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Abstract

Background: Gene annotations, such as those in GENCODE, are derived primarily from alignments of spliced cDNA
sequences and protein sequences. The impact of RNA-seq data on annotation has been confined to major projects
like ENCODE and lllumina Body Map 2.0.

Results: We aligned 21,504 lllumina-sequenced human RNA-seq samples from the Sequence Read Archive (SRA) to
the human genome and compared detected exon-exon junctions with junctions in several recent gene annotations.
We found 56,861 junctions (18.6%) in at least 1000 samples that were not annotated, and their expression associated
with tissue type. Junctions well expressed in individual samples tended to be annotated. Newer samples contributed
few novel well-supported junctions, with the vast majority of detected junctions present in samples before 2013. We
compiled junction data into a resource called intropolis available at http://intropolis.rail.bio. We used this
resource to search for a recently validated isoform of the ALK gene and characterized the potential functional
implications of unannotated junctions with publicly available TRAP-seq data.

Conclusions: Considering only the variation contained in annotation may suffice if an investigator is interested only
in well-expressed transcript isoforms. However, genes that are not generally well expressed and nonetheless present
in a small but significant number of samples in the SRA are likelier to be incompletely annotated. The rate at which
evidence for novel junctions has been added to the SRA has tapered dramatically, even to the point of an asymptote.
Now is perhaps an appropriate time to update incomplete annotations to include splicing present in the now-stable
snapshot provided by the SRA.
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Background

Gene annotations such as those compiled by RefSeq [1]
and GENCODE [2] are derived primarily from align-
ments of spliced complementary DNA (cDNA) sequences
and protein sequences [3, 4]. So far, the impact of RNA
sequencing (RNA-seq) data on annotation has been lim-
ited to a few projects including ENCODE [5] and Illumina
Body Map 2.0 [6].

To measure how much splicing variation present in pub-
licly available RNA-seq datasets is missed by annotation,
we aligned 21,504 Illumina-sequenced human RNA-seq
samples from the Sequence Read Archive (SRA) to the
hgl9 genome assembly with Rail-RNA [7] and compared
exon-exon junction calls to exon-exon junctions from
annotated transcripts. We compared exon-exon junctions
rather than full transcripts because junction calls from
short RNA-seq reads are considerably more reliable than
assembled transcripts [8]. Details of our alignment pro-
tocol are reviewed in Methods. All alignment was per-
formed in the cloud using Amazon Web Services (AWYS)
Elastic MapReduce, costing 72 US cents per sample, as
computed in Methods.

We considered only Illumina platforms because of their
ubiquity and high base-calling accuracy. Specifically, the
samples we aligned were obtained by querying the SRA
metadata SQLite database of the R/Bioconductor pack-
age SRAdb [9] as of April 2015 for all Illumina-sequenced
human RNA-seq samples.

In the remainder of this paper, we use the term “anno-
tation” to refer to junctions from the union of transcripts
across several gene annotation tracks from the UCSC
Genome Browser [10]. We also occasionally use the term
“RNA-seq junctions” to distinguish junctions we called
from RNA-seq data from annotated junctions. For /4g38
annotations, coordinates were lifted over to hgl9. See
Methods for details and Table 1 for included gene annota-
tions together with the number of junctions in each. In all,
we found 536,994 annotated junctions in RNA-seq data:
505,314 were present in annotations of 4g19, and the rest
were added by annotations of 4g38.

Results and discussion

We compiled the junction calls and associated coverage
levels for 21,504 SRA RNA-seq samples into a resource
called intropolis available at http://intropolis.rail.bio.
Using this resource, we addressed several questions that
are fundamental to our understanding of the transcrip-
tome and informative for analyses by individual investiga-
tors.

Reproducibility of junction calls across alignment protocols
We first asked whether our RNA-seq junction calls
could be reproduced across alignment protocols. The
SEQC/MACQ-III consortium (hereafter called SEQC)
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Table 1 Gene annotations from which exon-exon junctions were
extracted and unioned to obtain a list of annotated junctions

Gene annotation Number of junctions Reference
hg19

AceView 395410 [12]
CCDS 174,337 [43]
GENCODE v19 343,887 [2]
UCsC 264,339 [10]
lincRNAs 30,256 [6]
MGC 160,388 [44]
RefSeq 235,512 [1]
SIB 414,422 [45]
Vega 242,672 2]
hg38

CCDS 178,775 [43]
GENCODE v24 346,547 [2]
UCsCc 356,644 [10]
lincRNAs 29,940 (6]
MGC 169,302 [44]
RefSeq 247,577 ]
SIB 433,606 [45]

All tracks were taken from the UCSC Genome Browser [10] except for GENCODE [2],
which was downloaded from the GENCODE website http://www.gencodegenes.
org/releases/. Junction coordinates from hg38 annotations were lifted over to hg19
before the union was performed. Of all gene annotations listed here, the Swiss
Institute of Bioinformatics (SIB) genes has the most, with more than 400,000
junctions for each of hg19 and hg38

aligned a subset of 1720 universal human reference RNA
and human brain reference RNA samples [11] of the
21,504 samples we considered using three different pro-
tocols: NCBI Magic [12], r-make (which uses STAR [13])
and Subread [14]. Junctions called by Rail-RNA are com-
pared with junctions called by SEQC across the subset in
Fig. 1. Of junctions found by Rail-RNA in at least 80 SEQC
samples, as many as 97.5% are found by at least one SEQC
alignment protocol, and 90.1% are found by all three. Note
that 80 SEQC samples is 4.7% of 1720, comparable to a
1000-sample threshold discussed in the next subsection
for the 21,504 SRA samples. This suggests that the over-
whelming majority of junctions we called are not artifacts
of any particular aligner’s junction-calling algorithm.

