumping libraries. Briefly, we performed a
single tagmentation reaction using 5 ng of genomic
DNA, selected the three aforementioned fragment size
ranges using agarose gel electrophoresis, and performed
the remaining library preparation steps in parallel, in-
cluding circularization, shearing by Bioruptor (30 s on,
60 s off, for 15 min), streptavidin bead pull-down, end
repair, addition of adenosine overhangs, Illumina
indexed adapter ligation, and 15 cycles of PCR amplifica-
tion. We sequenced the short-insert library (two lanes)
and three jumping libraries (all in one lane) on an
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[lumina HiSeq2000 at the University of Oregon Genom-
ics Core Facility (UOGCE).

To minimize the inclusion of sequencing adaptors, se-
quencing errors, and repetitive DNA sequences in the as-
sembly process, we used tools from the Stacks software
suite [91, 92] to adaptor-trim and discard low-quality read
pairs (process_shortreads) and filter pairs containing abun-
dant k-mers (kmer_filter). Remaining were 238.6 million
overlap pairs, 3.5 million 11-15 kb mate-pairs, 21.6 M 5—
10 kb mate-pairs, and 44.4 M 2.5-5 kb mate-pairs, which
we used for assembly with ALLPATHS-LG [21]. Because
initial k-mer spectrum analyses suggested a highly poly-
morphic genome, we ran ALLPATHS-LG with HAPLOI-
DIFY = TRUE. To assess completeness of the assembly
with respect to CEGs, we used CEGMA [22]. For a sum-
mary of all Illumina sequencing data used in the assembly,
see Additional file 3.

We confirmed several apparent pipefish gene losses
via comparison among preliminary genome assemblies
derived from independently constructed molecular li-
braries and generated using SGA [93] and Velvet [94]
and via targeted Sanger sequencing. Briefly, SGA and
Velvet assemblies incorporated a shotgun genomic DNA
library with an insert length of 470 nt, sequenced inde-
pendently with 120 nt, 100 nt, and 80 nt paired-end Illu-
mina reads. For the SGA assembly, the overlap value
was optimized to 70 during the contig construction
phase. Scaffolding was performed using SSPACE [95],
with the three mate-pair libraries mentioned above and an
additional 2—8 kb mate-pair library. These analyses filled
seven small gaps in the range of 51-1753 nt in the hoxba,
hoxbb, hoxca, and hoxda clusters. The degraded nature of
hoxa7a was also confirmed by Sanger sequencing.

RNA-seq libraries and transcriptome assemblies

Embryo and fry transcriptome

Embryos, flushed from the pouch of lab-reared pregnant
males, and fry were euthanized in Tricaine-S and stored
in RNA-Later (Ambion). Tissue including the head to
just posterior to the pectoral fin was dissected and
pooled from 17 embryos (including 15 at 8 days post
fertilization (dpf) and 2 at 10 dpf) and from 18 fry (in-
cluding 2 at 16 dpf and 16 at 17 dpf). Double-stranded
complementary DNA (cDNA) was produced from these
tissues via standard methods including RiboPure Kit
(Ambion) for total RNA isolation, MicroPoly(A)Purist
Kit (Ambion) for messenger RNA (mRNA) enrichment,
mostly hexameric Random Primers (ThermoFisher,
#48190-011) and Superscript III reverse transcriptase
(Invitrogen) for first strand synthesis, and Random
Primers with Kleno exo-DNA polymerase (Epicentre).
Paired-end Illumina sequencing libraries were created
using standard methods including mechanical shearing of
the ¢cDNA and TA ligation of adaptors (top, 5’
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ACACTCTTTCCCTACACGACGCTCTTCCGATC*T3';
bottom,  5'Phos-GATCGGAAGAGCGGTTCAGCAG-
GAATGCCGAG3’), slab gel size fractionation to isolate
fragments in the 200-500 bp range, and amplification
using Illumina-compatible primers (5'AATGATACGGC-
GACCACCGAGATCTACACTCTTTCCCTACACGACG
CTCTTCCGATCT3" and P2 reverse primer, 5’CAAG-
CAGAAGACGGCATACGAGATCGGTCTCGGCATTC

CTGCTGAACCGCTCTTCCGATCT3’). The library was
sequenced on an Illumina GAIIx platform to produce 60
nt paired-end reads and on an Illumina HiSeq2000 plat-
form to produce 100 nt paired-end reads (see Additional
file 3 for details).

