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Abstract

Background: Blood levels of amino acids are important biomarkers of disease and are influenced by synthesis,
protein degradation, and gene—environment interactions. Whole genome sequence analysis of amino acid levels
may establish a paradigm for analyzing quantitative risk factors.

Results: In a discovery cohort of 1872 African Americans and a replication cohort of 1552 European Americans we

sequenced exons and whole genomes and measured serum levels of 70 amino acids. Rare and low-frequency variants
(minor allele frequency <5%) were analyzed by three types of aggregating motifs defined by gene exons, regulatory

regions, or genome-wide sliding windows. Common variants (minor allele frequency >5%) were analyzed individually.
Over all four analysis strategies, 14 gene-amino acid associations were identified and replicated. The 14 loci accounted

any observed coding variants.

analysis of quantitative traits.

for an average of 1.8% of the variance in amino acid levels, which ranged from 0.4 to 9.7%. Among the identified
locus—amino acid pairs, four are novel and six have been reported to underlie known Mendelian conditions. These
results suggest that there may be substantial genetic effects on amino acid levels in the general population that may
underlie inborn errors of metabolism. We also identify a predicted promoter variant in AGA (the gene that encodes
aspartylglucosaminidase) that is significantly associated with asparagine levels, with an effect that is independent of

Conclusions: These data provide insights into genetic influences on circulating amino acid levels by integrating -omic
technologies in a multi-ethnic population. The results also help establish a paradigm for whole genome sequence
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Background

Conventional wisdom holds that common complex
diseases are polygenic and rare Mendelian diseases are
monogenic. Indeed the biology of human health and
disease is complex and there is a continuum of genetic
architectures. For example, ever since the seminal work
of Goldstein and Brown with familial hypercholesterol-
emia [1], it is appreciated that a subset of individuals in
the far tails of the phenotype distribution (e.g., LDL-
cholesterol) may have a Mendelian form of a condition
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while others may have a polygenic predisposition. To
gain a complete understanding of the genetic architec-
ture of health and disease will require: 1) realization of
the continuum of Mendelian and polygenic conditions; 2)
consideration of the whole genome; and 3) multi-omic
approaches that allow measurements of intermediate phe-
notypes closer to gene action and that bridge genome
variation with inter-individual differences in disease risk.
Circulating blood levels of amino acids and whole gen-
ome sequence data combined with state-of-the-art anno-
tation and analysis tools can help establish a paradigm
for defining the genetic architecture of quantitative phe-
notypes. Rare recessive mutations in genes that lead to
deficiencies or excess of specific amino acids are the root
cause of a number of inborn errors of metabolism [2].
Inter-individual differences in several amino acids are
risk factors for common disease (e.g., branched-chain
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and aromatic amino acids for diabetes) [3]. Amino acids
are important components of protein metabolism and cell
signaling. They reflect a variety of cellular and physiologic
processes and may, therefore, mirror gene—environment
interactions. Genome-wide association studies (GWAS)
have identified common variants associated with multiple
amino acid levels [4-6]. Low-frequency variants that
modulate amino acid levels independent of known GWAS
loci have also been reported using exome arrays and a tar-
geted analytical approach for exome sequence data [7, 8].
To date, no study has assessed the impact of rare and low-
frequency variations captured by systematic and compre-
hensive sequencing of the protein-encoding exons and
whole genomes on amino acid levels in a multi-ethnic
population. We used exon and whole genome sequencing
in a sample of 3424 European and African Americans to
investigate the genetic determinants of 70 blood amino
acid levels. Significant effects discovered in African
Americans (AA) were replicated in an independent
set of European Americans (EA). This study demon-
strates the utility of combining multi-omic data and
the importance of intermediate phenotypes close to gene
action for identifying regions of the genome influencing
biologically and clinically relevant traits.

Results

Baseline characteristics

We sequenced exons and whole genomes and measured
serum levels of 70 amino acids in 1872 AA for the
discovery stage and 1552 EA for the replication stage
among participants in the Atherosclerosis Risk in
Communities (ARIC) study. Baseline characteristics of
both the discovery and replication samples are shown in
Additional file 1: Table S1. The mean age of the AA and
EA participants was 52.7 and 54.7 years, respectively,
and 65.2 and 54.9% of the samples were female. Preva-
lent diabetes was diagnosed in 16 and 8% of the AA and
EA subjects, respectively, and 52 and 31%, respectively,
had prevalent hypertension. In the AA samples, a total
of 330,490 single nucleotide variants (SN'Vs) in the exons
were captured by exome sequencing and 52,094,875 in
the whole genomes; 94.8% of the SNVs were rare or
low-frequency (minor allele frequency (MAF) <5%) in
the exons and this number was 82.9% in the whole ge-
nomes. The proportion of variants within frequency bins
characterized as rare (0% < MAF <1%), low-frequency
(1% < MAF < 5%), and common (MAF > 5%) is shown in
Additional file 2: Figure S1.

