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Abstract

Understanding the link between non-coding sequence variants, identified in genome-wide association studies, and
the pathophysiology of complex diseases remains challenging due to a lack of annotations in non-coding regions.
To overcome this, we developed DIVAN, a novel feature selection and ensemble learning framework, which identifies
disease-specific risk variants by leveraging a comprehensive collection of genome-wide epigenomic profiles across cell
types and factors, along with other static genomic features. DIVAN accurately and robustly recognizes non-coding
disease-specific risk variants under multiple testing scenarios; among all the features, histone marks, especially those
marks associated with repressed chromatin, are often more informative than others.

Keywords: Non-coding variants, Disease-specific, Variant annotation, Epigenomics, Histone marks, Feature selection,
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Background
With the development of high-density genotyping ar-
rays, over the past ten years, investigators have con-
ducted thousands of genome-wide association studies
(GWAS), which have identified tens of thousands of loci
associated with a host of human traits and diseases.
There are now resources established to catalog a com-
prehensive collection of trait-associated single nucleotide
polymorphisms (SNPs). One example, the Association
Results Browser (ARB) (https://www.ncbi.nlm.nih.gov/
projects/gapplus/sgap_plus.htm, accessed May 28, 2016)
currently contains 44,124 SNP trait association results,
which correspond to 30,553 (autosomes plus chromo-
some X) unique trait-associated SNPs linked to 573
phenotypes. Overall, 90% of those SNPs are located in
non-coding regions (introns and intergenic regions),
which is consistent with the observation that over 70% of
the risk-association loci in the National Human Genome
Research Institute (NHGRI) GWAS catalog lack variants
that map to exons within their haplotype block [1].

Unlike coding variants, whose functional impact can
be gauged by checking whether the DNA sequence vari-
ant affects the translated protein sequence [2], there is
little we can say for non-coding variants, except about
evolutionary conservation at the loci. Therefore, one
needs information beyond the DNA sequence level to
identify variants that functionally link to a disease or
phenotype. Since non-coding SNPs are suspected of dis-
rupting normal regulatory control mechanisms of target
genes and we know that epigenetic information, such as
DNase hypersensitivity and histone modifications, is
closely related to regulatory function [3–5] and has been
linked to the enrichment of GWAS SNPs [6], epigenetics
data have thus been recognized as an important source
of functional annotation for non-coding variants [3].
Taking advantage of the powerful high-throughput

technologies, such as next-generation sequencing (NGS),
experimental assays have been developed to comprehen-
sively survey the entire genome for such regulatory events.
Major experiments in this category include coupling
chromatin immunoprecipitation and next-generation
sequencing (ChIP-seq) [7–9] to identify in vivo binding of
transcription factors (TFs) and histone marks; DNase I
hypersensitive sites sequencing (DNase-seq) [10, 11] and
formaldehyde-assisted isolation of regulatory elements
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sequencing (FAIRE-seq) [12], both for identifying open
chromatin regions. Given the importance of such regula-
tory information, large international consortia, like the
Encyclopedia of DNA Elements (ENCODE) [13] and the
Roadmap Epigenomics Mapping Consortium (REMC) [14]
have been formed to systematically conduct these experi-
ments to identify functional elements with regulatory activ-
ities across hundreds of cell lines/tissues. These datasets
offer a great opportunity to link sequence variants to regu-
latory elements, including TF binding, histone modifica-
tion, and open chromatin.
Taking advantage of these resources, researchers have

developed multiple computational approaches to identify
non-coding risk variations. Ritchie et al. developed a su-
pervised approach called Genome-Wide Annotation of
Variants (GWAVA) [15], which is a modified random
forest classifier [16], to distinguish disease-implicated
variants from benign variants using various static gen-
omic and epigenomic annotations, such as genic context,
phylogenetic conservation scores, TF binding sites, and
histone modifications. Kircher et al. developed a super-
vised learning approach named CADD [17], which is a
support vector machine classifier that integrates 63 an-
notations, including phylogenetic conservation scores,
genic context, and scaled p values derived from EN-
CODE, as features of the classifier. Lu et al. developed
an EM-based algorithm called GenoCanyon [18] that
models the non-coding variant using a two-component
mixture model (risk or benign). Recently, Ionita-Laza et
al. developed Eigen [19], another unsupervised approach
adopting a more sophisticated two-component mixture
model by imposing a predefined block-wise structure
among features in the model-fitting process.
A common feature of all the above methods is that

they are disease/phenotype neutral; that is, variants asso-
ciated with all diseases/phenotypes are included in the
training set. As an example, GWAVA uses all “regulatory
mutations” from the public release of the Human Gene
Mutation Database (HGMD) [20]. Eigen and CADD use
GWAS index SNPs found in the US National Human
Genome Research Institute’s GWAS catalog. GenoCan-
yon uses all the annotated variants from ClinVar [21].
However, it is likely that the biological functions under-
lying a risk variant for type 2 diabetes, a metabolic dis-
order, is different from that for Alzheimer’s disease, a
neurodegenerative disorder. Furthermore, the regula-
tory activities of TFs and histone marks are different in
different cell lines/tissues, sometimes dramatically, so it
is not clear which combination of cell line/tissue and
TFs/histone modifications could better distinguish risk
variants of a particular disease/phenotype from benign
variants. Therefore, we believe it is desirable and appro-
priate to develop a method that can identify disease-
specific risk variants. This is particularly important for

interpreting variants identified via personal genome se-
quencing (PGS), since most of the variants identified by
PGS are rare variants (minor allele frequency less than
1%), making their association with disease difficult to
measure using GWAS.
Here we present DIVAN (DIsease-specific Variant ANno-

tation), a novel method to identify disease-specific risk vari-
ants. DIVAN adopts an ensemble learning framework with
a feature selection step to annotate and prioritize non-
coding variants using a large collection of genomic and
epigenomic annotations. To evaluate DIVAN’s perform-
ance, we conduct comprehensive analyses using data from
two different databases. One study involves 45 different
diseases/phenotypes across 12 disease/phenotype classes
and the other includes 36 diseases/phenotypes.
In this work, we treat the trait-associated index SNPs

identified by GWAS and reported in the ARB as surro-
gates for the functional SNPs. This is because validated
or annotated bona fide functional SNPs are too rare for
most diseases/phenotypes to form a meaningful training
set. Furthermore, the belief is that real functional vari-
ants are enriched among GWAS index SNPs than ran-
dom background SNPs.

Results
Overview of the DIVAN approach
The main challenge to disease-specific variant annotation is
that the size of the training set is often small as the disease-
specific risk variants identified by GWAS with high confi-
dence (stringent p values) is often very limited as the me-
dian of trait-SNP associations is only 8 for the 573 traits in
the ARB. On the other hand, to improve predictive per-
formance, we attempt to include as many genome-wide
genomic and epigenomic features as possible, often thou-
sands of them (made possible given the abundant TFs/his-
tone modifications across many cell lines/tissues), resulting
in a typical “large p, small n” problem [22]. Thus, simply fit-
ting the predictive model with all features would easily
cause over-fitting. To accommodate as many features as
possible while avoiding over-fitting, we employ two import-
ant machine learning strategies in DIVAN: feature selection
and ensemble learning [23]. Feature selection is used to se-
lect the informative set of features that contribute most to
the predictive performance and ensemble learning enables
better predictive performance by creating a balanced risk/
benign variant set in each base learner. The entire proced-
ure of DIVAN is illustrated in Fig. 1.