Relationship between annotation and expression of splice
junctions

We next asked whether annotated junctions represent the
diversity of junction expression observed in the popula-
tion at large. We considered an RNA-seq junction to be
well supported in our data if it was observed in a large
number of samples. We calculated the number of junc-
tions that appeared in at least S samples across a range


http://intropolis.rail.bio
http://www.gencodegenes.org/releases/
http://www.gencodegenes.org/releases/

Nellore et al. Genome Biology (2016) 17:266

Page 3 of 14

700000 F 360000 , ]
3500001p100%_ _ _ _____ _“To==
600000 1
340000 % T To== Rail only
: 500000k LK I — T 2 aligners ]
5 ¥ 330000} !
[e} ) .
o 4 .
= 400000k R 320000F : 3 aligners 1
X 90.1% i
~ X TS TTTTToTT T T
c 310000 |
O 300000F 1 4 aligners ,
:8 300000 ! ! : ! !
% 82
= 200000
100000 | 1
0 1 1 1 1
0 200 400 600 800 1000

Min number S of SEQC samples in which jx is called by Rail

Fig. 1 Displayed is the number of exon-exon junctions J found by Rail-RNA and other alignment protocols in at least S of the 1720 brain and universal
human reference RNA-seq samples also studied by the SEQC/MACQ-IIl consortium [11] (i.e,, SEQC). 2 aligners” (red), 3 aligners” (green), and “4
aligners” (orange) refer to junctions we found with Rail-RNA that were also found by, respectively, 1, 2, and 3 of the alignment protocols used by SEQC

of cutoffs. For each RNA-seq junction we considered, we
also evaluated whether it appeared in annotation. We con-
sidered the following levels of evidence: (1) fully annotated
junctions; (2) separately annotated junctions (typically
exon-skipping events), where both the donor and accep-
tor sites appear in one or more junctions from annotation,
but never for the same junction; (3) alternative donor and
acceptor sites, where only either the donor or the accep-
tor site appears in one or more junctions from annotation;
and (4) novel junctions, where neither donor nor acceptor
site is found in any annotated junction.

We observed that the RNA-seq junctions most widely
expressed across samples and experiments were well doc-
umented in annotation. For example, we observed that
junctions that appeared in at least 40% of human RNA-
seq samples on the SRA (S > 8000) were also present in
previous annotation at least 99.8% of the time. However,
18.6% of junctions that appeared in 1000 or more sam-
ples did not appear in annotation (Fig. 2a). Many of these
unannotated junctions are partially annotated, but 3.5% of
junctions found in more than 1000 samples do not match
any splice site from an annotated junction.

We also took an investigator-focused view of the rela-
tionship between annotation and expression. Most inves-
tigators collect only a small number of samples for their
study. We restricted attention to samples where at least
100,000 RNA-seq junctions were found to rule out obvi-
ously small RNA-seq samples and samples that were
mislabeled as RNA-seq on the SRA. In each sample, we
counted the number of instances where a read maps
across a junction. (A read mapping across two junctions

thus contributes two instances.) The total number of such
“junction overlaps” across samples is a measure of the
total expression of junctions across the SRA. Most of
the reads that map to junctions map to annotated junc-
tions (Fig. 2b). In 10,090 of a total of 10,311 samples that
meet our criterion of 100,000 junctions observed, more
than 95% of junction overlaps correspond to annotated
junctions.

This represents only the bulk coverage of junctions.
We can also consider the number of junctions observed,
regardless of coverage. In 3389 out of 10,311 samples,
we observe that fewer than 80% of junctions appear in
annotation (Fig. 2c). So while the most highly covered
junctions are well annotated, there is a large number
of junctions that are well covered across multiple sam-
ples but may not appear in any given small subset of
samples.

To explore this idea further, we investigated the poten-
tial for single studies to be the sole contributors of individ-
ual unannotated junctions. In this event, the junction may
not have been called robustly across experimental proto-
cols. Here, we considered junctions that appeared in at
least P projects instead of samples. We again broke this
calculation down by the different potential levels of evi-
dence: whether the junction was entirely novel, had an
alternative donor or acceptor, an exon skip, or whether
it was fully annotated (Fig. 3). The story at the project
level mirrors the story at the sample level: 23.4% of junc-
tions found in more than 200 of the 929 projects are not
fully annotated. So unannotated junctions recur across
independent investigations.



