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Abstract

Most gene prediction methods detect coding sequences from transcriptome assemblies in the absence of closely
related reference genomes. Such methods are of limited application due to high transcript fragmentation and
extensive assembly errors, which may lead to redundant or false coding sequence predictions. We present inGAP-
CDG, which can construct full-length and non-redundant coding sequences from unassembled transcriptomes by
using a codon-based de Bruijn graph to simplify the assembly process and a machine learning-based approach to
filter false positives. Compared with other methods, inGAP-CDG exhibits a significant increase in predicted coding
sequence length and robustness to sequencing errors and varied read length.
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Background
Gene prediction provides basic functional information
for understanding the genome sequence of a species and
has become a crucial component of many frameworks
used in genomic studies. With the rapid development of
sequencing technology, transcriptome sequencing has
become an efficient and cost-effective method for gener-
ating vast sequencing data for the prediction of genes
for phylogenomic studies. Phylogenetically, orthologous
genes are defined as genes descended from the sequence
of a common ancestor through speciation [1]. The reliable
identification of orthologous genes derived from high-
quality coding sequences (CDSs) is critical for phylogen-
etic tree construction, an important component of many
phylogenomic and functional studies. However, orthology
inference is especially challenging for datasets reliant on
transcriptomes containing misassemblies and partial or
missing genes [2]. In particular, in eukaryotic transcrip-
tomes, many genes have multiple isoforms, which may
result in monophyletic or paraphyletic tips on the phylo-
genetic tree. For example, a widely used transcriptome

assembler, Trinity [3], usually assembles many isoform
groups (a subcomponent) for a given gene locus.
For species with reference genomes, functional genes

are usually predicted using homology-based methods,
which can identify genes by aligning target sequences to
the original genes of closely related species. However,
the reference database only represents a small fraction
of existing species, limiting such methods to the se-
quences collected. Thus, gene prediction methods rely-
ing on known reference genomes limit our functional
understanding of novel species. When related reference
genomes are lacking, ab initio prediction methods utiliz-
ing assembled genomic sequences are inherently difficult
due to the quality of training datasets [4–8]. Korf et al.
found that in the absence of sufficient training data,
GenScan [9] exhibited poor performance, with a sensi-
tivity of 22.1% and a specificity of 20.0% for gene
prediction in Drosophila melanogaster [7]. Alternatively,
gene prediction can be performed based on de novo
transcriptome assembly, which can considerably reduce
the size of the dataset and increase the functional infor-
mation obtained compared with genome sequencing.
However, these methods are significantly limited by the
quality of de novo transcriptome assembly, which is
sensitive to sequencing errors, repetitive sequences in
different genes, and the overlap of transcripts encoded
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by adjacent loci [3]. Hence, a typical transcriptome
assembly may result in a large set of fragmented, redun-
dant, and error-containing transcripts. For instance, an
RNA-sequencing (RNA-seq) Genome Annotation Assess-
ment Project (RGASP) competition study revealed that the
highest accuracy of transcript assembly was only 48% for
the RNA-seq reads of three transcriptome datasets [10].
Therefore, orthologous gene datasets derived from assem-
bled transcripts are usually incomplete, fragmented, and
redundant and often contain errors and isoforms that fun-
damentally skew the underlying assumptions of orthology
inference in phylogenomic analyses.
To overcome this difficulty and to increase the utility

of transcriptome datasets, we developed inGAP-CDG,
an algorithm that can perform gene construction from
unassembled transcriptomes. Compared with previous
approaches, inGAP-CDG predicts open reading frames
(ORFs) directly from unassembled reads, exploits a
supervised support vector machine (SVM) to filter false-
positive ORFs, and employs a novel codon-based de
Bruijn graph to assemble cleaned ORFs into full-length
CDSs (Fig. 1). Using both simulated and real datasets,
we demonstrated that inGAP-CDG can significantly im-
prove the length and precision of gene recognition.
inGAP-CDG is implemented in C++ and the source

code is freely available together with full documentation
at https://sourceforge.net/projects/ingap-cdg.