Diseases studied
We conduct extensive real data analyses to evaluate the
performance of DIVAN in detecting disease-specific risk
variants. Out of the total of 573 diseases/traits found in
ARB, 45 of them, spanning 12 disease classes, contain at
least 50 reported disease-SNP associations. These diseases
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are included in our study. A complete list of the diseases/
phenotypes along with the number of associated risk vari-
ants are summarized in Additional file 1: Table S1.

Features considered
As shown in Table 1, we use 1806 epigenomic features
in this study, including features related to histone modi-
fication (1002), TF binding (571), open chromatin (184),
and RNA Pol II/III binding (49), spanning 261 cell lines.
Features are represented by read counts in the neighbor-
hoods of each variant and reads from biological repli-
cates (same factor and same cell line) are further
merged. More detailed descriptions of these features can
be found in the “Methods” section.

Characteristics of epigenomic profiles around risk variants
Open chromatin regions marked by selected histone marks
or DNA hypersensitivity are known to harbor GWAS risk
variants [14]. For demonstration purposes, we present the
sequencing read abundance pattern of selected epigenomic
marks in the neighborhoods of a type 1 diabetes-associated
risk variant (rs3024505) and a benign variant (rs114490664)
on chromosome 1 (Fig. 2a). One can see that the neighbor-
hoods of risk variant rs3024505 are enriched in the active
chromatin marks, H3K27ac and H3K4me1, as well as an
open chromatin regions defined by DNase-seq and FAIRE-
seq in the CD14 or K562 cell line. In contrast, repressive
chromatin marks, such as H3K9me3 and H3K27me3 in the
CD14 cell line, are depleted around risk variant rs3024505
versus benign variant rs114490664.
We further investigate whether some epigenomic fea-

tures differ in terms of the distribution of neighborhood
read counts between risk variants and benign ones. Those
epigenomic features showing a significant distribution
difference are considered informative features. As an ex-
ample, FAIRE-seq in the K562 cell line shows significant
read enrichment (t-test statistics 6.03, p value < 10–8)
around risk variants associated with type 1 diabetes com-
pared to benign ones, while H3K9me3 in the CD14 cell
line shows significant read depletion around risk variants
(t-test statistics –6.65, p value < 10–10) (Fig. 2b).
For illustration purposes, Fig. 2c shows 200 epige-

nomic profiles represented by read counts in the neigh-
borhoods of 147 risk variants associated with type 1
diabetes and 147 randomly selected benign variants. The

Fig. 1 Flow chart for the DIVAN approach

Table 1 Summary of feature categories in DIVAN

Data source Cell lines Factors Features

REMC DNase 73 - 73

REMC Histone 109 31 735

ENCODE DNase 80 - 80

ENCODE FAIRE 31 - 31

ENCODE TF(HAIB) 19 76 292

ENCODE TF(SYDH) 31 100 279

ENCODE Histone 18 42 267

ENCODE RNA Polymerase 31 2 49

Total 261a 217a 1806
aThe same cell lines or factors may appear in multiple sources
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top 100 features that are mostly enriched in risk variants
compared to benign ones and the bottom 100 features
that are mostly depleted in risk variants. Clearly, there
exist different enrichment patterns for the two sets of
variants in these selected features.
For the informative features with p values of t-test below

0.09 (0.09 is the selected p value threshold for type 1
diabetes using the method described in the “Methods”
section), we find that more features associated with open
chromatin or TF binding show enrichment around risk
variants, while more features associated with histone mod-
ifications show depletion around risk variants (Fig. 2d). As
type 1 diabetes is an immune-related disease, it is interest-
ing to observe that all eight features associated with open
chromatin in the cluster of differentiation (CD) cell line
show enrichment in risk variants, while 14 features associ-
ated with H3K9me3 in the CD cell line show depletion.

Performance evaluation
To evaluate the performance of DIVAN, we compare
DIVAN with four different risk variant annotation and
prioritization methods: GWAVA, CADD, Eigen, and
GenoCanyon.

Disease-specific variant prioritization evaluation using
cross-validation
Fivefold cross-validation is used to evaluate the predictive
performance of different methods, and results are pre-
sented in the form of receiver operator characteristics
(ROC) curves with corresponding area under the curve
(AUC) values. For demonstration purposes, we present
here results from four diseases: carotid artery disease
(cardiovascular disease), macular degeneration (eye dis-
ease), ulcerative colitis (digestive system disease/im-
mune disease), and multiple sclerosis (immune disease)
in Fig. 3a. Additional file 2: Figure S1 shows the corre-
sponding precision recall curves for the four diseases.
The remaining 41 ROC curves are presented in Add-
itional file 2: Figure S2. Overall, DIVAN achieves the
best predictive performance among all methods, with
AUC values in the range of 0.65–0.88 (median 0.74),

followed by GWAVA and GenoCanyon. For a comprehen-
sive comparison, we present the AUC values of all
methods compared across 45 diseases in a heatmap
(Fig. 4a). The AUC values are included in Additional
file 1: Table S2 and the average Matthews correlation
coefficient (MCC) values of different methods across 45
diseases are shown in Additional file 1: Table S3. More-
over, we find DIVAN performs the best among
immune-related diseases, followed by multiple eye dis-
eases and urogenital disorders. On the other hand,
identifying risk variants associated with mental disor-
ders and cardiovascular diseases seems more challen-
ging for DIVAN (Fig. 4b).

Disease specificity of variant annotation
A key feature of DIVAN lies on its disease-specificity,
which means the predictive model is trained disease by
disease using annotated disease-specific variants. To jus-
tify the necessity of the disease-specific assumption, we
conduct an experiment in which a model trained using
variants from one disease is subsequently applied to clas-
sify variants annotated for a different disease. In the ex-
periment, we use four diseases from distinct disease
classes: carotid artery disease (cardiovascular disease),
macular degeneration (eye disease), Alzheimer’s disease
(mental disease), and multiple sclerosis (immune disease).
For the same disease training and testing, we report the
AUC values of fivefold cross-validation. As expected, we
find decreased AUC values when a model trained in one
disease is applied to a different disease (Additional file 2:
Figure S3A, B), which confirms the advantage of using the
disease-specific model adopted by DIVAN.

Effectiveness of feature selection and ensemble learning
To demonstrate the effectiveness of adopting the feature
selection and ensemble learning strategies, we conduct a
performance comparison using four different settings:
baseline (no feature selection, no ensemble learning),
feature selection only, ensemble learning only, and feature
selection combined with ensemble learning. Again, we use
the four aforementioned diseases as representatives and

(See figure on previous page.)
Fig. 2 Epigenomic profiles of risk variants and benign variants. a Epigenomic profiles of active chromatin marks, H3K27ac and H3K4me1,
repressive chromatin marks, H3K9me3 and H3K27me3, open chromatin regions in the CD14 and K562 cell lines in the neighborhoods of a risk
variant, rs3024505 (chr1:206939904), associated with type 1 diabetes, and a benign variant, rs114490664 (chr1:968345). b Distribution of read
counts for FAIRE-seq in the K562 cell line across 147 risk variants associated with type 1 diabetes and corresponding benign variants; distribution
of read counts of H3K9me3 ChIP-seq in the CD14 cell line across 147 risk variants associated with type 1 diabetes and corresponding benign variants.
c Heatmap of standardized read counts of top 100 epigenomic features and bottom 100 epigenomic features across 147 risk variants associated with
type 1 diabetes and 147 corresponding benign risk variants. Epigenomic features are ranked by the t-statistics from the most enriched to the most
depleted in risk variants compared to benign variants. Read counts are standardized by subtracting the average of read counts of each feature and
divided by the standard deviation of read counts of each feature. d Distribution of t-statistics for three types of epigenomic features: TF binding,
histone modification, and open chromatin. Within the informative features, 33 informative open chromatin-associated features are enriched while 17
informative open chromatin-associated features are depleted; 96 TF-associated informative features are enriched while 26 TF-associated informative
features are depleted; 145 informative histone-associated features are enriched while 187 informative histone-associated features are depleted
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fivefold cross-validation to evaluate the predictive per-
formance and results are presented in the form of ROC
curves with corresponding AUC values (Fig. 3b), as well as
precision recall curves (Additional file 2: Figure S4). The
results confirm that feature selection combined with ensem-
ble learning achieves the best performance. Moreover, either
feature selection or ensemble learning alone improves the
predictive performance compared to the baseline.