Nellore et al. Genome Biology (2016) 17:266

Page 4 of 14

700000
a 320000~
600000} | 1
300000
™ 500000 l
<
5 280000
8
— 400000 — 85.8% Alternative donor/acceptor ]
2 () Y 2e0000F : 1
= =4 1
S 300000} Leta% ¥ |_Exon skip 1
3] 2400001 i 1
g : Fully annotated
= 200000f 1000 1100 1200 1
100000 1
0 I I I I 1 I
0 2000 4000 6000 8000 10000 12000 14000
Minimum number S of samples in which jx is called
5 10000} ot 3000F
g b c
3 8000} 7 | 2500¢
o 2000F
[ 60001 10,090 samples” < 3389 samples
8 1500}
1L 4000¢
g 1000}
< 2000 500} ’
e}
oL A . A s I . . - L 171
= 00 02 04 06 08 10 %0 0z 04 10
Proportion of overlaps that are annotated Proportion of jx that are annotated
Fig. 2 a Shows how many exon-exon junctions J are found in at least S samples of the 21,504 human RNA-seq samples on the SRA aligned here. It
also shows how much evidence for these junctions is found in gene annotation: “fully annotated” (orange) means the junction is in an annotated
transcript, “exon skip” (green) means a called junction’s donor and acceptor sites are annotated in distinct junctions, “alternative donor/acceptor”
(red) means only one of a called junction’s donor and acceptor sites is in a junction from annotation, and “novel” (blue) means neither donor nor
acceptor site is annotated. b and c restrict attention to the 10,311 samples for which 100,000 junctions are discovered in each. b refers to overlaps,
where an overlap is any instance where a read maps across a junction

Technical and biological variation in junction expression
across samples

We next explored variation across the 21,504 samples we
processed. We wanted to see the combination of techni-
cal and biological factors that contribute to variation in
unannotated junction expression. In this analysis, we con-
sidered only the 56,861 unannotated junctions found in at
least 1000 samples of the 21,504, and the subset of 21,057
samples of the 21,504 with at least 100,000 reads each.
We performed a principal component analysis (PCA) on
the data matrix where rows correspond to the 56,861
unannotated junctions and columns correspond to the
21,057 samples. (See Methods for technical details of the
decomposition.)

PC1 explains the overwhelming majority of the vari-
ance (87.9%) and has a Pearson correlation coefficient
r = 0.978 with junction sequencing depth s; as mea-
sured by total junction overlaps (i.e., instances where a

read maps across a junction) in sample j (Fig. 4) after
normalization by library size and log transformation.
PC1 is also highly correlated with log-transformed read
length ¢; (r = 0.639), but much less correlated with log-
transformed total number of mapped reads C; (r = 0.277),
showing that enrichment for splice junctions is different
in different samples. (See Methods for precise definitions
of correlates.)

We further examined samples belonging to specific
groups that generated well-characterized datasets. Both
the SEQC consortium and ABRF [15] studied universal
human reference RNA (UHRR) and human brain RNA
reference (HBRR) samples constructed by the MACQ-
III consortium for quality control. UHRR comprises total
RNA from ten different cancer cell lines representing var-
ious human tissues, while HBRR samples comprise total
RNA from several donors across several brain regions.
Both groups studied these samples in four different
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Fig. 3 Displayed is the number of exon-exon junctions J found in at least P projects of the 929 human RNA-seq projects on the SRA considered in
this paper. It also shows how much evidence for these junctions is found in gene annotation: “fully annotated” (orange) means the junction is in an
annotated transcript, “exon skip” (green) means a called junction’s donor and acceptor sites are annotated in distinct junctions, “alternative
donor/acceptor” (red) means only one of a called junction’s donor and acceptor sites is in a junction from annotation, and “novel” (blue) means

neither donor nor acceptor site is annotated
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Fig. 4 Displayed is the first principal component (PCT) vs. the second principal component (PC2) for a principal component analysis (PCA) with a
coverage data matrix where rows are junctions and columns are samples. (See Methods for technical details.) Each point corresponds to a distinct
sample. Gray points are unlabeled samples, red points are blood samples, magenta points are lymphoblastoid cell line samples, and cyan points are
brain samples. GEUVADIS (GEU) is a sizable cluster of magenta points. The ABRF and SEQC consortia each sequenced mixtures of universal human
reference RNA (UHRR) and human brain reference RNA (HBRR) in four sample ratios UHRR:HBRR that form distinct clusters in the shaded regions: 0:1
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mixture ratios—O0:1, 1:3, 3:1, and 1:0—with each sample
sequenced at multiple sites. The four mixtures separate
well, and each lies on a radial line passing through the
singular point on the left. Data from the two groups are
separated because they used different sequencing depths
and read lengths.

The four SEQC UHRR:HBRR sample ratios form
four clusters distinguished by PC2, and the ABRF
UHRR:HBRR sample ratios form clusters distinguished
by both PC1 and PC2. Observe that there is a singular
point where all points appear to converge (Fig. 4). Here,
the number of junctions detected in a sample approaches
zero. A radial line extending from the singular point rotat-
ing clockwise across the plot passes over UHRR:HBRR
sample ratios in the same order for ABRF as it does for
SEQC. Though ABRF and SEQC have some overlap in
managing investigators, they are two different projects
that employed randomized study designs, making a strong
case that PC2 is distinguishing mostly biological rather
than technical factors.

Lymphoblastoid cell lines, typically made from HapMap
samples, are extensively present in the SRA. Differ-
ent studies cluster together and are again placed on
a radial line going through the singular point; each
study used very different sequencing depths and read
lengths. Searching the SRA metadata, we could classify
a number of samples as brain and blood. Again, these
samples fall along radial lines through the singular point.
The biggest separation in PC2 is between brain and
blood, two tissue types that are well represented in the
SRA.