Results
Codon-based de Bruijn graph versus traditional de Bruijn
graph
As shown in Additional file 1: Supplementary Methods,
we have offered mathematical proof demonstrating that
the codon-based de Bruijn graph exhibits a substantial
advantage over the traditional de Bruijn graph due to a
decrease in graph nodes and edges. To further demon-
strate this reduction and to quantify the difference
between codon-based and traditional graphs, we used
both simulated and real datasets to compare their prop-
erties. We generated three chr3 Consensus Coding Se-
quences (CCDSs) annotated datasets for human, mouse,
and fruit fly, respectively. For each dataset, both a
traditional graph and a codon-based de Bruijn graph
were constructed. The number of nodes and edges in
each graph was calculated and compared. As shown in
Additional file 1: Table S1, the total number of nodes
and edges in the constructed codon-based de Bruijn
graph was approximately one-third that of the trad-
itional graph, which was consistent with the theoretical
result because there were no sequencing errors or false
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Fig. 1 The workflow of the inGAP-CDG algorithm. The inGAP-CDG algorithm mainly includes four steps: six-frame translation, SVM filtration,
codon-based de Bruijn graph construction, and traversal. First, input sequences (reads, merged reads, or assembled transcripts) are translated into
potential ORFs. Next, inGAP-CDG collects highly reliable ORFs (rORFs) with strict parameters using a combination of SVM and a codon-based de
Bruijn graph. Lastly, inGAP-CDG builds a codon-based de Bruijn graph based on all of the predicted ORFs and generates full-length CDSs by
traversing the graph under the guidance of rORFs
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frame translations in the CCDS. We further compared
results for three real datasets (ERR188040, ERR1161592,
and SRR1045067) (Additional file 1: Table S2) and
achieved similar results. The number of nodes and edges
was approximately half that of the traditional graph,
indicating that sequencing errors and false frame trans-
lations increased the complexity of the codon-based de
Bruijn graph. To obtain a more intuitive and compre-
hensive understanding of the codon-based de Bruijn
graph, the gene FBgn0039298 was taken as an example.
Using all of the exons of this gene, traditional (Fig. 2a)
and codon-based de Bruijn graphs (Fig. 2b) were con-
structed. As shown in Fig. 2, the codon-based de Bruijn
graph assembled all exons of this gene into one simple
path (Fig. 2c) and exhibited considerably decreased com-
plexity compared with the traditional graph (Fig. 2b). It
should be noted that the codon-based de Bruijn graph
also included a false CDS that did not overlap with the
true CDS and thus could be easily discarded in down-
stream cleaning steps. This reduced complexity was even
more evident when using all elements of the gene to
construct the codon-based de Bruijn graph. As shown in
Fig. 2d, the graph was composed of 22 components and

most of the components contained only one path. More-
over, the four exons were assembled into four separate
components, each of which contained few overlaps with
other elements.
The codon-based de Bruijn graph facilitates the assem-

bly not only by decreasing the number of nodes and edges
but also by reducing the topological complexity. To dem-
onstrate this point, we used the codon-based de Bruijn
graph after simplification as a benchmark. We first
classified the components into three types: simple, tip-
containing, and bubble-containing subgraphs. Then, the
number of each type of subgraph was calculated for the
graphs before and after simplification. As shown in Fig. 2e,
the most dominant components in both graphs were sim-
ple paths. It is important to note that even for the graph
containing sequencing errors and frameshifting (Fig. 2e),
85% of the structures were simple subgraphs. Moreover,
most tip-containing subgraphs had only one tip, which
could easily be trimmed into simple subgraphs. Therefore,
after performing graph simplification, the number of sim-
ple subgraphs increased from 85% to 96%, indicating the
outstanding performance of codon-based de Bruijn graphs
for CDS construction and recognition.

a
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e

Fig. 2 Comparison between the traditional de Bruijn graph and the codon-based de Bruijn graph. a The basic information of FBgn0039298 gene
in D. melanogaster used for generating the subfigures (b)–(d). The elements are marked with different colors to highlight the gene structure (UTR:
purple, intron: green, exon: red). b Traditional de Bruijn graph based on simulated DNA-seq reads on CDS regions. c Codon-based de Bruijn graph
based on simulated RNA-seq reads. Each dot denotes a kmer node. The nodes belonging to CDS are shown in red. The false CDSs translated from
the wrong frames of the gene are shown in blue. d Codon-based de Bruijn graph based on simulated DNA-seq reads on the whole gene. The
nodes belonging to CDSs are shown in red. The false CDSs translated from the wrong frames of the gene are shown in blue. The false CDSs
translated from introns and UTRs are shown in green and purple, respectively. e Comparison between the two codon-based de Bruijn graphs
before and after tips trimming and bubble merging using a real RNA-seq dataset (ERR188040). “Simple” indicates subgraphs without tips and
bubbles; “tips” indicates subgraphs containing tips; “bubbles” indicates subgraphs containing bubbles and/or tips
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SVM filtration
To evaluate the efficiency of SVM in removing false-
positive ORFs, we utilized three simulated RNA-seq
datasets based on the sequences of human chr3, chr19,
and chr20. First, positive and negative datasets were pre-
pared to test SVM filtration. For each chromosome, the
simulated reads were translated into ORFs, which were
used as the test dataset. The CDSs of the chromosome
were used as the positive dataset, while the sequences
translated from the other five reading frames of each
CDS were used as the negative dataset. Then, the sensi-
tivity and specificity were calculated by aligning the
predicted ORFs to the reference CDSs. As shown in
Additional file 1: Figure S1A–C, SVM successfully
recovered true ORFs with an average sensitivity of 90%
and a specificity of 75%. We simulated four datasets with
read lengths of 100, 300, 500, and 800 bp and the sensi-
tivity after SVM filtration was calculated for each data-
set. As shown in Fig. 3c, the sensitivity tended to
improve with increasing read length. The primary factor
responsible for this increase is likely to be sequence
length because short sequences do not contain sufficient
composition signals for discrimination.
To examine whether SVM filtration could reduce the