Contribution of different feature groups
Since most epigenomic features used in DIVAN come from
three groups—TF binding, histone modifications, as well as
open chromatin (DNase-seq and FAIRE-seq)—it would be
interesting to investigate which feature group contributes
relatively more to risk variant identification. In addition,
existing methods use called peaks from sequencing-based
assays to represent epigenomics features, which is a binary
indicator of whether a variant overlaps with any peak
(referred to as peak hereafter). Instead, by default DIVAN
uses read counts in the neighborhood of the variant as the
feature representation (referred to as read hereafter) for the
robustness of predictive performance when limited features
are available.
To compare performance with different feature groups

and different feature representations, we apply DIVAN to
the aforementioned four diseases in different settings. We
find that no matter whether peak or read is used, using all
feature groups achieves the best performance, as expected;
and using features related to histone modifications alone
could achieve better predictive performance than any
other feature group. However, the contribution of each
feature group when using peak and read differs slightly
(Additional file 2: Figure S5A, B). Specifically, using fea-
tures related to histone modifications alone achieves com-
parable predictive performance no matter whether peak
or read is used, whereas using read shows much better
performance than using peak as the feature representation
for TF binding and open chromatin. A possible explan-
ation is that the continuous read counts are more sensitive
than peak overlap in detecting subtle differences between
risk and benign variants, especially when genome-wide
coverage of the feature is relatively sparse, such as TF
binding or open chromatin.

Disease-class variant prioritization
Diseases/phenotypes in the same disease/phenotype class
are believed to be likely more phenotypically related to
each other and we want to investigate the predictive

performance when including risk variants from diseases/
phenotypes that belong to the same class into the training
set. This strategy is called disease-class specificity, which
is an extension of the disease-specificity strategy adopted
so far. Because only a handful of risk variants have been
identified by GWAS for most of the diseases/phenotypes,
this strategy is rather attractive since it allows the critically
needed boost to the training set when only a few variants
have been identified.
To demonstrate the utility of this assumption, we per-

form a “leave-one-disease-out” testing approach; that is,
we build the model using known risk variants of all but
one disease within the disease class and apply the model
to identify risk variants for the omitted disease. To il-
lustrate the performance of this strategy, we take five
immune diseases reported in ARB, including rheuma-
toid arthritis, asthma, type 1 diabetes mellitus, systemic
lupus erythematosus, and multiple sclerosis, as exam-
ples. We observe promising predictive performance
since all AUC values are above 0.8, except for asthma
(Additional file 2: Figure S6).

Applying DIVAN to disease-specific variants in the GRASP
database
To further evaluate the performance of DIVAN, we take
on a different testing set using risk variants in the
GRASP database [24], which includes around 8.87 mil-
lion SNPs identified from 2082 GWAS (accessed Mar
30, 2016). The large size of the database is mainly due to
the fact that a less stringent p value threshold (0.05) is
used for risk SNP inclusion. For the testing set, we are
able to match 36 out of 45 ARB diseases in GRASP; for
each disease, we only keep risk variants in non-coding
regions with a p value less than 10–4 and further exclude
risk variants collected in ARB for the same disease/
phenotype; we further remove duplicated variants (the
same SNP being reported multiples times from different
platforms or different studies) in GRASP.
The corresponding benign variants are selected by

randomly sampling ten times the number of risk variants
of each disease from the catalog of the 1000 Genomes
Project, excluding all GRASP variants.
For each of the 36 diseases, we use the same set of risk

variants in ARB as the training set and the risk variants in
GRASP but not in ARB as the testing set. The number of
training and testing variants for the 36 diseases are sum-
marized in Additional file 1: Table S1. To avoid possible
bias due to sampling variability, for each disease, we repeat

(See figure on previous page.)
Fig. 3 Predictive performance of fivefold cross-validation on four diseases: carotid artery disease, macular degeneration, ulcerative colitis, and multiple
sclerosis. a ROC curves comparing the predictive performance among DIVAN and CADD, GWAVA, Eigen, Eigen-PC, and GenoCanyon for the four diseases. b
ROC curves showing the effectiveness of feature selection and ensemble method by comparing feature selection and ensemble combined, feature selection
only, ensemble only, and the baseline case: neither feature selection nor ensemble
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the whole procedure ten times with a different set of be-
nign variants (by random sampling) each time and calcu-
late the average AUC values. For illustration purposes, we
compare the AUC values of different methods for the four
representative diseases (Fig. 5a). DIVAN shows the highest
AUC values once again. For an overview, we present the
average AUC values of different methods across all 36 dis-
eases in a heatmap (Fig. 5b) and in Additional file 1: Table
S4, and the average MCC values of different methods
across 36 diseases are shown in Additional file 1: Table S5.
Overall, DIVAN shows the best performance as it achieves
the highest AUC values in 27 out of 36 diseases and is
close to the best in the remaining nine diseases. GWAVA
has the second-best predictive performance for obtaining
the highest AUC values in four diseases, followed by Gen-
oCanyon, with the highest AUC values in three diseases.
For AUC values achieved by DIVAN, we find it performs
the best for immune-related diseases, which is consistent
with the findings from the 45 ARB diseases using fivefold
cross-validation.

Applying DIVAN to regulatory variants in the HGMD
database
So far the risk variants we use are collected from ARB
and GRASP databases where the variants are disease-
implicated by GWAS. It is also of great interest to test
variants from other sources. There are well-known data-
bases available that contain curated variants, which are
often carefully selected by experts. For example, variants
with pathogenic or non-pathogenic effects in ClinVar
are collected from literature evaluation, clinical testing
and research, and reviewed by different expert groups.
Mutations in HGMD are collected from the literature.
Unfortunately, among the collected 194 non-coding
ClinVar variants used by GWAVA, none of them are as-
sociated with any of the 45 diseases in ARB used in the
training set. This might be attributed to the fact that the
majority of the variants in ClinVar are either coding var-
iants or associated with Mendelian diseases. Because
DIVAN is disease-specific and requires training and test-
ing set from the same disease, we choose not to test
DIVAN on ClinVar variants.
For HGMD, we collect 1614 disease-associated regula-

tory variants used by GWAVA. In order to find out which
disease is associated with each variant, we manually query
each of the 45 diseases on HGMD website to retrieve all
regulatory variants in HGMD that are associated with any
of the 45 diseases. By looking for the overlap between the

two sets of variants, we identify 117 unique autosomal
variants (excluding sex chromosomes and mitochondria)
associated with at least one of the 45 diseases.
Among these 117 variants, very few of them (less than

15) map to any one of the 45 diseases individually, which is
not enough to get meaningful comparison results for a
disease-specific study. Fortunately, we find that there are
34 variants associated with at least one disease in the
immune disease class including Asthma, Behcet syndrome,
Ulcerative colitis, Crohn’s disease, Inflammatory bowel
diseases, and Systemic lupus erythematosus. Hence, we
group the 34 variants associated with diseases in the im-
mune disease class as an independent testing set, conduct
a disease class-specific analysis using DIVAN, and compare
the predictive performance with other methods. The corre-
sponding benign variants of the 34 immune disease-
associated variants in the testing set are chosen in the same
way as for the GRASP testing set. For this experiment, we
do not include GWAVA since it uses the 1614 HGMD
variants as its training set. For DIVAN, we train a disease
class-specific model by pooling all the variants in ARB that
are associated with any of the aforementioned six immune-
related diseases together in the training set. For other
methods that are not disease-specific, we use their pre-
computed scores. The AUC values are summarized in
Additional file 1: Table S6. There we see that DIVAN virtu-
ally tied with GenoCanyon and is better than CADD,
Eigen, and EigenPC. The results demonstrate DIVAN’s ro-
bust performance on different independent testing sets.