Novel junction discovery over time

We proceeded to measure the accumulation of “confi-
dently called” junctions over calendar time. A junction
was “confidently called” if it was found in at least 20 reads
across all samples. We measured the discovery date of a
junction as the earliest submission date to the BioSam-
ple database [16] from among all samples in which the
junction was found by Rail-RNA. The >20-read curve has
noticeable spikes in 2009 and 2011 but appears to decel-
erate significantly before 2013, by which time 96.1% of
junctions were discovered.

Recent samples added to the SRA have contributed
few novel junctions. Curves for more stringent cover-
age thresholds (Fig. 5) level off sooner; the curve for
the most stringent threshold (>160 reads) is essen-
tially flat by 2012. Ranked and labeled are the domi-
nant contributing projects from days on which the most
junctions were discovered. The largest single contribu-
tion comes from UWE, the University of Washington’s
Human Reference Epigenome Mapping Project [17], on
4 April 2011, when 252,628 new junctions appeared.
The submission includes total RNA from fetal tissue,
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which exhibits markedly different expression than adult
tissue [18]. Moreover, sequencing total RNA may cap-
ture a more diverse range of exon-exon junction expres-
sion than sequencing poly(A)-selected RNA since a larger
set of noncoding transcripts is sampled. So a new total
RNA sample may contribute more novel junctions than a
new poly(A)-selected sample. The second, third, fourth,
and fifth largest contributions are from, respectively,
ENCODE [19], early studies of 69 lymphoblastoid cell
lines (LCLs) [20] and 41 Coriell cell lines [21], and the
Illumina Body Map 2.0 sequencing of 16 human tissue
types [6]. The GEUVADIS submission of 464 LCLs is on
only the 55th largest contributing date, 7 November 2012.
By this time, LCLs had already been well studied using
RNA-seq.

To determine whether the annotation of junctions is
being driven by RNA-seq experiments, we examined the
correlation between annotated junctions and the dis-
covery date of observed junctions over calendar time.
GENCODE released 18 versions between September 2009
and December 2012. Call a confidently called junction
“documented” if it appears in at least one GENCODE
release. Most documented junctions (80.0%) appear in
the earliest GENCODE release (Fig. 6a). Documented
junctions tend to have early discovery dates (Fig. 6b); in
fact, by late January 2010, 74.2% of documented junc-
tions were discovered, while 20.3% of confidently called
junctions were discovered (Fig. 6¢). This makes sense:
annotated junctions tend to be found in many sam-
ples, making it likelier that at least one sample has an
early submission date to BioSample. It is reasonable to
speculate that there is a correlation between junction
discovery date and GENCODE appearance date: per-
haps shortly after a junction is discovered, it appears in
GENCODE.

But inspection of the relationship between documenta-
tion date and discovery date suggests that only the first
GENCODE release introduced new junctions with signifi-
cantly earlier discovery dates than other releases (Fig. 6b).
The reason for this phenomenon is that junctions appear-
ing first in GENCODE's first release are present in many
more samples (median = 5825) than junctions appearing
first in other GENCODE releases (median = 602 samples)
(Fig. 6d).

Application to ALK isoform discovery
We have compared the variation in our database
intropolis to standard gene annotations.
intropolis associates each junction with the set of
samples where the junction was called and the number
of reads spanning the junction in that sample, enabling
biological investigators to gain new insights. Here, we
give a simple example application involving the anaplastic
lymphoma kinase (ALK) gene.
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ALK is frequently mutated or aberrantly expressed in
cancers including neuroblastoma [22-25] and non-small-
cell lung adenocarcinoma, where in particular it has been
found to participate in the fusion gene EML4-ALK [26].
Cancers with ALK abnormalities are often responsive to
treatment with ALK inhibitors such as crizotinib [27].
ALK is a good therapeutic target because it is rarely
expressed in normal adult tissue [28]. A novel ALK tran-
script variant present in about 11% of melanomas and
occasionally in other cancer subtypes was recently iden-
tified [29]. The transcript is described as resulting from
a de novo alternative transcription initiation (ATI) site
in ALK intron 19 and is dubbed ALKAT!. The kinase
activity of ALKATT is found to be suppressed by various
ALK inhibitors, and a patient with ALKA™-expressing
metastatic melanoma is shown to exhibit significant
tumor shrinkage after treatment with crizotinib.