We used four approaches to examine the association
of amino acid levels with genetic variants across the gen-
ome: 1) a gene exon approach; 2) an annotated regula-
tory motif approach; 3) a genome-wide sliding window
approach; and 4) a single variant approach. The single
variant approach analyzes the variants individually and
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the other three approaches collapse rare and low-
frequency variants into a burden test because insufficient
information is available for any one rare variant within a
fixed sample size. The gene exon approach leverages the
strength of the exome sequence data and the regulatory
motif and sliding window approaches highlight the utility
of whole genome sequence data. Each of these approaches
is separately addressed in the following paragraphs. Over-
all, a total of 14 genetic loci—amino acid paired associa-
tions exceeded our a priori defined threshold for statistical
significance in the discovery analysis in AA samples and
were replicated in the EA samples. Within the 14 pairs,
six loci—amino acid relationships were detected by more
than one analytical approach (Fig. 1). Ten out of 14 pairs
have been reported by previous GWAS, and the other four
pairs are novel. A comparison between the 14 pairs and
previous GWAS findings is provided in Additional file 1:
Table S2.

Gene exon approach

For the gene exon approach, we restricted our analysis to
predicted functional variants with MAF <5%. A total of
15,589 genes with cumulative minor allele counts (cMAC)
>7 were analyzed. We identified and replicated seven
gene—amino acid pairs (HAO2-alpha-hydroxyisovalerate,
AGA-asparagine, DMGDH-dimethylglycine, CCBLI-indo-
lelactate, ACYI-N-acetylalanine and ACY1—N-acetylthreo-
nine, PRODH-proline) with significant discovery p values
(Pyi) <46 x107® and a replication p value (Pyep) <0.003
(Table 1). There were 12 to 30 rare and low-frequency vari-
ants involved within each of the identified genes. Detailed
results for each rare and low-frequency variant involved in
these genes are provided in Additional file 1: Table S3. A
full list of identified gene—amino acid pairs regardless of
successful replication is provided in Additional file 1: Table
S4. Annotated functional variants in the six genes of the
seven gene—amino acid pairs accounted for 0.6-3.6% of the
variance in the amino acid levels, with the average being
1.8%. The six genes all encode enzymes, four of which
directly catalyze reactions involving the identified amino
acids as substrates or end products. The relationships
between AGA and asparagine (Py;=13x107"°, P, =
2.7 x107°), dimethylglycine and DMGDH (Pj=3.2x 10
-3 Py, =8.1x% 1071%), N-acetylalanine, N-acetylthreonine
and ACY! (Py=41x10* and 1.1x107", P,,,=39x 10
1% and 4.7 x 107°), proline and PRODH (P =14 x 107,
P, =15x% 107" are consistent with known autosomal re-
cessive metabolic disorders. The gene exon results for the
meta-analysis of the discovery and replication samples with
p <4.0 x 107 are provided in Additional file 1: Table S5.

Regulatory motif approach
Defining regulatory motifs away from protein-encoding
genes is a major activity of modern genome sciences.
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Single variant test

ACSM5,
ALMS1P, CPS1,
DDC, SYCE2

Sliding window approach

common variant annotations

Gene-based test

Fig. 1 Identified significant genetic associations with serum amino acid levels. Gene names with a single line underneath indicate the association
was reported in previous studies for European ancestry; gene names with double lines underneath indicate the association was reported in
previous studies for both African and European ancestry. Gene names shown in the single variant test were assigned according to the leading

ACSMS5: indolepropionate;

ACY1: N-acetylalanine,
N-acetylthreonine;

AGA: asparagine;

ALMS1P: N-acetylphenylalanine;

CCBL1: indolelactate;

CPST1: glycine;

DDC: 3-methoxytyrosine;

DMGDH: dimethylglycine

HAO2: alpha-hydroxyisovalerate;

NATS: N-acetyl-1-methylhistidine;

PRODH: proline;

SYCEZ2: glutarylcarnitine;

VNN1: acisoga

Projects such as ENCODE [9] and GTEx [10] are defin-
ing noncoding regions of the genome that have import-
ant biologic function, including regulation of gene
expression. We analyzed a total of 21,040 annotated
regulatory motifs with cMAC >7 across the genome, and
statistical significance was defined as P < 3.4 x 1078,
Although two regulatory motifs exceeded our a priori
significance threshold for discovery in the AA samples,
they did not replicate in the EA samples (Additional file 1:
Table S6). To help up-weight predicted functional
variants, the regulatory motif analysis was repeated and
weighted by the combined annotation dependent deple-
tion (CADD) scores [11], but the results did not change
substantially from those of the unweighted analyses
(Additional file 2: Figure S2). The regulatory motif
results for the meta-analysis of the discovery and rep-
lication samples with p <4.0x107® are provided in
Additional file 1: Table S7.