Applying DIVAN on synonymous mutations
Though DIVAN is designed for the identification of non-
coding variants, it is interesting to see how DIVAN per-
forms on coding variants especially synonymous mutations.
We collect synonymous mutations from the online data-

base dbDSM [25], which is a manually curated database
that collects 1936 synonymous mutations-disease associ-
ation entries. In total, we have 1109 autosomal synonymous
mutations (excluding sex chromosomes and mitochondria).
We find seven diseases associated with more than 20
synonymous mutations in dbDSM are also among 45
diseases in ARB; hence, we use the seven diseases for per-
formance comparison. The corresponding benign variants
for each disease in the testing set are chosen in the same
way as for GRASP testing set. The AUC values are reported
in Additional file 1: Table S7.
The results show that overall GWAVA performs the

best while DIVAN is on par with the other methods,

(See figure on previous page.)
Fig. 4 Predictive performance of fivefold cross-validation across 45 diseases in 12 disease classes. a Heatmap of fivefold cross-validation AUC
values for predictive performance comparison among DIVAN and CADD, GWAVA, Eigen, Eigen-PC, and GenoCanyon across 45 diseases in 12
disease classes. b Bar charts of fivefold cross-validation AUC values of DIVAN across 45 diseases in 12 disease classes ranked in decreasing order.
Disease classes are color-coded
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suggesting DIVAN is not as good in predicting coding
variants as it predicts non-coding variants. This is not
surprising since all the features and the training procedure
used by DIVAN are optimized for prioritizing non-coding
variants. On the other hand, GWAVA uses HGMD regula-
tory mutations as the training set in which 75% of them lies
within a 2 kb window around transcription start site (TSS),
indicating the majority of HGMD mutations is close to the
coding regions. That might explain the better performance
of GWAVA. In the future, we plan to extend DIVAN’s func-
tionality to identify disease-specific coding variants, by per-
haps adding coding-region specific features.

Exploration and interpretation of features
Variability of factors across cell types
A key merit of DIVAN is its ability to consider a large
number of cell type-specific epigenomic profiles as fea-
tures to accommodate the cell type-specific nature of
the epigenome, which aims to include as many features
as possible, without any screening upfront, and let the
algorithm select informative features automatically. For
some existing methods, such as GenoCanyon and Eigen,
epigenomic profiles of the same factor across different
cell types are collapsed to simplify the model or speed
up computation. That way, the plastic epigenomic pro-
files across cell types are ignored.
To show the variability of epigenomic factors across

cell types and the dynamic profiles of epigenomic fac-
tors across diseases, we obtain the p values from t-
tests conducted between the risk and benign variants
across 1806 epigenomic features for the four afore-
mentioned diseases. We sort the factors profiled in
more than ten cell types by the number of features
remaining in the informative feature set and plot the
log-transformed p values (Fig. 6a). One can see that
there is considerable variability of the p values for the
same factor across different cell types, which confirms
the necessity of considering the combination of factors
and cell types as the epigenomic features. Moreover,
the rank of factors varies from disease to disease, fur-
ther reflecting the variable nature of these factors.
Overall, we see that the top-ranked factors for the four

diseases are two repressive chromatin marks, H3K9me3
and H3K27me3, followed by open chromatin, and two
active chromatin marks, H3K4me1 and H3K36me3. The
top factor is H3K9me3 for carotid artery disease and
macular degeneration and H3K27me3 for ulcerative

colitis and multiple sclerosis. Both factors are repressive
chromatin marks. JunD, Pol2, and p300 also frequently
rank high. On the other hand, active chromatin marks,
e.g., H3K4me3 and H3K27ac, do not always appear
among the top factors. Moreover, it is interesting to see
that EZH2 and H3K27me3 both top rank in multiple
sclerosis and ulcerative colitis as EZH2 represses gene
transcription by mediating H3K27me3 methylation [26].

Informative features across different diseases
As the informative feature set helps improve the predictive
performance, we further investigate the number of inform-
ative features selected within three feature groups: histone
modification, TF binding, and open chromatin (Fig. 6b).
Overall, the total numbers of informative features selected
vary from disease to disease, ranging from 664 (body
weight) to 34 (inflammation) if read is used as the feature,
while the overall numbers of informative features decrease,
ranging from 549 (type 2 diabetes) to 41 (obesity) if peak is
used as the feature (Additional file 2: Figure S7).
We also observe that the histone modifications fea-

ture group contributes more to informative features
than the TF binding or open chromatin feature group.
Moreover, more TF-associated and fewer histone-
associated features show up in the informative feature
set when read rather than peak is used as the feature
(Fig. 6b and Additional file 2: Figure S7).

Interpretation of top features
Although the main goal of DIVAN is to distinguish
disease-specific risk variants from the vast pool of be-
nign ones, we demonstrate that the feature selection step
could also help identify top features that are biologically
meaningful.
To illustrate, we present some of the top features identi-

fied from selected diseases and the observed enrichment/
depletion patterns are readily interpretable (Fig. 6c). For
example, we find that H3K9me3 in CD cells, known to be
on the cell lineage that leads to immune-related disease, is
depleted around the risk variants associated with type 1
diabetes. Interestingly, H3K9me3 in CD cells is also
depleted around risk variants associated with another
immune-related disease: inflammatory bowel disease.
H3K27me3, another repressive chromatin mark, in pancre-
atic islet cells is found to be depleted around risk variants
associated with type 2 diabetes, a disease caused by pancre-
atic islet dysfunction. For bipolar disorder, we find open

(See figure on previous page.)
Fig. 5 Predictive performance on 36 diseases in GRASP database. a Bar charts of AUC values among DIVAN and CADD, GWAVA, Eigen, Eigen-PC,
and GenoCanyon for four diseases: hypertension, macular degeneration, ulcerative colitis, and multiple sclerosis. The bar charts are sorted by the
mean AUC values and the error bar describes the standard deviation. The training set is risk variants collected from the ARB and the testing set is
the risk variants collected from GRASP. b Heatmap of mean AUC values for predictive performance comparison among DIVAN and CADD, GWAVA,
Eigen, Eigen-PC, and GenoCanyon across 36 diseases investigated
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chromatin regions in H1 cells measured by FAIRE-seq are
enriched, while H3K9me3 in the brain germinal matrix,
iPS, and neurosphere cultured cells is depleted in the neigh-
borhoods of their risk variants. Risk variants associated with
another mental disorder, Alzheimer’s disease, are also de-
pleted of H3K9me3 in fetal brain, iPS, and brain anterior
caudate cells, but enriched of open chromatin regions in
H1 cells measured by FAIRE-seq. Risk variants associated
with obesity are depleted of H3K9me3 in fetal intestine and
fetal adrenal gland cells. H3K9me3 in neurosphere cultured
cells and H3K4ac in H1-derived mesenchymal stem cells
are depleted around risk variants associated with neo-
plasms. For the above diseases investigated, we find that
H3K9me3 consistently shows depletion, while open chro-
matin consistently shows enrichment around risk variants.