Male brood pouch

Six non-pregnant and six early-stage pregnant adult
males were captured from Redfish Bay, TX, USA (Lat:
27.86795057508745, Long: —97.08869218576297), trans-
ported to the laboratory, and euthanized as described
above approximately 24 h after capture. We carefully
dissected all brooding tissues, including the pouch
“flaps” and epithelium, but excluding all embryonic tis-
sue in the case of pregnant males. We fixed tissues in
RNA-Later (Ambion) before freezing, homogenized by
pestle upon thawing, and isolated total RNA using Trizol
Reagent (Invitrogen) and RNeasy MinElute columns
(Qiagen). A unique RNA-seq library was generated for
each individual from 1 ug of total RNA using the TruSeq
RNA v2 Kit (Illumina) and the 12 mRNA-seq libraries
were sequenced across two lanes of Illumina HiSeq 2000,
generating 100 nt paired-end reads.

De novo transcriptome assemblies

We removed low-quality and adaptor sequences from
RNA-seq reads using process_shortreads from Stacks
[91, 92], overlapped paired-end reads using FLASH [96],
and performed rare k-mer filtering and digital
normalization using kmer_filter from Stacks. We then
generated two separate de novo transcriptome assem-
blies (one for each tissue type) from the cleaned, filtered
RNA-seq data using Trinity [97] with —min_kmer_cov
set to 3.

Genome annotation

Prior to genome annotation, the assembly was soft-
masked for repetitive elements and areas of low com-
plexity with RepeatMasker [98] using a custom Gulf
pipefish library created by RepeatModeler [99], Repbase
repeat libraries [100], and a list of known transposable
elements provided by MAKER [25]. In total 15.36% of
the genome assembly was masked by RepeatMasker. Re-
petitive elements were annotated with RepeatModeler.
Hidden Markov models (HMMs) for gene prediction
were generated by SNAP [101] and Augustus [102] and
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were iteratively trained for the assembly using MAKER
as described by Cantarel et al. [103]. Training was per-
formed on the five largest scaffolds and two additional
scaffolds that were UTR rich, totaling 25 Mb. Evidence
used by MAKER for annotation included Gulf pipefish
mRNA-seq transcriptomes from embryonic head tissue
and brood pouch tissue (assembled with Trinity — see
above), protein sequences from threespine stickleback
(Gasterosteus aculeatus), zebrafish (Danio rerio), medaka
(Oryzias latipes), and tilapia (Oreochromis niloticus)
(downloaded from Ensembl: Broad S1, GRCz10,
HdrR, Orenill.0, respectively), and all Uniprot/swis-
sprot proteins [104].

We filtered the annotations by MAKER to include
evidence-based annotations with assembled transcrip-
tome or protein support and those ab initio gene predic-
tions that contained protein family domains as detected
with InterProScan [105]. Gene annotations were manu-
ally refined for hox, astacin-like metalloprotease, and
pitx genes. For each annotated amino acid sequence we
queried the NCBI nr database using BLASTP and com-
piled the results for the top BLASTP hit per gene in
Additional file 2: SH6.

Linkage map and map integration

Mapping cross

For the genetic cross, wild male and female S. scovelli
were captured from Redfish Bay and maintained in the
lab. A total of six sequential broods from a single mated
pair, totaling 108 F1 progeny, including fry from the
brood pouch plus 15 collected just prior to emergence,
were gathered and flash frozen over a span of 4 months.
Genomic DNA was isolated from individual progeny
and from their parents via the Qiagen DNeasy Kit.
RAD-seq libraries were made using the restriction en-
zyme Sbfl as in Baird et al. [106], Hohenlohe et al. [107],
and Etter et al. [108] with the Illumina-compatible, bar-
coded P1 adapters and primer types used in Hohenlohe et
al. [109] and the P2 adapter type used in Hohenlohe et al.
[107]. Single-end reads of 100 nt were produced from two
lanes on an Illumina HiSeq2000 (see Additional file 3 for
details). The parents were sequenced to greater depth than
progeny (see below) to make an accurate catalog of diploid
genotypes possible in the cross.