To investigate the prevalence of ALKAT! on the SRA,
we searched for a deficit of junction expression in ALK
exons 1-19 compared to exons 20-29. We did this by
defining a junction inclusion ratio D measuring to what
degree junctions between exons 20-29 are expressed rel-
ative to junctions between exons 1-19 (see Methods).
This signature is a necessary but not sufficient condition
for exclusive ALKAT! expression: the expression signature
also arises in, for example, the EML4-ALK fusion gene.
Table 2 shows the ten top SRA samples we studied ranked

in order of decreasing D. As expected, four such sam-
ples are cancers, including uveal melanoma. Three of the
ten samples are from two melanocyte cell cultures stud-
ied as part of the ENCODE project, “NHEM_M2” and
“NHEM.f M2 Cap analysis of gene expression (CAGE)
data from ENCODE on the same cell lines shows a tran-
scription start site (TSS) within ALK intron 19, where
the TSS was localized for ALKAT! (Fig. 7). This raises
the possibility that the transcript is expressed in normal
melanocytes. While [29] found no ALKA™! expression in
1600 samples from 43 different normal tissues across the
GTEx project, including skin, it should be noted that
melanocytes comprise only up to 10% of skin cells. In
addition to melanocytes, the ALKA™! transcript may be
expressed in macrophages. We also observed that the
macrophage and macrophage+fibroblast samples from
Table 2 are part of the study [30] that additionally
sequenced the same samples exposed to tumor necrosis
factor (TNF). The two samples exposed to TNF appear to
have no expression of the ALK gene, suggesting that TNF
may participate in suppressing ALK gene expression. This
is supported by [31] in lymphoma.

Potential functional implications of previously
unannotated junctions

We lastly searched for evidence that unannotated and
partially annotated junctions were functionally relevant.
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Fig. 6 Displayed is a summary of the evolution of junctions from the GENCODE annotation of hg19 through its 18 releases compared to the
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In [32], Hupe et al. performed translating ribosome affin-
ity purification followed by RNA sequencing (TRAP-seq)
of brain and kidney samples from mouse. TRAP is a tech-
nology that isolates translating RNAs from intact tissues,
potentially from targeted cell types. Thus, we examined
the extent of our novel and partially annotated junctions
presumably being translated. We aligned the six kidney
and nine brain TRAP-seq samples from their study using
Rail-RNA and lifted the resulting exon-exon junction
coordinates over from mouse (mmI0) to human (hg19)
(see Methods). Of the 112,825 junctions found across the
TRAP-seq samples whose liftovers were also found in at
least one SRA sample, 86,954 (77.1%) were fully anno-
tated, 10,771 (9.5%) were exon skips, 12,410 (11.0%) had
alternative donors or acceptors, and 2690 (2.4%) were
novel. These data suggest that a significant fraction of
unannotated junctions are likely conserved across species:

more than 3% of unannotated junctions found in more
than 1000 SRA samples have analogs likely translated in
mouse. Furthermore, of the 84,185 junctions found across
the TRAP-seq samples whose liftovers were also found in
at least 1000 SRA samples, 81,482 (96.9%) were fully anno-
tated, 1089 (1.3%) were exon skips, 1464 (1.7%) had alter-
native donors or acceptors, and 150 (0.2%) were novel. So
there is significant evidence that many previously unanno-
tated or partially annotated junctions are translated into
proteins and therefore have potentially novel functional
relevance.

Conclusions

We have measured variation in junction expression across
thousands of RNA sequencing samples. Our analysis
demonstrates both the strengths and weaknesses of rely-
ing on current annotation for RNA-seq analysis. We have
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Table 2 Top ten samples across the 21,504 analyzed in this paper in order of descending junction inclusion ratio D, as defined in the

table
Junction Junction Total junction
) ’ - coverage Afor ALK coverage Bfor ALK coverage C _R.

Rank  Sample (i.e, run)  Project Description of sample exons 1-19 exons 20-29 201055 ALK D=(B-A)/C

1 SRR545713 SRP007461 NHEM.f_M2: normal human 0 139 139 1
melanocyte

1 SRR396804 SRP010166 ~ Non-small cell lung 0 172 172 1
adenocarcinoma

1 SRR620100 SRP017262 Leukemia 0 108 108 1

4 SRR1289650 SRP042031 Macrophage 1 85 86 0976

5 SRR1289651 SRP042031  Macrophage cultured 1 77 78 0974
with fibroblast

6 SRR545716 SRP007461 NHEM_M2: normal human 2 94 96 0.958
melanocyte

7 SRR628586 SRP017413 Uveal melanoma 12 1 123 0.805

8 DRR0O16705 DRP001919  H2228, an EML4-ALK-expressing 38 285 333 0.765
lung adenocarcinoma cell line

9 SRR545714 SRP007461 NHEM.f_M2: normal human 14 63 77 0.636
melanocyte

10 ERR532612 ERP006077 Prostate tumor 16 53 69 0.536

D essentially measures the difference in expression between junctions across ALK exons 1-19 and junctions across ALK exons 20-29. Values of D close to 1 may point toward
expression of ALKA”, a novel transcript variant of ALK recently identified in [29] across several cancers but not normal cells. Several cancer samples appear, but interestingly,
normal cell samples also appear, including melanocytes and macrophages

also used our population-level view of transcription to  junctions in human have translated analogs in mouse. We
understand the potential hazards of analyzing individual  have introduced a resource, intropolis, for others to
samples without a clear understanding of the background investigate junction variation, and we have provided an
variation in junction discovery levels. We have shown example of the utility of our resource in the case of ALK
evidence that some unannotated and partially annotated  gene expression.