Sliding window approach

We next applied a sliding window approach to analyze
rare and low-frequency variation (MAF <5%) aggregated
by 4-kb windows with a 2-kb skip length using burden
tests to scan the entire genome. A total of 1,337,499 win-
dows (668,748 non-overlapping windows) with cMAC >7
were analyzed. We identified and replicated two genomic
regions influencing two amino acid levels (P < 1.1 x 107°
and P,,, < 0.01; Table 2). One is a 130-kb region at 2p13.2,
where two windows in the region were associated with N-
acetyl-1-methylhistidine levels (lowest window P = 1.6 x
10715, Prep=39 % 107%). ALMSI and NATS, two neighbor-
ing genes residing in this 130-kb region, have been previ-
ously reported to be related to N-acetyl amino acids levels
[4, 6]. The other region is located at 6q23.2 where a single
window 46 kb downstream of VNNI was associated with
acisoga. Detailed results for each rare and low-frequency
variant involved in the identified windows are provided in

Table 1 Gene exon-based results demonstrating a significant association among both discovery (p < 4.6 x 107%) and replication

(p < 0.003) stages for the T5 burden test

Metabolite Gene Discovery (AA) Replication (EA)
P Beta cMAC Varkxp P Beta cMAC Varkxp

Dimethylglycine DMGDH 32x107% 0.64 % 3.6% 81x10"? 039 73 1.7%
N-acetylthreonine ACYI 1.1x107'° 0.12 239 06% 47x107° 026 24 0.4%
N-acetylalanine ACY1 41x10" 0.16 239 1.5% 39%x107"° 0.25 24 0.6%
Asparagine AGA 11x107° 034 157 14% 27%107° 038 58 0.9%
Indolelactate CCBLI 27x107% 039 87 1.6% 1.1x1077 026 33 0.5%
Alpha-hydroxyisovalerate HAO2 16x107°8 0.64 21 0.8% 82x107° 041 18 0.5%
Proline PRODH 14%x107% 0.14 324 1.4% 15%107" 009 295 0.7%

cMAC cumulative minor allele count, VarExp variance explained by the loci
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Table 2 Sliding windows demonstrating a significant association among both discovery (p < 1.1 x 10~°) and replication (p < 0.01)

stages for the T5 burden test

Metabolite Discovery (AA) Replication (EA)
Window (gene) P Beta cMAC VarExp Window (gene) P Beta cMAC Varkxp
N-acetyl-1- Chr2: 73744005-73748004 16x107"° 012 933 1.0% Chr2: 73744005-73748004 00004 017 156 0.5%
methylhistidine  (NAT8) (NAT8)
N-acetyl-1- Chr2: 73614005-73618004 62x107"" —011 728 0.7% Chr2: 73614005-73618004 0005 -007 336 0.2%
methylhistidine  (NATS8) (NAT8)
Acisoga Chré: 132952009-132956008 9.4 x 107 '° 006 1504 04% Chr6: 132952009-132956008 0.009 —-0.04 764 0.1%
(VNNT) (VNNT)

c¢MAC cumulative minor allele count, VarExp variance explained by the loci

Additional file 1: Table S3. A full list of identified signifi-
cant sliding window—amino acid pairs regardless of suc-
cessful replication is provided in Additional file 1: Table
S8. The sliding window results for the meta-analysis of the
discovery and replication samples with p < 4.0 x 107 are
provided in Additional file 1: Table S9.

Single variant approach

In addition to rare and low-frequency variants, we con-
ducted a survey of the genome investigating common
SNVs with MAF >5%. Eleven single variant—amino acid
associations reached the significance threshold at both
the discovery and replication stages (Pg;<7.1x 107
and P, <0.003; Table 3). These 11 common variants
accounted for 0.7-9.7% of the variance of amino acids
levels, with an average of 2.3%. The 11 SNVs all resided in
protein-encoding gene regions, six of which encode en-
zymes that catalyze the reaction of the corresponding me-
tabolite as a substrate or product. Among the significant

findings, two gene—amino acid associations are novel (3-
methoxytyrosine and DDC, and acisoga and VNNI) and
there are two loci, DDC and CPS1, in which mutations are
known to cause autosomal recessive metabolic disorders.
A full list of identified significant single variant—amino
acid pairs regardless of successful replication is provided
in Additional file 1: Table S10. The single variant results
for the meta-analysis of the discovery and replication sam-
ples with p<5.0 x 10™® are provided in Additional file 1:
Table S11.