Marker genotyping

The two lanes of Illumina data resulted in 367,085,475
raw reads which were analyzed using the software,
Stacks [91, 92]. Using the process_radtags program,
reads were demultiplexed according to barcode and dis-
carded if the barcode could not be determined after cor-
recting for sequencing error, if the restriction enzyme
cut site was not intact, or if the sequencing quality was
too degraded. The 218,309,324 remaining reads were
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analyzed by the Stacks de novo pipeline to assemble and
genotype the RAD loci. A minimum of three identical
reads (—m 3) was required to form a “stack” or putative
allele in each individual, up to five differences were
allowed when merging stacks into putative loci (-M 5)
and up to 3 differences were allowed when merging loci
from different individuals into the catalog (-n 3) to ac-
commodate fixed differences between the cross parents.
The genotypes program from Stacks was used to export
data in a CP cross-format for use in JoinMap and the ge-
notypes were uploaded to the Stacks web interface.
Genotype data with markers present in at least 75 of the
108 individual progeny were exported from the web
interface for linkage analysis.

Map construction

Linkage analysis was performed with JoinMap 4.1 [110]
using only markers that were present in at least 75 of
the 108 individual progeny. Markers were initially
grouped in JoinMap 4.1 using the “independence LOD”
parameter under “population grouping” at a minimum
LOD value of 15.0, and markers that remained unlinked
at LOD <15 were excluded. Marker sets were parti-
tioned into paternal and maternal markers to enable the
construction of sex-specific linkage maps. Marker order-
ing was performed using the Maximum Likelihood (ML)
algorithm in JoinMap 4.1 with default parameters. Sup-
posed double recombinants were identified using the
“genotype probabilities” feature in JoinMap 4.1 and by
visual inspection of the colorized graphical genotypes in
the male, female, and consensus maps. After visual in-
spection of the individual sequences in the web interface
of Stacks, markers were manually corrected as needed in
the web interface and re-exported. For example, if a
double recombinant was a homozygote with a small
number of sequences, the genotype was eliminated be-
cause it might represent a heterozygote with no se-
quences for the second allele. Conversely, if the double
recombinant was a heterozygote with only one sequence
for the second allele, the genotype was eliminated be-
cause the second sequence could be sequencing error.
The new dataset with corrected genotypes was loaded
again into JoinMap 4.1 and the process was repeated
until no suspect genotypes were identified. The “ex-
pected recombination count” feature in JoinMap 4.1 was
used to identify individuals with higher than expected
recombination events; marker order was visually
inspected and, when necessary, optimized by moving a
marker or sets of markers to a new map position that
reduced the number of recombination events. When a
marker or sets of markers could be in multiple map po-
sitions, the markers were moved to a position congruent
with their physically aligned scaffold location if there
was no cost to the map.
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Integrating the assembly and the linkage map