Window Position Human Feb. 2009 (GRCh37/hg19) chr2:29,446,620-29,446,889 (270 bp)
Scale 100 bases} | hg19
chr2: 29,446,650| 29,446,700 29,446,750 29,446,800| 29,446,850
UCSC Genes (RefSeq, GenBank, CCDS, Rfam, tRNAs & Comparative Genomics)
ALK
ALK

RefSeq Genes

RefSeq Genes|

NHEM M2 whole cell polyA+ CAGE TSS HMM from ENCODE/RIKEN
1:20446803:-0.002089 €€ CE 6 COCceCeeeceieceeeceecs]
NHEM M2 whole cell polyA+ CAGE Minus start sites Rep 1 from ENCODE/RIKEN

NHEM cell pA+ - 2 NHEM M2 whole cell ioIiA+ CAGE Minus start sites Rep 2 from ENCODE/RIKEN
NHEM.f M2 whole cell polyA+ CAGE TSS HMM from ENCODE/RIKEN
':29446882:-:0.007862

NHEF cell pA+ - 1 NHEM.f M2 whole cell polyA+ CAGE Minus start sites Rep 1 from ENCODE/RIKEN

NHEF cell pA+ - 2 NHEM.f M2 whole cell ioIiA+ CAGE Minus start sites Rep 2 from ENCODE/RIKEN

Fig. 7 Displayed in the UCSC Genome Browser (http://genome.ucsc.edu) are tracks corresponding to CAGE data for normal human melanocyte cell
cultures NHEM_M2 and NHEM.f_M2 studied by ENCODE as well as TSSes predicted with hidden Markov models from pooled replicates in the ALK
gene for hg19. Observe that one model predicts a TSS in the region chr2:29,446,803-29,446,696 and the other predicts a TSS in the region
chr2:29,446,882-29,446,687, both of which contain the TSS region identified for ALKAT in [29], chr2:29,446,768-29,446,744
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While we observed many unannotated junctions shared
by thousands of RNA-seq samples from independent
investigations, some of these are likely false positive calls
due to incorrect placement of reads, sample-specific vari-
ation, and regions where the reference genome is incor-
rectly assembled. Rail-RNA [7] is designed to be parsi-
monious and conservative, and its junction calls agree
closely with those of other aligners (Fig. 1). When an
intropolis junction appears in many samples, our
evidence suggests that the call is reliable; e.g., 99.8% of
junctions found in at least 8000 samples from the SRA
are also found in gene annotation. That said, individual
novel junctions in intropolis should be used care-
fully and verified by other means, such as rtPCR, where
appropriate.

Our study also suggests that the rate at which evi-
dence for novel junctions has been added to the SRA has
tapered dramatically, even to the point of an asymptote
(Fig. 5). This has implications for projects and tools that
use gene annotations; if annotations have been incomplete
up to this point, now is perhaps an appropriate time to
update them to include splicing present in the now-stable
snapshot provided by the SRA.

As highlighted by Fig. 2a, b, considering only the varia-
tion contained in annotation may suffice if an investigator
is interested only in well-expressed transcript isoforms.
However, genes that are not generally well expressed and
nonetheless are present in a small but significant num-
ber of samples in the SRA are likelier to be incompletely
annotated. Quantification of poorly expressed genes may
thus be improved by incorporating information about
annotated and unannotated splicing events. Along related
lines, [33] develops a local splicing variation (LSV) formal-
ism that jointly analyzes multiple junctions from the same
gene using splicing graphs. The authors show a signifi-
cant impact of considering novel (unannotated) junctions
on their conclusions. Using this, or similar methodology,
on the intropolis database to go beyond the single-
junction analysis presented here may be an interesting
avenue for future research.

Our approach to synthesizing large public RNA-
sequencing datasets offers the opportunity to study
transcription more deeply than ever before. Further,
intropolis is a step toward establishing public
resources that facilitate rapidly querying existing RNA-
seq data.

Methods

Identifying annotated junctions

Following [34], we extracted junctions from transcripts
across all the latest “empirical” gene annotation tracks in
the UCSC Genome Browser [10] for 41g19 and /g38 except
GENCODE [2] and Ensembl [35]. (While GENCODE’s
tracks are also in the UCSC Genome Browser, we chose to
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download them from the GENCODE website http://www.
gencodegenes.org/releases/ instead: as of 24 January 2016,
GENCODE v22 was the latest GENCODE track listed,
but GENCODE v24 had already been released.) Empirical
tracks are based on alignments of, e.g., spliced cDNA and
protein sequences and are listed in Table 1. Annotation
tracks based on algorithmic predictions from genome
sequence (Augustus, GenelD, Genscan, N-SCAN, and
SGP) were excluded because they comprise transcripts
that were not directly observed in experiment. Ensembl
was excluded because GENCODE is already a merge
of Ensembl and HAVANA transcripts. After junction
coordinates were extracted, all #g38 coordinates were
lifted over to hgl9 where feasible, and the union of all
junctions was taken. Liftover of junctions was performed
using the UCSC 1iftOver utility [36] with command-
line parameters -ends 2 -minMatch=1.0. Since the
intropolis database was formed from alignments to
only the /gl19 chromosomal assembly, only those junc-
tions corresponding to the sgl9 chromosomal assembly
were kept to form a final list of annotated junctions.
Table 1 lists all gene annotations used to determine our set
of annotated junctions. We froze these annotations on 24
January 2016 and compressed them into an archive avail-
able at http://verve.webfactional.com/misc/jan_24_2016_
annotations.tar.gz. We ran the script https://github.com/
nellore/runs/blob/master/sra/rip_annotated_junctions.

py with PyPy v2.5.0 to extract junctions from these anno-
tations, performing coordinate conversions from /g38
to hgl9 where appropriate. The final list of junctions we
defined as “annotated” is available at https://github.com/
nellore/runs/blob/master/sra/annotated_junctions.tsv.gz.