complexity of the codon-based de Bruijn graph, we
employed a real RNA-seq dataset (ERR188040) that was

first assembled by Trinity and the resulting transcripts
were translated into ORFs. Two codon-based de Bruijn
graphs were constructed using the translated ORFs
before and after SVM filtration, and the ratio of false-
positive nodes in the components of each graph was
calculated (Fig. 3a). Before SVM filtration, there were a
large number of false-positive nodes on the graph, which
were mainly present in small components (node number
<500), indicating that false-positive nodes shared few
overlaps with each other or with true-positive nodes.
After filtration, SVM discarded almost all of these nodes,
indicating its high efficiency. Moreover, the codon-based
de Bruijn graph derived from SVM-filtered ORFs exhib-
ited an approximately 63% decrease in the number of
components compared with the graph derived before
filtration (Fig. 3b). A subset of filtered translated ORFs
was taken as an example to illustrate the SVM classifica-
tion result. When reducing the high dimension of SVM
prediction features by principal component analysis
(PCA), two distinct clusters were observed (Fig. 3d).
We also tested the impact of SVM filtration on the

assembled CDSs using sequenced reads (SRR1045067).
The sequenced reads were first used to predict ORFs.
inGAP-CDG yielded two CDS assemblies based on the
predicted ORFs with or without SVM filtration. Contig
length, redundancy, average fragment number per gene,

a c

b d

Fig. 3 Performance evaluation of SVM filtration. a Performance of SVM on filtering false-positive ORFs. The subgraph number and the ratio of
false-positive nodes in each subgraph were calculated before and after SVM filtration. b Comparison between the two codon-based de Bruijn
graphs before and after SVM filtration. c Sensitivity of true ORF recovery after SVM filtration using four simulated datasets with different read
lengths (100, 300, 500, and 800 bp). d Classification results of SVM filtration through reducing the high-dimensional feature vectors by principal
component analysis. Red dots indicate true ORFs belonging to CDSs, whereas black dots represent false ORFs derived from non-CDSs
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sensitivity, and specificity of CDS recognition in the two
assemblies were compared (Additional file 1: Figure S2).
As expected, the CDS assembly with an SVM filtra-
tion step exhibited a significantly increased CDS
length compared to that without filtration (Additional
file 1: Figure S2A and S2B). In addition, the CDS
assembly with SVM outperformed the CDS assembly
without filtration in both sensitivity and specificity
(Additional file 1: Figure S2D). Therefore, we con-
cluded that SVM-based filtration not only reduced
the complexity of the codon-based de Bruijn graph by
filtering false-positive ORFs but also improved the
performance of gene recognition from fragmented
sequences.

Gene prediction from assembled transcripts
Because most state-of-the-art gene prediction methods
identify CDSs from assembly transcripts, we further
tested the performance of inGAP-CDG on long tran-
scripts. An RNA-seq dataset for human colon cancer
cells (SRR1045067) was downloaded and assembled
using the Trinity assembler. Both inGAP-CDG and
TransDecoder were employed to predict CDSs from the
resulting transcripts. As shown in Additional file 1:
Figure S3A, inGAP-CDG exhibited considerably im-
proved CDS length compared with TransDecoder. More-
over, N50, mean, and N90 length were approximately
twice as long as those from TransDecoder (Additional
file 1: Figure S3B). Subsequently, the predicted CDSs
were aligned with the reference gene set and matched
CDSs were extracted for comparison. We found that the
average length of the matched CDSs predicted by
inGAP-CDG was slightly shorter than that of the refer-
ence gene set, but it was significantly longer than that of
TransDecoder. These nearly full-length CDSs will greatly
facilitate downstream phylogenomic analyses and gene
model construction. Next, the sensitivities and specific-
ities of the two methods were compared and inGAP-
CDG was found to exhibit higher specificity but slightly
lower sensitivity (Additional file 1: Figure S3D). This
decreased sensitivity is most likely due to SVM filtration,
during which some true ORFs may be filtered out.
Finally, we compared the redundancy of these CDSs and
found that inGAP-CDS exhibited greatly decreased
redundancy compared with TransDecoder (Additional
file 1: Figure S3C and S3E).