The 4375 markers from the linkage analysis were inte-
grated with the assembled pipefish scaffolds to create a
chromonome using the software, Chromonomer
(http://catchenlab.life.illinois.edu/chromonomer/). Markers
were aligned to the set of assembled pipefish scaffolds
using GSnap [111], requiring unique alignments, allowing
up to five mismatches (—m 5), counting gaps as four mis-
matches (—i 4), and requiring 99% of the RAD locus to
align (—min-coverage = 0.99). The AGP file produced by
ALLPATHS-LG that describes the assembly, the linkage
group, and map position of the markers in the map, the
alignments of the markers to the scaffolds, and the FASTA
file containing the sequence from the assembly are all fed
into Chromonomer, which integrates them in the following
way. First, markers are arrayed along the scaffolds they are
aligned to and scaffolds that have markers from more than
one linkage group are identified (no scaffolds were split be-
tween linkage groups). A coherent ordering of markers
must be found for each scaffold so that physical basepair
and map position are consistent among all markers for that
scaffold. Markers that are out of order with respect to the
map or scaffold are discarded (unless it is the last marker
holding a scaffold into the map). Of the 4375 markers, 649
were excluded in this phase, leaving 3726 markers in the
final “chromonome.” If a scaffold spans more than one
map position, and physical order is the same as map order,
the orientation of the scaffold is positive. If physical and
map order are inverted, the scaffold is considered in nega-
tive orientation and the sequence is reverse complemented.
Otherwise orientation is unknown and the scaffold remains
in positive orientation by default. Scaffolds are then hung
from the linkage group they occur on, according to map
position. Ordered markers may place the scaffold in
more than one place within the linkage group, that is,
one or more scaffolds occur within the focal scaffold
according to the linkage map. This can be due to an
incorrect assembly join or because a smaller scaffold
is filling a gap in a larger scaffold. In these cases, the
scaffold is split at the largest gap that can be found
between the markers in the map that indicate where
the split must occur. Starting with 553 scaffolds, five
scaffolds were split one time each for a total of 558
scaffolds in the chromonome. Sequence from the scaf-
folds is then concatenated into chromosomes accord-
ing to the orientation and integrated order with
standard 100 bp gaps placed in between each join
resulting in a chromonome of 266,330,253 bp (53.6Kb
scaffold join gaps) with 40,734,039 bp of sequence
remaining in unintegrated scaffolds. Finally, the gen-
ome annotation is translated to the new chromonome
providing a genome-level ordering of genes for use in
conserved synteny analysis and new AGP, FASTA, and
GFF files are generated to describe the chromonome.


http://catchenlab.life.illinois.edu/chromonomer/

Small et al. Genome Biology (2016) 17:258

Conserved synteny analysis

In order to visualize evolutionarily conserved gene
neighborhoods, ie. conserved synteny, we used the
Synolog software (Catchen, unpublished). We used
Synolog to identify orthologs between the Gulf pipefish,
threespine stickleback, medaka, green spotted pufferfish
(Tetraodon nigroviridis), zebrafish, spotted gar, and
southern platyfish and to identify conserved gene neigh-
borhoods pairwise between the different species.
Genome-wide images of conserved synteny were drawn
by Synolog by combining the conserved synteny blocks
across the genome and incorporating the integrated link-
age map/assembly output by Chromonomer where
appropriate (Fig. 2c). Protein gene models for each non-
pipefish species were downloaded from Ensembl. While
Synolog is a new and independent implementation, the
algorithm to identify conserved synteny and the bio-
logical inferences stemming from its application are as
described in Catchen, et al. [112].

Phylogenomic analysis using ultraconserved elements
We added UCEs from Gulf pipefish, Pacific bluefin
tuna, and southern platyfish genomes to an existing
UCE dataset containing sequences for 27 actinopter-
ygiian fishes and published by Faircloth et al. [32]. To
retrieve each of the 491 UCEs from the three ge-
nomes above, we generated a consensus sequence of
each alignment from Faircloth et al. [32] using
em_cons from EMBOSS [113], searched for each con-
sensus sequence in each genome using LASTZ [114],
and extracted unique search hits from each genome
using BEDTools [115]. For this we used the tuna ref-
erence genome available from http://nrifs.fra.affrc.-
go.jp/ResearchCenter/5_AG/genomes/Tuna_DNAmi-
croarray/index.html and the platyfish genome from
Ensembl. We obtained 457, 453, and 479 single-copy
UCEs for Gulf pipefish, tuna, and platyfish, respect-
ively. A multiple sequence alignment for each UCE
was generated using MAFFT v7 [116] with options
—localpair and —maxiterate 1000, and minor manual
adjustments were made when necessary.