Selecting human SRA samples

Samples were selected by querying the SRA meta-
data SQLite database of the R/Bioconductor package
SRAdb [9]. The database was downloaded from http://
gbnci.abcc.ncifcrf.gov/backup/SRAmetadb.sqlite.gz,

but this file is updated regularly. The version of
SRAmetadb.sglite.gz we used was updated on 1
April 2015, and it is available at ftp://ftp.ccb.jhu.edu/
pub/langmead/sra_junctions/SRAmetadb.sqlite.gz. We
selected all run_accessions from the sra table with
platform = ’'ILLUMINA’, 1library strategy
= 'RNA-Seq’, and taxon_id = 9606 (human) that
also had URLs for FASTQs on the European Bioinformat-
ics Institute server listed in the fastq table. Our query
may be reproduced with the script https://github.com/
nellore/runs/blob/master/sra/define_and_get_fields_
SRA.R compatible with R v3.1.0.

Alignment of human SRA samples with Rail-RNA
Rail-RNA v0.1.7b [7] was used for alignment. We aligned
to hgl9 rather than the more recent /g38 assembly
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because of /1g19’s continued prevalence, including use by
the GEUVADIS consortium [37] in its study of 462 lym-
phoblastoid cell line (LCL) samples as well as the GTEx
consortium [38] in its ongoing large-scale study of gene
expression across human tissues. We performed a single
pass of alignment; that is, reads were not realigned after
junctions were discovered to improve alignments of short-
anchored reads. See the “Junction detection” subsection
below. Alignment was performed in the cloud using
AWS Elastic MapReduce on Elastic Compute Cloud spot
instances, i.e., standardized units of computing capac-
ity. Spot instances permit bidding for computing to save
money, where bids that equal or exceed a market price are
fulfilled. However, if the market price drops below a bid,
instances could be lost, and a computational job could fail.
So saving money by bidding for spot instances comes with
risk, and rather than aligning all samples in one batch,
we distributed this risk by dividing alignment up into 43
batches of about 500 samples each. Analysis of each batch
was itself divided into (1) a preprocessing job flow, which
downloaded and preprocessed compressed FASTQs from
the European Bioinformatics Institute’s mirror of the SRA,
writing results to Amazon’s cloud storage service S3; and
(2) an alignment job flow, which was configured to write
only exon-exon junction coordinates and the number of
reads in each sample mapping across each detected junc-
tion. Each preprocessing job flow was run on a cluster of
21 c3.2xlarge instances, each with 8 Intel Xeon E5-2680
v2 (Ivy Bridge) processing cores and 15 GB of RAM. Each
alignment job flow was run on a cluster of 61 c3.8xlarge
instances, with 32 Intel Xeon E5-2680 v2 (Ivy Bridge) pro-
cessing cores and 60 GB of RAM. Summing the sizes of
the 43 compressed files output by the 43 runs gives 5.3
GB, about the size of an alignment BAM for a single RNA-
seq sample. Our alignment runs may be reproduced by
following the instructions at https://github.com/nellore/
runs/blob/master/sra/README.md.

Alignment cost

Alignment was performed over a period of eight
days. There were 21,506 samples spanning 62.2 trillion
nucleotides initially selected for alignment, but two sam-
ples (run accession numbers SRR651690 and DRR023700)
were not found on the European Bioinformatics Institute
server and were therefore excluded. We used the Ama-
zon Cost Explorer to compute total cost; summing across
eight days of activity, it came to US$15,393.69, or 72 cents
per sample. Costs divided up by Amazon service over the
period of computational activity may be viewed at https://
github.com/nellore/runs/blob/master/sra/hg19.costs.csv.

Junction detection
Rail-RNA’s junction detection method, discussed in detail
in the Rail-RNA study [7], begins by using Bowtie 2 [39]
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in local alignment mode (-local) to align each read
to the genome. If a read’s highest scoring alignment is
soft-clipped, the read is retained and used for junction dis-
covery. Otherwise, it is not used for junction discovery,
on the principle that the parsimonious explanation for the
read is that it is exonic. Reads with soft-clipping are then
divided into short, overlapping segments called readlets.
Readlets are aligned to the reference genome, and the
alignments are clustered into sets of mutually compatible
alignments. A gap between consecutively aligning readlets
in a cluster is called as an exon-exon junction if an appro-
priate two-base motif (e.g., GT and AG) appears on either
side of the corresponding intron in the reference. If multi-
ple clusters are tied for largest, indicating an ambiguously
mapped read, Rail-RNA refrains from using that read for
junction discovery.

Rail-RNA’s approach is both parsimonious, seeking to
explain alignments with as few junctions as possible,
and conservative, ignoring evidence from multi-mappers.
Accordingly, for this study, we value precision over recall
in order to make reliable statements about junctions
missed by annotation. The approach could underestimate
(1) the number of reads mapping across a junction in a
sample, and (2) the number of samples in which a given
junction is found. Since Rail-RNA excludes reads that
align to the genome end-to-end from its junction discov-
ery algorithm, it is also liable to miss junctions in a given
gene for which there is a processed pseudogene. Details on
Rail-RNA’s single-pass alignment algorithm may be found
in Sections S.18 and S.19 of the Rail-RNA study [7].