Conditional analyses

Across all analytic approaches, six of the region—amino acid
associations have been reported in previous GWAS: AGA—
asparagine, DM GDH-dimethylglycine, HAO2—-alpha-hydro
xyisovalerate, PRODH-proline, CCBLI—idnolelactate, and
two sliding windows close to NAT8 with N-acetyl-1-
methylhistidine. We performed conditional analyses in
order to examine whether sequencing data were able to

Table 3 Single variant results demonstrating a significant association among both discovery (p < 7.1x107'%) and replication

(p < 0.003) stages

Metabolite Variant information Discovery (AA) Replication (EA)

Gene SNP Function Chrposition  REF/ALT MAF Beta P Var Exp MAF  Beta P Var Exp
Glycine CPSI rs1047891  Missense 2:211540507 C/A 037 009 45x107'7 13% 031 016 49%x10°* 36%
Dimethylglycine ~ DMGDH 15933683 Intronic 578324003  G/T 044 -015 23x107'* 19% 029 -009 95x10° 07%
Asparagine AGA rs11131799 Intronic ~ 4:178363378 G/A 049 -0.14 24x107'° 25% 036 -026 39x10°% 45%
N-acetyl-1- NAT8 1513538 Missense 273868328  A/G 048 034 33x107° 97% 023 051 34x10°% 142%
methylhistidine
Glutarylcarnitine  SYCE2 58012 Missense 19:13010520 A/G 019 -012 95x107" 12% 046 -011 25x10°" 15%
N-acetyl ALMSTP 1513431529 Intronic 2773876041  G/C 049 009 43x107'° 10% 023 006 12x10° 04%
phenylalanine
3-Methoxytyrosine  DDC rs11575302 Silent 7:50607694  G/A 015 015 25x107"7 15% 002 019 14x107 05%
Indolepropionate  ACSM5 158044331 Intronic  16:20450302 T/C 042 -017 53x107'° 1.8% 022 -011 0001 0.5%
Alpha- HAO2 1517023507 UTRS 1:119923247 /T 010 -025 16x107"° 19% 0002 —064 0001 04%
hydroxyisovalerate
Proline PRODH 151814288 Intronic ~ 22:18923383 (/T 030 -006 78x107'% 07% 021 —003 0003 0.1%
Acisoga VNNT 152272996 Missense 6: 133015271 T/C 019 018 81x107'® 02% 027 026 48x107°* 51%

REF/ALT reference allele and alternative allele, MAF minor allele frequency, VarExp variance explained by the loci
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identify independent region-based effects at loci highlighted
by previous GWAS. Results of the region-based conditional
analyses are shown in Table 4. Low-frequency variants in
AGA, DMGDH, HAO2, PRODH, and CCBLI were associ-
ated with amino acid levels independent of the known
GWAS lead variants. The association of low-frequency var-
iants in the two sliding windows near NATS, however, was
strongly attenuated after adjusting for rs13538, the lead
variant identified by previous GWAS. Among these six as-
sociations, we examined whether any GWAS findings can
be explained by rare and low-frequency variants. In one
case, rs248386, the significance of the lead variant identified
by previous GWAS of dimethylglycine levels was largely
diminished after conditioning on the burden of rare and
low-frequency variants in DMGDH (Additional file 1: Table
S12). We next performed conditional analyses to determine
whether the lead single common variants for nine locus—
amino acid associations were independent from the lead
variants identified by GWAS. In three of these cases
(rs13538—NATS, rs1047891-CPS1, and rs8012—-SYCE2), we
identified the same lead variant as previous GWAS. The
remaining lead variants we discovered in AA samples
(rs11131799-AGA, 1s933683—-DMGDH, rs1814288—PROD
H, rs13431529-ALMS1B, rs8044331-ACSMS, and rs1702
3507-HAQ2) were generally independent of those identi-
fied by previous GWAS (Additional file 1: Table S13).

Discussion

We identified and replicated 14 associations between gen-
etic loci and serum amino acid levels, all in or neighboring
genes encoding enzymes. Four of the associated gene—
amino acid pairs were novel (DDC-3-methoxytyrosine,
VNNI-acisoga, ACYI-N-acetylalanine, and ACYI-N-ac
etylthreonine). Six of the loci—amino acid associations
were identified by more than one analytical approach. In
most cases, rare and low-frequency variants in the regions
identified in this study were associated with amino acids
independent of common variants previously identified by
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GWAS. Six of the gene—amino acid pairs identified here
are known to underlie Mendelian disorders. Notably,
among the four analytical approaches proposed in this
study, analyses focusing on regulatory motifs was the only
setting where there was no significant and replicated
amino acid associations.

Amino acids are the building blocks of proteins.
Humans can synthesize 11 of the 20 standard amino acids
and the remaining nine essential amino acids must be ob-
tained from dietary sources. The genetic loci identified in
this study are all associated with non-essential amino acids
or amino acid derivatives, although previous GWAS have
reported multiple common variants that are associated
with levels of nine essential amino acids [6, 12—14]. Given
the nature of amino acid biosynthesis and the properties
of the enzyme-encoding genes, it is of note that six of the
identified enzymes directly catalyze reactions involving
the amino acid as a substrate or end product.