H3K9me3 is the most informative factor for risk variant
identification across diseases/phenotypes
In addition to identify informative epigenomic factors
for differentiating risk variants from benign variants in
each individual disease, we also want to identify the “fre-
quent fliers,” i.e., the epigenomic factors that contribute
to a wide spectrum of diseases. To find out, for each dis-
ease, we check which factors are over-represented in the
list of identified informative features using a binomial
test. Let ni represent the number of informative features
in disease i; N the total number of features in this study
(1806); mij represent the number of features associated
with factor j in disease i; kij represent the number of in-
formative features associated with factor j in disease i.
The p value for factor j over-represented in disease i
could be calculated as:

p x > kijjni; pij
� �

¼
Xni

x¼kijþ1

ni
x

� �
p̂ij

x
1−p̂ij

� �ni−x

p̂ij ¼
ni
N

Any factor with p value less than the Bonferroni cor-
rected threshold (0.05/45) is said to be over-represented
in the disease i. At the end, for each factor, we tally the
number of times it is over-represented across all 45
diseases (Fig. 7a). We find that H3K9me3 and open
chromatin are the top informative factors; H3K9me3 is
over-represented in 34 out of 45 diseases, while open
chromatin is over-represented in 25 out of 45 diseases.

Consistent with previous findings that histone marks
are the most frequent features to be ranked at the top
among the three types of epigenomic features (Fig. 6b),
Fig. 7a shows that histone marks are associated with
more diseases than TFs overall; however, to our surprise,
among the histone marks that are most significant, most
of them are associated with repressive chromatin, such
as H3K9me3 and H3K27me3, and H3K9me3 in particu-
lar. We also confirm the well-documented fact that open
chromatin marked by DNase-seq and FAIRE-seq is
enriched around risk variants [27].
To further illustrate the dominance of H3K9me3 com-

pared to other histone marks among top features, we plot
the enrichment of different histone marks sorted by p
values for type 1 diabetes (Fig. 7b). H3K9me3 is the most
over-represented factor among the informative features,
associated with 40% of the top 100 features, followed by
H3K27me3 (29%) and H3K4me1 (4%). Other marks
associated with active chromatin, H3K4me3, H3K27ac, and
H3K9ac, are not significantly enriched among the top
features.
It has been shown that genomic regions marked by ac-

tive chromatin, such as H3K4me1, are enriched near
GWAS-identified risk variants [14, 28], so we are inter-
ested to see whether regions marked by repressive chro-
matin, such as H3K9me3, are depleted by risk variants.
To do this, we collect the called peaks of H3K9me3 and
H3K4me1 in the CD14 cell line, known to be from the
cell lineage that leads to immune-related diseases, and
calculate the enrichment of risk variants associated with
each of the 45 diseases in those peaks using traseR [28],
an R package that is capable of searching and ranking
diseases/phenotypes for a given set of genomic regions
based on the enrichment level of trait-associated SNPs.
We plot the p values on the logarithm scale of the en-
richment test across 11 immune diseases (Fig. 7c). We
find that none of the immune-related diseases are statis-
tically significantly enriched in H3K9me3, while all but
asthma and inflammation are statistically significantly
enriched in H3K4me1.

Additional tests on more settings of DIVAN
For a complex machine learning problem like the one
we are tackling, different settings in training and testing
might cause overestimate or underestimate of the actual
performance. Here we carry out additional tests under

(See figure on previous page.)
Fig. 6 Exploration and interpretation of epigenomic features. a Violin plot for the distribution of –log10 p values of the top ten factors (TF
binding, histone modification, open chromatin, RNA polymerase) associated with more than ten epigenomic features for four diseases: carotid
artery disease, macular degeneration, ulcerative colitis, and multiple sclerosis. P values are calculated by t-test on the read counts in the neighborhoods
of the risk variants and benign variants. b Number of informative features for three feature categories (TF binding, histone modification, open chromatin)
for 45 diseases across 12 disease classes using read as the feature value. c Bar chart of –log10 p values for top-ranked features for selected diseases: type
1/type 2 diabetes, bipolar disorder, obesity, neuroblastoma, Alzheimer’s disease, and inflammatory bowel disease
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different experimental settings to investigate the robust-
ness of DIVAN’s performance.

Different sources of benign variants in the training set
Currently, the set of benign variants are chosen from the
1000 Genomes (phase I). Since the risk variants are
mostly GWAS SNPs, to avoid picking up features that
might be a by-product of SNP design and selection, we
instead choose benign variants from GWAS SNPs as
well, found on one of the latest GWAS genotyping
array—Affymetrix Genome-Wide Human SNP array 6.0.
To be specific, we collect 900,611 non-coding GWAS
SNPs out of 934,968 GWAS SNPs from the SNP anno-
tation file to construct the set of benign variants for
each disease. Using the new set of benign variants, we
retrain the disease-specific model for the 45 diseases in
ARB, obtain the CV-AUC values (Additional file 1:
Table S8) for the fivefold cross-validation and the pre-
dicted AUC values for the 36 diseases in GRASP in the
independent test (Additional file 1: Table S9 and S10).
For the 45 diseases found in ARB, the Pearson correl-

ation coefficient between the two sets of AUC values is
0.979 (p value < 2.2e-16). The average CV-AUC values
for the 45 diseases changes from 0.745 (sd: 0.060) to
0.742 (sd: 0.061). For the 36 diseases found in GRASP,
the Pearson correlation coefficient between the two sets
of AUC values is 0.950 (p value < 2.2e-16). The average
predicted AUC values for the 36 diseases changes from
0.661 (sd: 0.055) to 0.658 (sd: 0.061). The results show
that the AUC values are similar either using SNPs from
the GWAS genotyping array or using SNPs 1000
Genomes to form the set of benign variants in the con-
struction of disease-specific model.

Different criteria of choosing benign variants in the
training set
By default, DIVAN uses distance to the nearest TSS as
the criterion to choose a set of benign variants such that
distances to the nearest TSS matched (have a similar
empirical distribution) with those of the risk variants.
The distance to TSS-matched criterion keeps the two
sets (risk and benign) on leveled grounds in their chro-
matin profiles because non-coding disease-associated
variants in ARB tend to locate close to TSS (mostly
within 200 kb, Additional file 2: Figure S8) and chroma-
tin landscape is quite different between promoter

regions and intergenic regions. The same criterion has
also been adopted by GWAVA.
We also adopt an alternative and perhaps more strin-

gent criterion to choose the set of benign variants in
the training set in which we require that all benign vari-
ants have to be located within 10 kb of a risk variant.
Here we use a slightly wider region than the 1 kb re-
gion used by GWAVA but narrower than the 100 kb re-
gion used by Eigen. This is because the histone mark
profiles, which DIVAN used predominantly, typically
extend to a few kbs.
We conduct another test using the new region-matched

benign set (denoted as region) and compare the results with
the results obtained earlier using the distance to the TSS-
matched benign set (denoted as TSS). We find average CV-
AUC values for the 45 diseases in ARB changes from 0.745
(sd: 0.060) to 0.680 (sd: 0.037) and the average AUC values
for the 36 diseases in GRASP changes from 0.661 (sd:
0.055) to 0.637 (sd: 0.043). The CV-AUC values are shown
in Additional file 1: Table S11. The decrease of predictive
performance using the region-matched benign set is con-
sistent with what is observed in GWAVA. Despite the slight
drop in performance when using the region-matched criter-
ion, DIVAN still maintains its lead over all the competitors
tested. In the independent test, among the 36 diseases in
GRASP, DIVAN is the best performer in 23 diseases,
followed by GWAVA (seven diseases), GenoCanyon (four
diseases), and Eigen (two diseases). The predicted AUC
values are shown in Additional file 1: Table S12 and S13.