Performance comparison between inGAP-CDG and
11 other strategies
To evaluate the robustness of inGAP-CDG over different
sequencing error rates, we simulated three datasets with
error rates of 0.5%, 1%, and 2% and employed inGAP-
CDG and 11 other pipelines to assemble and predict
CDSs. The mean length, redundancy, sensitivity, and

error rate were calculated and compared. As shown in
Additional file 1: Figure S4, inGAP-CDG achieved the
longest mean length and the lowest redundancy among
all of the approaches for all three simulated datasets.
Although inGAP-CDG exhibited a moderate level of
sensitivity (approximately 90%) and base error rate
(0.005–0.01%), it produced the smallest fluctuation in
the face of different sequencing error rates.
To demonstrate the robustness of inGAP-CDG over

different read lengths, we compared inGAP-CDG with
the other 11 pipelines using three real datasets
(ERR188040, ERR1161592, and SRR1045067) of different
read lengths (75, 100, and 150 bp). As shown in
Additional file 1: Figure S5, the results varied depending
on the read length. First, inGAP-CDG had the largest
mean CDS length among all of the methods. Unexpect-
edly, the mean CDS length decreased when the read
length was increased from 75 bp to 150 bp. This
decrease was observed not only for inGAP-CDG but also
for the other methods and was most likely due to fact
that the 150-bp reads contained more sequencing errors.
Next, a comparison of sensitivity and specificity revealed
that with an increase in read length, the overall sensitiv-
ities and specificities of all assemblies exhibited tenden-
cies toward enhancement and reduction, respectively. In
addition, inGAP-CDG achieved significantly higher
specificity than all other methods. Notably, the specific-
ities of these methods showed an increasing trend when
increasing the read length from 75 bp to 150 bp. In
contrast with this trend, inGAP-CDG exhibited a steady
increase, demonstrating a high level of robustness for
inGAP-CDG, which was achieved by discarding false
translated ORFs resulting from sequencing errors and
erroneous frameshifts. This robustness was also ob-
served in the redundancy (Additional file 1: Figure S5C
and S5D). Unlike other methods, which varied signifi-
cantly when using different read lengths, inGAP-CDG
exhibited only a slight fluctuation.
To benchmark the performance of inGAP-CDG, we

compared this software with 11 other pipelines using
a 150-bp paired-end RNA-seq dataset (SRR1045067)
from H. sapiens. inGAP-CDG predicted CDSs directly
from these unassembled reads. For each pipeline,
these reads were first assembled and CDSs were then
predicted. After CDS prediction, we compared the
CDS length of each method and found that inGAP-
CDG outperformed all other methods (Fig. 4a and b).
Next, the predicted CDSs of each method were aligned
with the reference gene set to compare sensitivity, specifi-
city and redundancy. As shown in Fig. 4c and d, inGAP-
CDS exhibited the highest specificity and the lowest redun-
dancy. The succinate dehydrogenase (SDHA, accession ID:
NM_004168) gene of NCBI database is an example of this
performance (Additional file 1: Figure S6B). When aligning
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the predicted CDSs to this gene using the inGAP package
[11, 12], different alignment profiles were observed among
these methods. inGAP-CDG successfully assembled all
of the reads of this gene into one CDS, and approxi-
mately 100% of the gene was covered by the pre-
dicted CDS. However, when using other methods,
only a part of this gene was covered by the predicted
CDSs and some of them included assembly chimeras.
Moreover, the covered regions of this gene were
aligned to multiple CDSs, a redundancy that was even
more obvious in the CDSs predicted from Trinity-
assembled transcripts. Similar findings were observed
for the genes SET domain containing 2 (SETD, acces-
sion ID: XM_011533632), dipeptidyl peptidase 7
(DPP7, accession ID: NM_013379) and acyl-CoA de-
hydrogenase (ACADVL, accession ID: NM_000018),

which are all found in the NCBI database (Additional
file 1: Figure S6A, C, and D). Together, these compar-
isons indicate that inGAP-CDG is more reliable than
other pipelines for full-length CDS prediction. We further
benchmarked inGAP-CDG using three real RNA-seq
datasets (SRR3332174, SRR3332175, and SRR3332176)
from D. melanogaster. After gene construction, the mean
length, sensitivity, redundancy, and chimera rate of
inGAP-CDG were compared with those of the other pipe-
lines. Although inGAP-CDG exhibited a moderate level of
sensitivity, it outperformed all other pipelines in terms of
the mean length, redundancy and chimera rate for these
datasets (Additional file 1: Figure S7). It should be noted
that inGAP-CDG could achieve an even longer mean
CDS length and lower redundancy using the strict mode,
at the expense of sensitivity (4–7% decrease).