Understanding the genetic bases of inherited metabolic
disease has been a focus of human genetics for a long
time. In this study, we identified six genes (DMGDH,
AGA, ACY1, PRODH, DDC, CPS1I) that have been previ-
ously implicated in recessive metabolic disorders, four of
which show direct relationships to the amino acids iden-
tified here: mutations in AGA are known to cause aspar-
tylglucosaminuria (MIM 208400); mutations in DMGDH
cause dimethylglycine dehydrogenase deficiency (MIM
605850); mutations in ACY1 cause aminoacylase-1 defi-
ciency (MIM 609924); and mutations in PRODH are
known to cause hyperprolinemia type I (MIM 239500).
Although the other two loci did not directly affect the iden-
tified amino acid levels, there is evidence suggesting that
the two genes play a role in their regulation. DDC partici-
pates in tyrosine metabolism (DBGET: R02080) and muta-
tions in it are known to causearomatic L-amino acid
decarboxylase deficiency (AADC; MIM 608643). The iden-
tified amino acid 3-methoxytyrosine is one of the main
biochemical markers of AADC [15]. CPSI1 (carbamoyl

Table 4 Conditional analysis of selected regions adjusting for the lead common variant identified by previous genome-wide

association studies

Metabolite Region Type GWAS Lead SNV Discovery (AA) Replication (EA)
Punad/uszed Padjusred 'Dunadjusred Pad/usred
Indolelactate* CCBLT Gene rs15676 13x10%°  10x10%° 21x10°  41x10°
N-acetyl-1-methylhistidine ~ Chr2: 73744005-73748004 (NATS) ~ Window  rs13538 16x107"° 0005 40x10™ 02
N-acetyl-1-methylhistidine ~ Chr2: 73614005-73618004 (NATS) ~ Window  rs13538 62x107"" 09 0.005 08
Asparagine* AGA Gene rs4690522 68x1071° 91x107% 15x10°  60x107°
Dimethlyglycine* DMGDH Gene rs248386 T1x107%°  43x107%  44x107"" 45x107"°
Alpha-hydroxyisovalerate* ~ HAO2 Gene rs12141041 15%10°  30x10°  93x10° 20x10*
Proline* PRODH Gene 152540641 14x107%°  17x107%° 13x107"% 12x10°"°

*Unadjusted results may differ from main analysis because only individuals with both exome sequencing and whole genome sequencing were included in the

conditional analysis. SNV single nucleotide variant
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phosphate synthetase I) encodes an ammonia ligase
(DBGET: R00149) and deficiency of the CPS1 protein
(MIM 608307) leads to hyperammonemia. Glycine is a
precursor of ammonia (DBGET: R01221) and, as such, ac-
cumulates in the liver and kidneys under the condition of
excess ammonia [16]. DMGDH-dimethylglycine, AGA—as-
paragine, PRODH-proline, and CPS1-glycine associations
were reported by several previous studies (Additional file
1: Table S2), while the ACYI-N-acetylthreonine/N-acety-
lalanine and DDC-3-methoxytyrosine associations are
novel. Our findings support that genetic variation impacts
inter-individual differences in amino acid levels in the
general population in addition to causing recessive inborn
errors of metabolism.

The data reported here provide new insight into the
genes influencing blood amino acid levels. For example,
CCBLI, which encodes kynurenine aminotransferase 1, was
associated with three lactate derivatives, including indole-
lactate, phenyllactate (PLA), and 3-(4-hydroxyphenyl)lac-
tate. Kynurenine aminotransferase 1 is known to be
involved in tryptophan metabolism (DBGET: T01001,
hsa00380), where it converts kynurenine, an intermediate
of the tryptophan degradation pathway, into kynurenic acid
[17], a neurotoxic compound associated with schizophrenia
[18]. One of the three amino acids, indolelactate, is also
part of tryptophan metabolism (DBGET: hsa00380). A
common variant in CCBLI has been reported to be related
to indolelactate in populations of European ancestry [13],
and we observed that rare and low-frequency variants in
CCBL1 were associated with indolelactate in both AA and
EA samples independent of the reported common variant.
Because of the neurotoxic effect of kynurenic acid, inhib-
ition of the kynurenine pathway is a therapeutic strategy for
neurodegenerative disease [19, 20]. Current available drugs
are indoleamine-pyrrole 2,3-dioxygenase (IDO) inhibitors,
which inhibit the conversion of tryptophan to kynurenine.
We identified rare and low-frequency variants in /DO, en-
coding IDO, associated with low levels of kynurenine, sug-
gesting that participants carrying functional mutations in
IDO1 may show neuroprotection. Phenylalanine, tyrosine,
and tryptophan have common steps in their biosynthesis
pathway (DBGET:map00400). Interestingly, besides trypto-
phan metabolism, the other two identified lactate deriva-
tives, PLA and 3-(4-hydroxyphenyl)lactate, are involved in
phenylalanine and tyrosine metabolism. Both PLA and 3-
(4-hydroxyphenyl)lactate are elevated in phenylketonuria
and hyperphenylalaninemia [21], which if untreated may
result in mental impairment and other neurologic disor-
ders (MIM 261600 and 261640). Our results indicate that
rare and low-frequency variants in CCBLI are associated
with increased levels for all three lactate derivatives.
Future studies are warranted to dissect the mechanism of
the observed associations and the possibility of CCBL1 as
a novel drug target for neurologic disorders.
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The results reported here generate new hypotheses
that future studies can investigate. One example is the
association between a common missense variant in
VNNI and acisoga. Acisoga is a newly described amino
acid involved in polyamine metabolism. Although poly-
amines are ubiquitous small molecules, acisoga is the
only polyamine measured in our metabolomics panel.
VNNI encodes vanin 1, which shares extensive sequence
similarity with biotinidase. The function for VNNI is not
well studied; however, it possesses pantetheinase activity,
which may play a role in oxidative-stress response [22].
There is convincing evidence that altered polyamine me-
tabolism is involved in many diseases, and drugs altering
polyamine levels therefore may have a variety of import-
ant disease targets [23]. The results presented here
provide preliminary directions for further research on
polyamine metabolism and the VNNI gene.