We performed substitution model selection for each
UCE alignment using the corrected Akaike Informa-
tion Criterion, as implemented in jModeltest-2.1.10
[117, 118]. The GTR + gamma model was selected for
the largest percentage of the total aligned sequence
data. We concatenated UCE alignments, ordering
them so that the loci having the same best-fitting
substitution model were grouped together. We pro-
ceeded with a partitioned phylogenetic analysis using
the concatenated alignment (153,032 nt total), and
the GTR + gamma model for all partitions. Maximum
likelihood (ML) phylogenetic inferences were con-
ducted with RAXML version 8.2.4 [119] using default
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settings. We produced a consensus ML tree using the
rapid bootstrap search algorithm described in Stama-
takis et al. [120]. Briefly, 1000 rapid bootstrap
searches were conducted, followed by fast ML
searches on 200 of these, followed by a slow ML
search on the 10 best fast ML trees. Clade confidence
was assessed with SH-aLRT support values and boot-
strap replicate frequencies. We specified Polypterus
senegalus as the outgroup for tree rooting.

Characterization of hox clusters
hox gene content
Teleost hox gene sequences acquired from Ensembl were
used as queries for BLAST searches of the final Gulf
pipefish genome assembly using Geneious (version
8.0.5). Exon boundaries were annotated by hand using
alignments with the query hox genes. The hox genes an-
notated in the Gulf pipefish assembly were then BLAST-
searched against the NCBI NR sequence database to
confirm gene identity using Geneious (version 8.0.5).
Additionally, hox genes were identified, following the
method outlined above, in the Pacific bluefin tuna gen-
ome (see genome source above) [121].

hox cluster microRNAs and long non-coding RNAs
within the sox cluster were identified using VISTA ana-
lyses based on CNEs within /ox clusters across Gulf
pipefish, threespine stickleback, mouse (Mus musculus),
spotted gar, zebrafish, Pacific bluefin tuna, medaka, and
fugu (Takifugu rubripes) [41, 42, 122—124]. We aligned
primary miRBase [125] microRNA sequences from
stickleback, zebrafish, medaka, and fugu to S. scovelli
hox regions using MUSCLE [126] to supplement annota-
tions. The hairpin loops of the annotated microRNAs
were confirmed using RNAfold (http://rna.tbiunivie.a-
c.at/cgi-bin/RNAWebSuite/RNAfold.cgi). When known
hox cluster microRNAs were not detected in the Gulf
pipefish genome, we further confirmed absence of the
conserved seed sequence, which was the case for
mir196b between hoxbl3a and hoxb9a and mirlOa be-
tween hoxb5b and hoxb3b. All conserved non-coding se-
quences annotated within the Gulf pipefish hox cluster
were queried against miRBase Sequence Databases (Re-
lease 21) for mature miRNA chordate sequences and
miRNA chordate hairpins (downloaded from miRBase)
using BBMapSkimmer [127] for further identification of
microRNAs. Kmer index size was set to 7, max indel set
to 0, approximate minimum alignment identity set to
0.50, secondary site score ratio set to 0.25, behavior on
ambiguously-mapped reads set to retain all top-scoring
sites, and maximum number of total alignments to print
per read set to 4 million. See Additional file 2: SH7 for
scaffold locations and sequences of microRNAs and long
non-coding genes.


http://nrifs.fra.affrc.go.jp/ResearchCenter/5_AG/genomes/Tuna_DNAmicroarray/index.html
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Characterization of dix CNEs

CNEs between dix1 and dlx2, between dix3 and dix4,
and between dIx5 and dix6 were identified using
mVISTA analyses based on levels of sequence conser-
vation within dlx clusters across Gulf pipefish, Atlantic
cod, threespine stickleback, zebrafish, human, Pacific
bluefin tuna, medaka, and fugu [41, 42, 122-124].
Sequences were downloaded from Ensembl for cod,
stickleback, zebrafish, human, medaka, and fugu. Tuna
sequences were downloaded from the reference genome
source cited above. Medaka was set as the reference se-
quence for the dix1/2 and dix5/6 comparisons and
stickleback was the reference for the dix3/4 compari-
sons. Alignment of each sequence from these species
were aligned using the shuffle-LAGAN algorithm
through the mVISTA website under default parameters.
See Additional file 2: SH7 for scaffold locations of
CNEs.