Reproducing main figures

All data underlying Figs. 1, 2, 3, 5, and 6 are repro-
ducible with the Python v2.7 script https://github.com/
nellore/runs/blob/master/sra/tables.py, which was run
using PyPy v2.5.0. These figures as well as Fig. 4 were
generated with the Mathematica v10.3.1 notebook; see
https://github.com/nellore/runs/blob/master/sra/preprint
_figures.nb. SEQC/MAQC-III consortium junction data
were downloaded from http://www.nature.com/nbt/
journal/v32/n9/extref/nbt.2957-S4.zip. BioSample sub-
mission dates for 77 SRA runs (0.3% of the samples we
studied) were not found on the server, so these runs were
excluded from the analyses involving junction discovery
dates presented in Figs. 5 and 6.

Analysis of TRAP-seq samples

All 15 mouse TRAP-seq samples were taken from the
study SRP031883; individual run accession numbers are
provided in the Rail-RNA manifest file https://github.
com/nellore/runs/blob/master/sra/translatome.manifest.
These samples were aligned to mm 10 on a local computer
cluster with Rail-RNA v0.2.3b, and junction output avail-
able at https://github.com/nellore/runs/blob/master/sra/
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mml0_translatome_junctions.tsv.gz may be recovered
with the script https://github.com/nellore/runs/blob/
master/sra/translatome.sh. Junctions were subsequently
lifted over to hgl9 with the UCSC liftOver utility
[36] using the command-line parameters -ends 2
-minmatch=1.0; that is, we lifted over only the two-
base motifs on either end of each intron and required
that all four motif bases had mappings in the liftover. The
script  https://github.com/nellore/runs/blob/master/sra/
translatome.py calls the 1iftOver utility and writes
lifted-over junctions and their presence in human anno-
tation. Lifted-over junctions may be downloaded at
https://github.com/nellore/runs/blob/master/sra/transla-
tome_mm10_to_hgl9_junctions.tsv.gz, where the format
of this file is described in translatome.py. Statis-
tics on the presence of lifted-over junctions in human
SRA samples reported in the main text were computed
by https://github.com/nellore/runs/blob/master/sra/get_
final_translatome_stats.sh.

Analysis of novel ALK isoform

The junction inclusion ratio D discussed in the main text
is defined as follows. Suppose the number of instances
where junctions are overlapped by reads (i.e., the junction
overlap count) in ALK exons 1-19 is A, and the junction
overlap count in ALK exons 20-29 is B. The normalized
difference D = (B — A)/(A + B) is close to 1 when exons
1-19 are unexpressed compared to exons 20-29, and close
to -1 when exons 20-29 are unexpressed compared to
exons 1-19.

The ALK analysis may be reproduced by first filter-
ing intropolis for junctions in ALK with the script
https://github.com/nellore/runs/blob/master/sra/alk.sh, and
then running the Mathematica 10.3.1 notebook https://
github.com/nellore/runs/blob/master/sra/alk.nb. ~ Sam-
ples found were checked manually for their descriptions
on the SRA at http://www.ncbi.nlm.nih.gov/sra, and the
UCSC Genome Browser screenshot of Fig. 7 was created
using the Genome Browser’s PDF/PS utility.

Principal component analysis

Restrict attention to unannotated junctions found in at
least 1000 of the 21,504 SRA samples we studied and fur-
ther to only those samples with at least 100,000 reads
each. Consider the number of reads c;; overlapping the ith
unannotated junction in the jth sample. We formed the
normalized log-counts x;; := logs (CC—’j + 1), where C; is
the number of mapped reads for sample j. We then used
the row-centered matrix A for PCA; that is, A;; = x;; — ;.
More specifically, we computed the cross product A’A
in a block-wise manner, and we subsequently performed
a singular value decomposition (SVD) of A’A to obtain
the right-singular vectors (principal components) with a
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randomized SVD algorithm [40]. Three correlates of PC1
are mentioned in the text. They are defined as

Sj = in,‘
i

¢ = logy (1 +p))
mj =log,(1+ C)),

where j indexes samples and p; is the read length in sample
j-

Scripts for reproducing the PCA analysis are available
in the sra subdirectory of https://github.com/nellore/
runs and described in https://github.com/nellore/runs/
blob/master/sra/README.md. The output of the analysis
sourced the Mathematica 10.3.1 notebook https://github.
com/nellore/runs/blob/master/sra/preprint_figures.nb
for generating Fig. 4.

Liftover of intropolis

http://intropolis.rail.bio also provides a version of
intropolis with junction coordinates lifted over from
hgl9 to hg38. This was accomplished with the UCSC
liftover utility [36] using command-line parameters
-ends 2 -minmatch=1.0; that is, we lifted over
only the two-base motifs on either end of each intron
and required that all four motif bases had mappings
in the liftover, as in the TRAP-seq analysis. The script
https://github.com/nellore/runs/blob/master/sra/liftover
_intropolis.py reproduces our liftover.
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