Impact of nearby variants on cross-validation
In the cross-validating study described earlier, although
there is no overlap of variants between the training and
the testing sets, it is possible that a risk variant in the test-
ing set is located near a risk variant in the training set
which may potentially inflate the CV performance. In
order to eliminate such influence, before preforming CV,
we further remove risk variants that are too close to each
other and do the same thing for benign variants as well.
To be specific, we first sort all risk variants (or benign var-
iants) based on their genomic locations and only keep one
variant if multiple variants happen to be less than 10 kb
away. That way, we make sure that neither training folds
nor the testing fold contains risk variants (or benign vari-
ants) at the same or nearby location (10 kb). The updated
numbers of risk variants for the 45 diseases in ARB are
shown in Additional file 1: Table S1. The numbers of risk

(See figure on previous page.)
Fig. 7 Association between factors and diseases. a Number of diseases statistically significantly associated with different factors (TF binding,
histone modification, open chromatin, RNA polymerase). b Enrichment of different histone marks among top features for type1 diabetes.
c Enrichment of risk variants associated with immune disease in peaks of active chromatin mark H3K4me1 in the CD14 cell line and peaks of
repressive chromatin mark H3K9me3 in the CD14 cell line
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variants of the 45 diseases in ARB decrease around 16%
on average.
To evaluate the impact of this change, we conduct an

experiment using the new rule and compare the results
with those obtained before. We retrain all the disease-
specific models and calculate the CV-AUC values for the
45 diseases in ARB (Additional file 1: Table S14). We
find that using the new rule, the average AUC values for
the 45 diseases changes from 0.745 (sd: 0.060) to 0.736
(sd: 0.056) and the Pearson correlation coefficient be-
tween the two sets of CV-AUC values is 0.917 (p value
< 2.2e-16). In conclusion, we see little difference the new
rule has on the outcome of CV-AUC values. DIVAN still
outperforms all the competitors by a comfort margin.

Impact of nearby variants on independent test
For the independent test described earlier, although we
have excluded all ARB variants from the GRASP testing
set, it is possible that some variants in the GRASP testing
set are located near ARB variants used in the training set,
which may affect the independent test performance.
Therefore, to eliminate such influence, for each disease,
we further exclude risk variants in the GRASP testing set
that are close to risk variants found in the ARB training
set. The updated numbers of disease-associated SNPs for
the 36 diseases in GRASP can be found in Additional file
1: Table S1. The numbers of risk variants of 36 diseases in
GRASP decrease around 7% on average.
To be specific, for each disease, hypertension for ex-

ample, we exclude any hypertension-associated variants
in the GRASP testing set that fall within 10 kb of any
hypertension-associated variants found in the ARB train-
ing set. We then repeat the performance comparison ex-
periment using the newly reduced testing set. The
results are summarized in Additional file 1: Table S15.
The predicted AUC values are shown in Additional file 1:
Table S16. The average MCC values are shown in
Additional file 1: Table S17.
From Additional file 1: Table S15, we see that despite

slightly dampened performance, removing variants in the
testing set that are close to variants in the training set does
not change the fact that DIVAN significantly outperforms
all the other competing methods that have been tested.

Different size of benign set
Because there are much more benign variants than risk
variants, it is an interesting question that how many be-
nign variants should be included in the training set. In
the CV described earlier, we choose the size of the be-
nign variants to be ten times that of the risk variants.
Here we investigate whether increasing the size of the
benign set to 100 times of the risk set has any effect on
the predictive performance. We calculate Pearson correl-
ation coefficient between the two sets of CV-AUC values

obtained from the two settings. We also summarize the
mean and standard deviation of the CV-AUC values for
each setting in Additional file 1: Table S18. The CV-
AUC values are shown in Additional file 1: Table S19.
The predicted AUC values are shown in Additional file
1: Tables S20 and S21. Our result suggests that, overall,
increasing the size of the benign variant set when set up
the training model does not change much in terms of
the predictive performance in CV.
For the independent test, we also experiment with in-

creasing the number of benign variants from ten times
that of the risk variants to 100 times for each disease
and check whether the different level of imbalance in
the testing set has any effect on the prediction perform-
ance. The new predicted AUC values are shown in
Additional file 1: Tables S22 and S23, where we could
see that the AUC values remain stable on the 36 dis-
eases in GRASP. The Pearson correlation coefficient
between the two sets of 36 predicted AUC values is
0.999 (p value < 2.2e-16) when the number of benign
variants is ten and 100 times of risk variants, respectively.
Thus, we see that increasing the size of the benign vari-
ants has little effect on the predictive performance for the
independent test, which suggests that the performance of
DIVAN is not significantly affected with different level of
risk/benign imbalance.

Discussion
A key emphasis of DIVAN lies on disease specificity. We
believe this can be achieved by using variants that are
specific to that disease in the training set as opposed to
including all variants that have shown associations with
some diseases. Despite a small training set, we show that
advanced statistical learning techniques can help us
overcome this challenge and achieve better performance
in identifying variants specific to that disease. Unlike
existing approaches, DIVAN uses thousands of annota-
tions from various public resources, including DNase-
seq, FAIRE-seq, and TF/Histone ChIP-seq, across
different cell types. The more annotations collected, the
better the chance informative annotations will be dis-
covered, resulting in a better chance of discriminating
risk variants from benign ones. There is still room to
improve DIVAN further. Other types of genomic and
epigenomic features, including eQTL, DNA methyla-
tion, and pre-computed scores from GWAVA, CADD,
and GenoCanyon, will also be added into DIVAN. An-
other important regulatory mechanism through which
non-coding variants influence diseases is the disruption
of splice junction and splicing enhancer [29]. The mu-
tations effect on splice sites is similar to nonsense or
missense mutations. A myriad of cases about splice site
variants have been reported in the literature [30–34].
Because of this, we have decided to add a splicing-
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related feature, which is the distance to the splice sites
(586,795 such sites can be found in Ensemble [35] re-
lease 70), into the next release of DIVAN. The same
feature has been used in GWAVA.
Currently, to represent epigenomic features, existing

methods use binary indicators showing whether a ChIP-
seq peak overlaps with the variant. In DIVAN, we apply
an alternative method in which continuous ChIP-seq
read counts in the vicinity of the variant are used to rep-
resent epigenomic features. The advantage of using read
count rather than peak presence as the feature lies on
the former’s better sensitivity and ability to distinguish
risk variants from benign ones with a limited number of
epigenomic features and to detect significant differences
in both enrichment and depletion (Additional file 2:
Figure S9). Moreover, our analyses also show that using
read count as the feature results in more informative
features being included in the model, especially for fea-
tures associated with TF binding.
One of the key findings from this study is that histone