Characterization of pelvic fin development candidates
Pitx1, Pitx2, and Pitx3 protein sequences were ob-
tained from our pipefish annotation, Ensembl, and
Genbank (in the case of stickleback Pitx1) for human,
coelacanth (Latimeria chalumnae), spotted gar, zebra-
fish, blind cavefish (Astyanax mexicanus), medaka, til-
apia, green spotted pufferfish, and threespine
stickleback, and aligned using MAFFT (with default
settings). To isolate DNA fragments for Sanger se-
quencing of pitxl from the messmate pipefish (Cor-
ythoichthys haematopterus) and the robust ghost
pipefish (Solenostomus cyanopterus) genomic DNA,
we designed degenerate PCR primers (in I[UPAC nota-
tion, forward 5'-CGGAGCGCAACCAGCARATGGA-3’
and reverse 5 -GGACGACGACATGSCSCWGTTGAT-
3') for amplification using Phusion DNA polymerase
(New England Biolabs) in Phusion HF buffer, and an an-
nealing temperature of 55 °C.

Because thx4 was not represented in the pipefish gen-
ome annotation, we attempted to determine its location
in the genome assembly manually by using a targeted
profile HMM generated from several aligned teleost
Tbx4 protein sequences. HMM-based approaches are
more sensitive than BLAST-based approaches when
searching for divergent homologs [128], a possible sce-
nario when a gene has evolved rapidly or has degener-
ated. Briefly, we used an alignment of Ensembl Tbx4
sequences from spotted gar, zebrafish, medaka, southern
platyfish, threespine stickleback, green spotted pufferfish,
and tilapia to generate a profile HMM with hmmer2
[129], then searched for sequences in the Gulf pipefish
genome with this model using the genewisedb program
of wise2 (http://www.ebi.ac.uk/~birney/wise2/) with de-
fault search settings.
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Differential expression analysis

We aligned adaptor- and low-quality-trimmed, forward
reads from the 12 brood pouch RNA-seq libraries to the
annotated Gulf pipefish genome using GSnap [111]. We
counted the number of uniquely mapped reads per ex-
onic region of each annotated gene using HTSeq-count
[130] and used the counts to test for differential gene ex-
pression between pregnant and non-pregnant males
using the negative binomial exact test [131], after TMM
normalization, implemented by the R/Bioconductor
package edgeR [132]. We limited differential expression
analysis to those genes with at least one read per million
counted (cpm) in at least four of the 12 fish, which re-
duced the dataset to 15,253 genes.

To connect genes annotated in the pipefish genome
with putative functional information, we mapped the
pipefish amino acid sequences to KEGG Orthology (KO)
entries [133] using the KEGG Automatic Annotation
Server [134]. We then identified KEGG PATHWAYS
enriched for pipefish KOs with extreme log, fold change
values from the pregnancy differential expression ana-
lysis using the R/Bioconductor package GAGE [135]. To
visualize individual members of KEGG PATHWAYS
enriched for pregnancy-sensitive genes we used the R/
Bioconductor package Pathview [136]. We also used
Ensembl IDs for putative D. rerio orthologs of Gulf pipe-
fish genes to test for overrepresentation of PANTHER
GO-slim Biological Process terms among pregnancy-
enriched and pregnancy-depressed genes using binomial
tests implemented by the online resource PANTHER
(pantherdb.org), [137, 138]. For the overrepresentation
tests, we used all genes tested for differential expression
(see above) and matched with a zebrafish ortholog as the
comparison set. To interpret the results of overrepresen-
tation tests for pregnancy-enriched and pregnancy-
depressed sets we only considered GO-Slim terms repre-
sented in the comparison set by at least five genes and
we controlled the FDR at 0.1 as in Benjamini and Hoch-
berg [139]. Results for these overrepresentation tests are
in Additional file 2: SH4 and Additional file 2: SH5.