The analysis strategy and results presented here estab-
lish a paradigm for whole genome sequence analysis of
quantitative risk factor phenotypes. There is compelling
evidence based on GWAS that common variants confer
relatively small increments in risk and explain only a
small proportion of the heritability [24]. Assessment of
rare and low-frequency variants, specifically non-coding
rare and low-frequency variants, in relation to human
health is largely incomplete. Whole genome sequencing
data offer an opportunity to characterize rare and low-
frequency variations and variations outside of the usual
protein-encoding regions. The UK10K and GoT2D pro-
jects [25, 26] have demonstrated success identifying
novel findings utilizing whole genome sequencing, but
this success has been limited compared to GWAS, in
part due to the limited statistical power. Compared to
studies of complex diseases, the study of quantitative
phenotypes, such as amino acid levels which are proximal
to gene function, can dramatically maximize statistical
power. Our study successfully identified and replicated
four novel findings, demonstrating the feasibility of analyz-
ing whole genome sequences in the context of intermedi-
ate quantitative phenotypes to promote novel biologically
relevant findings.

Although the majority of the findings in our study
reside in coding regions, we were able to identify non-
coding loci that contribute to amino acid levels. For
example, a common intronic variant, rs11131799, was
shown to be associated with asparagine levels, independ-
ent of coding variants in AGA (AGA, Puagjustea=1.1 %
10719, Pjustead = 2.4 % 107). Conditioning on AGA cod-
ing variants did not markedly alter the non-coding locus
association. AGA encodes the enzyme aspartylglucosamini-
dase, which breaks down glycoproteins by hydrolyzing N-
acetylglucosamine—asparagine linkages, thereby releasing
asparagine. Rs11131799, annotated as a predicted promoter
variant, is highly associated with AGA expression levels
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(http://genenetwork.nl/biosqtlbrowser/). Some of the vari-
ants involved in the 4-kb window are annotated as pre-
dicted deleterious by CADD [11] and FATHMM-MKL
[27]. A previous study identified an association between as-
paragine and the ASPG locus, encoding asparaginase [13],
which catalyzes the hydrolysis of asparagine to aspartic acid.
Interestingly, our lead variant for the AGA—asparagine
association (rs11131799) occurred in both AA and EA
participants, while the previously reported lead variant
(rs4690522) was only observed in EA participants.
The two variants were in strong linkage disequilibrium in
EA participants, but not in linkage disequilibrium in AA
participants, suggesting that rs4690522 may have simply
been a proxy for rs11131799 in previous studies. The data
reported here suggest that blood asparagine levels may be
influenced not only by the coding regions but also by
some regulatory elements. Further annotation information
is warranted to dissect the two non-coding regions in rela-
tion to asparagine levels.

Among the four analytical approaches proposed in this
study, the analysis of regulatory motifs was the only ap-
proach that did not yield novel findings. If we consider
effect sizes seen in the other analysis approaches, these
results reemphasize that improvements in annotation,
particularly non-coding regulatory elements, are neces-
sary. It is likely that the high density of non-functional
variants in the hypothesized regulatory motifs over-
whelms the sparser functional variants included in a
burden test. Alternatively, single rare and low-frequency
variants with large effects may be scarce in annotated
regulatory elements of the human genome.