marks associated with repressive chromatin, in particular
H3K9me3, turns out to be an important feature for risk
variant identification. For most of the diseases, we find that
this particular repressive mark is often among the top-
ranked features, showing significant depletion around the
risk variants compared to benign ones. Such a finding is
consistent with what has been reported in the literature. In
a recent study, Pickrell found that repressed chromatin is
significantly depleted around SNPs associated with multiple
phenotypes [27]. Chen et al. found that the binding regions
of another repressive histone mark, H3K27me3, are signifi-
cantly less likely to overlap with risk SNP blocks of prostate
cancer [36]. Despite these findings, repressive chromatin
marks do not play an important role in existing methods
for risk variant annotation. For histone marks, almost all at-
tention has been focused on the enrichment of active chro-
matin marks. For example, the three histone marks used in
CADD and Eigen are H3K27ac, H3K4me1, and H3K4me3.
A primary reason why only active chromatin marks are
used is that it is easier to detect enrichment of a factor, but
not depletion when peak is used as the feature. In contrast,
using read around the variants as the feature, we are able to
detect enrichment as well as depletion.
It is worth clarifying that the risk variants considered

in this study are not necessarily “causal” variants since
in most cases, no evidence beyond significant associ-
ation p values derived from GWAS separates them
from the millions of variants found throughout the gen-
ome. It would be interesting to test DIVAN using func-
tionally validated variants as the training set. However,
the number of such variants is very limited and insuffi-
cient for study on individual diseases today.
A potential application of DIVAN is personal genome

sequencing interpretation. In the genome of an

individual patient, it is expected that many novel, rare,
and non-coding variants will be detected. Due to the
sample size limitation, little information can be learned
from GWASs for these rare variants. Alternatively, by
looking at the surrounding regions of such variants and
comparing to the genomic and epigenomic profiles of
GWAS-associated risk variants represented by DIVAN,
we can potentially gauge their impact on a particular dis-
ease. We have pre-computed DIVAN scores for every base
in the human genome, which we believe will be a great re-
source for annotating rare and non-coding variants that
would be identified in personal genome sequencing
studies.

Conclusion
In this work, we describe DIVAN, a feature selection-based
ensemble learning framework for identifying disease-
specific, non-coding risk variants. DIVAN performs favor-
ably when compared to existing state-of-the-art methods,
both supervised (CADD, GWAVA) and unsupervised
(GenoCanyon, Eigen), for detecting disease-specific, non-
coding risk variants. From a clinical perspective, it is of
great practical and conceptual value to evaluate the impact
of a variant on individual disease/phenotype. Because the
number of disease-implicated variants is far fewer than the
number of static genomic and epigenomic annotations for
most diseases, to avoid potential over-fitting in the high-
dimensional setting, we employ model selection to remove
non-informative features. Besides feature selection, the
ensemble method is adopted to improve the predictive
performance due to the nature of the imbalance between
risk variants and benign ones. This combination of feature
selection and ensemble method makes DIVAN more
powerful and robust.
Another major finding of the study is that the depletion

of H3K9me3, a histone mark associated with repressed
chromatin, is the most prominent hallmark around risk
variants. Overall, histone marks contribute more inform-
ative features in risk variant identification than transcription
factors and open chromatin in DIVAN. We believe the
above findings have profound implications for understand-
ing the mechanism behind the way non-coding variants
make their impact on diseases/phenotypes via epigenetic
modifications.

Methods
Software and data package availability
To maximize DIVAN’s utility, we pre-computed DIVAN
score for every base of the human genome (hg19), and for
each of the 45 diseases, using either the TSS-matched cri-
terion or the region-matched criterion. DIVAN offers two
options to query and retrieve these scores: by variant iden-
tifier (for known variants) or by genomic regions. For
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known variants, DIVAN allows the user to retrieve scores
for all known variants found in the Ensembl variation
database (release 70, including 49,999,357 variants), COS-
MIC database [37] (v78, including 3,153,949 variants by
excluding variants on mitochondrial DNA and variants
without genomic position), and 1000 Genome variants
(Phase I, including 17,076,840 variants). For genomic re-
gions, users can select either to retrieve scores from all
known variants within the genomic regions or obtain the
average base-level scores for each genomic region. Corres-
pondingly, DIVAN provides R scripts for both options.
The DIVAN software toolkit and the pre-computed scores
are freely available at https://sites.google.com/site/emory
divan/ under the GNU General Public License v3.

Data sources
Construction of disease-specific risk variants and benign
variants
The risk variants chosen from ARB include 28,713 unique
non-coding SNPs (12,159 intronic SNPs and 16,803 inter-
genic SNPs) spanning 555 diseases/phenotypes across 33
disease/phenotype classes. In the present study, to main-
tain enough risk variants in the training set, we chose 45
diseases/phenotypes spanning 12 disease/phenotype clas-
ses, with at least 50 disease-SNP associations. The 45 dis-
eases/phenotypes with the numbers of risk variants are
summarized in Additional file 1: Table S1.
To construct a set of benign variants for each disease/

phenotype, we apply the same strategy used in GWAVA by
sampling variants not reported to be disease-implicated
and by requiring the distances between these benign
variants and their nearest TSSs to have the same empirical
distribution as those risk variants. All benign variants are
sampled from the 1000 Genomes Project Phase I catalog
(with minor allele frequency higher than 5%), excluding all
variants found in the ARB. Similar to GWAVA, ten times
more benign variants than risk variants are selected for
each disease/phenotype.

Merge replicates
Most of the experiments in ENCODE and RMEC contain
biological replicates. To simplify the analysis, we merge
reads produced from replicated ChIP-seq experiments if
both the factor (TF/Histone) and cell line are the same;
reads from open chromatin experiments conducted on the
same cell line are also merged. Since all ENCODE/REMC
ChIP-seq experiments are performed with ChIP and
matched input samples, we calculate the normalized read
count by subtracting the number of input reads from the
ChIP reads after adjusting the sequencing depth. For open
chromatin experiments, DNase-seq and FAIRE-seq, we
use the ChIP reads directly as there is no matching input
sample. For pre-processed peak files of the same factor

and the same cell line, overlapped peaks are merged by
taking the union.

Annotation sources
Open chromatin ENCODE conducts two types of se-
quencing experiments to profile genome-wide open chro-
matin regions: DNase-seq and FAIRE-seq. We include both
in the feature collection for DIVAN. To be specific, for
mapped read files, we collect 230 DNase-seq datasets
(merged into 80 features) and 78 FAIRE–seq datasets
(merged into 31 features) from ENCODE and 350 DNase-
seq datasets (merged into 73 features) from REMC; for cor-
responding pre-processed peak files, we collect 100 DNase-
peak files and 38 FAIRE-peak files (merged into 31 features)
from ENCODE and 39 DNase-peak files from REMC.

Transcription factor binding sites (TFBS) For mapped
read files, we obtain 650 TF ChIP-seq datasets (merged
into 292 features) from ENCODE/HAIB and 681 TF
ChIP-seq datasets (merged into 279 features) from EN-
CODE/SYDH; for corresponding pre-processed peak files,
we collect 638 TF-peak files (merged into 295 features)
from ENCODE/HAIB and 321 TF-peak files (merged into
288 features) from ENCODE/SYDH.

RNA polymerase binding For mapped read files, we col-
lect 156 RNA polymerase binding ChIP-seq datasets
(merged into 49 features); for corresponding pre-processed
peak files, we collect 92 peak files (merged into 53 features)
from ENCODE

Histone modification We include histone ChIP-seq data-
sets from both ENCODE and REMC. For mapped read
files, we collect 549 histone ChIP-seq datasets (merged
into 267 features) from ENCODE and 1407 histone ChIP-
seq datasets (merged into 735 features) from REMC; for
corresponding pre-processed peak files, we collect 280
histone-peak files (merged into 270 features) from EN-
CODE and 979 histone ChIP-peak files from REMC.