To visualize and quantify multivariate differences
among individual brooding tissue samples in transcript
space, we calculated Bray-Curtis dissimilarity based on
TMM-normalized cpm values, performed non-metric
multidimensional scaling (nMDS), and conducted
permutation-based multivariate analysis of variance (per-
MANOVA) to test for a global transcriptional effect of
pregnancy status, all using the R package vegan [140].
Similarly, to visualize clustering of genes and pouch librar-
ies via co-expression patterns, we generated heatmaps for
all pouch-expressed genes and several immune system re-
lated KEGG pathways. Ward clustering was used, based
on Euclidean distance calculated from scaled, log,-trans-
formed cpm values, implemented by the R function hclust.


http://www.ebi.ac.uk/~birney/wise2/

Small et al. Genome Biology (2016) 17:258

Unless noted otherwise, all additional analyses related to
the gene expression were conducted using core packages
within the statistical programming language R [141].

Characterization of patristacins

Previous work identified members of the astacin-like
metalloprotease gene family as candidates for playing a
functional role in male pregnancy [18, 52]. We con-
firmed extreme transcriptional differences for two of
these patristacins between brood pouch tissue of preg-
nant and non-pregnant males (see “Differential expres-
sion analysis” section) and set out to characterize the
distribution of this gene family in the Gulf pipefish and
other teleost genomes. We compared protein sequences
from pipefish gene annotations bearing similarity to
patristacins against the Ensembl zebrafish GRCz10 protein
set using BLAST and discovered that all similar zebrafish
homologs  belong to Ensembl protein family
ENSFMO00500000270265 (choriolytic enzymes). We used
all actinopteryigiian fish sequences from this Ensembl pro-
tein family alignment to generate a HMM profile using
hmmer2 [129], then searched for similar sequences in the
Gulf pipefish genome using the genewisedb program of
wise2 (http://www.ebi.ac.uk/~birney/wise2/) with default
search settings. These protein family-specific annotations
allowed us to both correct and supplement initial MAKER
annotations as necessary. Most of the S. scovelli astacin-
like metalloproteases annotated in this manner, including
at least four tandemly arrayed patristacins on scaffold 62,
shared high sequence similarity with zebrafish homologs
from Ensembl protein family ENSFM00500000270265. Six
of the S. scovelli astacin-like metalloproteases were most
similar to three additional Ensembl protein families, in-
cluding ENSFM00500000282854 (Metalloendopeptidases),
ENSFM00570000851071 (Bone morphogenetic 1/Tolloid-
like proteins), and ENSFM00500000270104 (Meprins).

To identify potential patristacin orthologs and/or close
paralogs in several teleost genomes, we repeated the
HMM search using a hmmer2 profile generated from an
alignment of the four pipefish patristacins, but included
the Gulf pipefish assembly, and the Ensembl genomes of
spotted gar, zebrafish, platyfish, and green spotted pufferfish
as targets. Hits from these searches were used to under-
stand the evolution of patristacins in the syngnathid lineage.
Excluding hits that corresponded to the more distantly par-
alogous Bmpl/Tolloid-like and Merprin proteins [142],
with the exception of Meprinlb as an outgroup (see Fig. 7),
we aligned all unique astacin-like amino acid sequences
from the aforementioned actinopterygii genomes with
MAFFT v7 [116] using options —localpair and —maxiterate
1000. We then made manual adjustments to the
alignment by removing non-conserved residues at the
ends, yielding a final alignment of 55 sequences, cov-
ering 269 amino acids. We used the PhyML 3.0 web
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server [143] for Akaike Information Criterion model
selection and ML phylogenetic inference. The WAG
+G +1+F model was selected and we proceeded with
two separate evaluations of ML tree clade support:
PhyMLs fast SH-like aLRT and 500 bootstrap
replicates.

Additional files

Additional file 1: This pdf file contains the following supplementary
figures: S1-58. Legends for these figures are presented at the beginning
of Additional file 1. (PDF 3.97 mb)

Additional file 2: This xIsx file contains the following supplementary
spreadsheets, each included as a separate tab in a single Microsoft Excel
File: SH1-SH7. Descriptions for these spreadsheets are presented at the
beginning of Additional file 2. (XLSX 2.47 mb)

Additional file 3: This doc file is a comprehensive summary of Illlumina
data used for the Gulf pipefish genome project. A diverse collection of
short-read sequencing data was used to understand the genome of S.
scovelli. Included are descriptions of library types, raw read counts, and
analyses in which the different libraries were used. (DOCX 90 kb)
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