Strengths of this study include the use of direct
sequencing, as opposed to genotyping and imputation.
By using sequencing data, we were able to interrogate
low-frequency, rare, and private variants that are not
covered by genotyping and imputation. Even for variants
accessible by both approaches, sequencing avoids the
measurement error generated by imputation, which can
be large for rare variants. The advantages of sequencing
are particularly important for fine-mapping, since differ-
ences in imputation quality among variants can obstruct
the search for the most likely causal variant. An add-
itional strength of this study is the joint calling of vari-
ants in a larger pooled sample of studies conducted in
the same laboratory, including ARIC. By increasing the
sample size during the calling of variants, the ability to
correctly call rare variants is enhanced [28].

The discovery sample for this study was AA, a popula-
tion with a high level of genetic diversity, to promote
novel findings. Also, AA are relatively under-represented
in large-scale genomics research. To our knowledge,
there is no AA sample for which both whole genome se-
quencing and multi-amino acid measurements are avail-
able to perform replication. Therefore, EA were used as
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the replication sample. Our focus here is the similar asso-
ciations detected in both AA and EA. For the associations
that were not replicated in EA, population-specific genetic
variation and effects are possible reasons in addition to the
original observation being a type I error. The variants in-
cluded in aggregate tests differed between our discovery
(AA) and replication (EA) samples due to ancestry-specific
variants as well as allele frequency differences among
shared variants. The variance explained by a genetic locus
provides an estimate about the proportion of phenotypic
variation that is attributed to inter-individual differences in
DNA sequence. In this study, the variance explaining
amino acid levels ranges from 0.4 to 9.7% among AA. Our
previous GWAS reported 5 to 20% variance explaining
differing levels of five amino acids [6], and the range of
variance explaining differences in amino acid levels varied
among Caucasians, such as 1-10% [29] or 1-25% [13]. To
our knowledge, there is no trans-ethnic genetic association
study of amino acid levels. Nevertheless, our exploratory
trans-ethnic meta-analysis provided insights for future
studies. Further investigation is warranted to evaluate
these and additional findings in multiple ethnic groups.

Conclusions

By integrating -omic technologies into deeply pheno-
typed populations, we show that sequencing variants
affect the levels of multiple human amino acids among
two ethnicities. These data and results identify new ave-
nues of gene function, novel molecular mechanisms, and
potentially diagnostic targets for multiple diseases.

Methods

Study population and metabolome measurements

The Atherosclerosis Risk in Communities (ARIC) study
is a prospective epidemiological study designed to inves-
tigate the etiology and predictors of cardiovascular
disease. It enrolled 15,792 individuals aged 45-64 years
from four US communities (Forsyth County, NC; Jack-
son, MS; suburbs of Minneapolis, MN; and Washington
County, MD) in 1987-89 (baseline) and followed them
for four completed visits in 1990-92, 1993-95, 1996-98,
and 2011-13. A detailed description of the ARIC study
design and methods is published elsewhere [30]. Amino
acid levels were measured using fasting serum samples
collected at the baseline examination in 1987-1989
among ARIC selected AA and EA. A total of 89 amino
acids were detected and semi-quantified by Metabolon
Inc. (Durham, USA) using an untargeted, gas chroma-
tography—mass spectrometry and liquid chromatog-
raphy—mass spectrometry (GC-MS and LC-MS)-based
metabolomic quantification protocol (Additional file 2:
Supplemental methods) [31, 32]. Amino acids were ex-
cluded if: 1) more than 25% of the samples had values
below the detection limit; or 2) the Pearson correlation
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coefficients between 2010 and 2014 measurements were
<0.3 (Additional file 2: Supplemental methods). After
this assessment, 70 metabolites were included in the
present study.

Exome sequencing

Isolated DNA from AA and EA for exon sequencing
were further processed using the Baylor College of
Medicine Human Genome Sequencing Center (BCM-
HGSC) VCRome 2.1 reagent (42 Mb, NimbleGen) [33],
and all samples were paired-end sequenced using
Illumina GAII or HiSeq instruments. Details about se-
quencing, variant calling, and variant quality control are
provided in Additional file 2: Supplemental methods.
Variants were annotated using ANNOVAR [34] and
dbNSEP v2.0 [35] according to the reference genome
GRCh37 and National Center for Biotechnology Infor-
mation RefSeq.

Whole genome sequencing

Whole genome sequencing data for AA and EA were
generated at BCM-HGSC using Nano or PCR-free DNA
libraries and the Hiseq 2000 instrument (Illumina, Inc.,
San Diego, CA, USA). Methods for the whole genome
sequencing of the ARIC study samples were described
elsewhere [36]. Briefly, individuals were sequenced at
sevenfold average depth on Illumina HiSeq instruments
and variant calling was completed using goSNAP
(https://sourceforge.net/p/gosnap/git/ci/master/tree/).
Details about sequencing, variant calling, and variant
quality control are provided in Additional file 2: Supple-
mental methods. Whole genome sequencing variants were
annotated across regions and functional domains using
the Whole Genome Sequencing Annotation (WGSA)
pipeline [37]. The 3" and 5" UTRs of a gene were deter-
mined using ANNOVAR [34] annotations based on the
RefSeq gene model [38]. The promoter of a gene was de-
fined based on the overlap between the permissive set of
CAGE peaks reported by the FANTOMS5 project [39] and
the 5-kb upstream region determined by the ANNOVAR
annotation based on the RefSeq gene model. The
enhancers and the target genes of the enhancers were de-
fined based on the permissive set of enhancers and enhan-
cer—promoter pairs reported by the FANTOMS5 project.
In the case of an undesignated enhancer—gene pair, we
assigned an enhancer to the nearest gene.