Genomic features Two types of static genomic features
are included in DIVAN: repeated elements and conserva-
tion scores (genomic evolutionary rate profiling (GERP)
element [38] and phastCon scores [39]). We consider all
repeated elements collected in the UCSC Genome
Browser, including LINE, low complexity, satellite, simple
repeat, SINE, LTR, etc. Conservation annotations include
GERP elements and phastCon score, which are known to
influence the functional consequences of genetic variants,
such as phylogenetic conservation and level of selective
constraint. GREP elements are downloaded from the
Sidow Lab (http://mendel.stanford.edu/SidowLab/down-
loads/gerp/) and further treated as a binary annotation for
each variant investigated. The phastCon scores are
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calculated for variants of interest using Bioconductor pack-
age phastCons100way.UCSC.hg19.

Annotation segmentation
To simplify the computation, we first cut the whole gen-
ome into 200-bp bins and calculate the feature value, i.e.,
normalized mapped read count or the peak presence for
each bin. Therefore, the result is a genome-wide annotation
matrix with rows as 200-bp bins across the whole genome
and columns as genomic and epigenomic features. With
the pre-built genome-wide annotation matrix, we could
easily retrieve feature values for each variant by simply de-
termining which bin the variant falls into.

Feature selection-based ensemble-learning framework
The workflow of DIVAN is illustrated in Fig. 1, which con-
sists of four steps. The first step is to build the risk variant
set and the benign variant set. All risk variants from the
selected 45 diseases/phenotypes are retrieved from ASB.
The benign variants are obtained from the 1000 Genomes
Project. In the second step, variants in both sets are anno-
tated by genomic and epigenomic sources, including
GERP elements, phastCon scores, repeat elements, and
genome-wide epigenomics profiling data collected from
ENCODE and RMEC. The third step is selecting inform-
ative features. In the last step, an ensemble module, which
is a collection of ensemble base learners, is developed to
adjust the class imbalance between risk variant set and be-
nign variant set. The base learner could be an arbitrary
binary classifier. The default option is the decision tree.
With the test variants annotated by the same source in
the second step, the trained model would output the prob-
ability of being disease-implicated for each test variant.

Feature selection
We perform feature selection to avoid over-fitting since
the number of features is far greater than the number of
variants, which is a typical large n, small p problem.
As the confidence of a feature is measured by p values,

we use different tests for different types of annotations
to obtain the p values. For continuous features, e.g.,
number of reads, we use a two-sided t-test; for binary
features, e.g., peak presence, we use Fisher’s exact test by
constructing a two-by-two contingency table. Additional
file 2: Figure S10A shows the distribution of t-statistics
for all epigenomic features, with the heavy tail corre-
sponding to the informative features. The distribution of
corresponding p values is shown in Additional file 2:
Figure S10B, while the p values obtained from Fisher’s
exact test can be found in Additional file 2: Figure S10C.
By comparing the distribution of p values for the two
tests, we find that p values from Fisher’s exact test are
right-skewed compared to the left-skewed t-test p values.

This observation indicates fewer informative features
would be selected if peak is used as the feature.
After obtaining the p values for all features, we use

cross-validation to define the p value threshold in the fea-
ture selection step and features with a p value below the
threshold are considered as informative features. To be
specific, we set a sequence of possible p value thresholds.
For each threshold, the mean of the predicted AUC values
is calculated using fivefold cross-validation on the training
set and the p value threshold is chosen as the one with the
largest predicted AUC value. In fact, the selected p value
threshold could be considered as a tuning parameter.

Choosing the appropriate base learner
Three classifier engines have been evaluated as a base
learner in the ensemble module of DIVAN: decision tree,
support vector machine (SVM), and Lasso. For SVM, we
use non-linear classifiers with radial kernel. For Lasso, we
perform fivefold cross-validation to choose the best tuning
parameter for L1 penalty. Additional file 2: Figure S11A
and B shows that even if decision tree, Lasso, and SVM
have comparable AUC values, decision tree shows a better
precision–recall curve. Thus, decision tree is chosen as
the default base learner for the ensemble module.

Ensemble method for class imbalance adjustment
The number of benign variants far exceeds the number
of disease-associated variants, which makes the task of
discriminating disease-specific risk variants from benign
ones an inherent imbalanced two-class classification
problem. A single binary classifier usually has poor pre-
dictive performance without adjusting the class imbal-
ance. To build a balanced classifier without downsizing
or duplicating the training set, we adopt an ensemble
learning approach, which not only keeps all variants in
the training set but also overcomes the class imbalance
issue. We formularize the ensemble method as below.
We denote the benign set as N, the risk variant set as

P, and the number of base learners as C. Specifically, we
create two balanced classes by sampling the same num-
ber of variants Ni with replacement from the benign set
as the number of variants C in the risk variant set to
form one training set Ni ∪ P for base learner Ci. The
choice of number of base learner c would be large
enough to ensure the unions of all Ni (N1 ∪ N2, …, ∪ NC

) could cover most of N. The default c is set to be twice
the number of benign variants in N over risk variants in
P. We further denote the annotation matrix for variants
in Ni ∪ P as Xtrain

i and the labeled Ni ∪ P as Ytrain
i , the

trained ensemble module is formulated as a function of
training sets, which is f(X, Y) = c(f(Xtrain

1 , Ytrain
1 ), f(Xtrain

2 ,
Ytrain
2 ), … (Xtrain

c , Ytrain
c )). With a given variant with anno-

tation matrix Xtest, the probability of the given variant
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being disease-implicated is the average of all predictive
probabilities of base learners,

E Ytest ¼ 1jXtest; f X;Yð Þð Þ ¼ 1
C

XC
i¼1

E Ytest ¼ 1jXtest; f Xi
train;Y

i
train

� �� �

Competing methods
We compare DIVAN with four existing risk variant an-
notation and prioritization methods: GWAVA, CADD,
Eigen, and GenoCanyon.

Supervised methods: GWAVA and CADD CADD is a
SVM-based supervised learning method. It maintains a
database of pre-computed C-scores for 1000 Genomes
variants and base levels for the whole human genome.
GWAVA is a random forest-based supervised learning
method. It maintains a database containing three sets of
pre-computed scores for 1000 Genomes variants (minor
allele frequency > 1%) based on different choices of be-
nign variants (TSS, unmatched, and region).

Unsupervised methods: GenoCanyon and Eigen Gen-
oCanyon is an unsupervised learning method, which is a
two-component mixture model. It maintains a database
of base-level pre-computed scores across the whole hu-
man genome. Eigen, another unsupervised learning
method, is also a two-component mixture model; how-
ever, it considers feature correlation. Eigen maintains a
database containing two sets of pre-computed scores for
1000 Genomes variants. One is an Eigen score and
another is a variation of Eigen score, EigenPC score.
For each of the above methods, we download and re-

trieve the pre-computed scores for the risk and benign
variants. The scores are designed such that the higher the
score, the better chance the variant is disease-associated.
For GWAVA, we only report the set of scores with the
best performance. For Eigen, we include both Eigen and
EigenPC scores in the method comparison.

Additional files

Additional file 1: Supplementary Tables S1–S23. Supplementary tables
with legends in the first sheet called “Supplementary Tables Legends.”
(XLSX 93 kb)

Additional file 2: Supplementary Figures S1–S11. Supplementary
figures with legends in the pages (1–4). (PDF 2596 kb)
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