Statistical analyses

Metabolomic data points lying outside the 1°-99™ per-
centile of each amino acid level were winsorized among
each measurement respectively. Levels below the detect-
able limit of the assay were imputed with the lowest de-
tected value for that amino acid in all samples. Amino
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acid levels were then natural log-transformed prior to
the analyses.

Because our primary focus was on rare and low-
frequency variants, we aggregated rare and low-frequency
variants (MAF <5%) in groups based on gene exons, regu-
latory motifs, or sliding windows. Gene-based aggregation
tests are designed for rare and low-frequency coding
variants. The analytical unit is an annotated gene. All
annotated coding variants, such as splicing, stop-gain,
stop-loss, nonsynonymous, and indels within the gene
were aggregated for the analysis. The regulatory motifs
included annotated enhancers, the 3" and 5" UTRs, and
promoter of a gene. The sliding window approach is
designed to aggregate rare and low-frequency variants ac-
cording to their physical position regardless of annotated
function. Based on our previous experience [36], sliding
windows were defined as 4 kb in length and began at pos-
ition 0 bp for each chromosome, with a skip length of
2 kb. Within each annotated unit, a burden test (T5) [40]
was used, adjusting for age, sex, and the first three princi-
pal components (PCs). We further adjusted for estimated
glomerular filtration rate (eGFR) [41], an indicator of
kidney function, since multiple amino acid levels were as-
sociated with eGFR [42]. The T5 burden test collapses
variants with MAF <5% into a single genetic score to
evaluate the joint effects of rare and low-frequency alleles.
We also conducted single variant analysis for all individual
variants with MAF >5% using an additive genetic model
with the same adjustments. For each approach, the vari-
ance explained (VarExp) was calculated using the effect al-
lele frequency (p) and beta (f8) from the analyses and the
variance of the quantitative trait (o) using the formula
VarExp = %/0° x 2 x p x (1 - p) [43]. In addition, we also
applied the CADD scores [11] as variant weights to the
regulatory motifs. The weights were defined as the differ-
ence between raw CADD scores and the minimum CADD
score scaled by the range of the raw CADD scores
and were introduced into the T5 burden test using its
quartic form. The analytical models were the same as
described above. All analyses were carried out using
the R seqMeta package [44].

The significance threshold for the gene-based analysis
is defined as P,;<4.6x107° for the discovery stage
adjusting for 15,589 genes and 70 amino acids and Py,
<0.003 for the replication stage adjusting for 15 signifi-
cant gene—amino acid pairs identified in the discovery
stage. The significance threshold for the regulatory
motifs analysis is defined as P < 3.4 x 1078 for the dis-
covery stage adjusting for 21,040 genes and 70 amino
acids. The significance threshold for the sliding window
approach is defined as Py; < 1.1 x 107 for the discovery
stage adjusting for 668,748 non-overlapping windows
and 70 amino acids and P, <0.01 for the replication
stage adjusting for five significant window—amino acid
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pairs identified in the discovery stage. The significance
threshold for the single variant analysis is defined as P
<7.1x107'° for the discovery stage adjusting for one
million independent common variants [45] and 70
amino acids and P, <0.003 for the replication stage
adjusting for 16 significant single variant—amino acid
pairs identified in the discovery stage. We consider an
association novel if it has not been reported in previous
GWAS or candidate gene study. We also performed
trans-ethnic meta-analysis among the discovery and rep-
lication samples to provide additional insight into the
genetic loci discovery.

Regions associated with amino acid levels using the
gene-based or sliding window approaches that have
already been identified by previous GWAS were se-
lected for inclusion in the conditional analyses. We
reexamined each of the selected associations, add-
itionally adjusting the region-based association for the
lead common variant identified by the GWAS, and
vice versa. To adjust the GWAS variants for the
identified regions, we computed the T5 burden and
used it as a covariate. We also performed a condi-
tional analysis for our single variant findings when
these overlapped with regions identified by GWAS,
adjusting our lead single variant for the lead variant
identified by GWAS and vice versa.

Additional files

Additional file 1: Tables S1-S13. (XLSX 195 kb)
Additional file 2: Supplemental methods and Figures S1-S2. (PDF 215 kb)
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