a

b

d

c

Fig. 4 Performance comparison on CDS construction among inGAP-CDG and 11 other combined pipelines. a The length distribution of predicted
CDSs by each method. b The ROC curve of each method. ROC, which captures the trade-offs between sensitivity and specificity, is determined by
calculating the true-positive and false-positive rates. c The redundancy of predicted CDSs by each method. The redundancy is calculated by the
number of aligned CDSs divided by the number of reference genes. d The evaluation of CDS fragmentation in each method. inGAP-CDG
outperforms the other 11 pipelines, with an average of 1.18 fragments per gene
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Application of inGAP-CDG to orthologous gene recognition
To assess the performance of inGAP-CDG in orthology
detection, we compared inGAP-CDG with a pipeline
that combined Trinity with TransDecoder using two real
RNA-seq datasets from H. sapiens and M. musculus
brain tissues. For each dataset, the proteins were pre-
dicted using these two strategies separately. After assem-
bling the human dataset, inGAP-CDG yielded 14,638
ORFs with an average length of 419 codons, while the
Trinity + TransDecoder pipeline produced 88,184 ORFs
with an average length of 274 codons. For the mouse
dataset, inGAP-CDG and the Trinity + TransDecoder
pipeline generated 10,260 and 65,862 ORFs with average
lengths of 481 and 304 codons, respectively. Subsequently,
we retrieved the one-to-one orthologous gene pairs be-
tween H. sapiens and M. musculus from the OrthoMCL
database into two reference gene sets according to their
original species. For each species, the predicted proteins

of these two strategies were aligned to the respective
reference gene set. As a result, 3296 and 3258 proteins
predicted by inGAP-CDG were aligned to the human and
mouse reference gene sets, respectively, while 7219 and
7227 proteins predicted by Trinity + TransDecoder were
aligned to the human and mouse reference gene sets,
respectively. Finally, for each strategy, the numbers of
aligned predicted proteins of two species for each paired
orthologous gene were classified into four types (Fig. 5a),
which represented the redundancy and completeness of
each assembly and the number of predicted proteins that
could be used for phylogenetic tree construction.
As shown in Fig. 5b, the most dominant type of pro-

teins assembled in inGAP-CDG was one-to-one (79% of
the aligned predicted proteins) and the smallest type was
many-to-many, comprising only 3%. In contrast, many-to-
many was the largest type in the Trinity + TransDecoder
pipeline (35%), followed by one-to-one (24%), many-to-one

a

b

c d

Fig. 5 Application of inGAP-CDG on orthologous gene construction and its computational efficiency. RNA-seq datasets from human and mouse
brain tissues were used to evaluate the performance of inGAP-CDG and Trinity + TransDecoder on detecting orthologous gene pairs. a Based on
the alignments of predicted genes to reference orthologous gene groups, predicted orthologs can be classified into four groups. Only the ‘one-to-one’
group can be recognized as authentic orthologous pairs by classical orthology inference methods. b inGAP-CDG predicted more ‘one-to-one’ type
orthologs than Trinity + TransDecoder. c The length distribution of predicted genes by the two methods. d Comparison of the running time and RAM
usage among the four methods (inGAP-CDG, Trinity, Soapdenovo-Trans, Velvet + Oases) using the publicly available RNA-seq dataset (SRR1045067)
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(23%), and one-to-many (18%). The low fluctuation among
these types indicated that this pipeline produced re-
dundant and incomplete genes. Moreover, inGAP-
CDG outperformed this pipeline by generating more
one-to-one type and fewer fragmented orthologous
genes, demonstrating its predominant advantage in
phylogenomic studies. We also surveyed the length
distribution of aligned translated proteins (Fig. 5c)
and found that inGAP-CDG exhibited an increased
length compared with the combined pipeline. Such
increased length will greatly facilitate the complete-
ness and accuracy of phylogenetic trees.

inGAP-CDG running time and memory usage
inGAP-CDG is implemented in C++ as a standalone pro-
gram. We have tested it successfully on Mac OS X EI
Capitan (10.11) and Linux (Red Hat 6.3 and Ubuntu
16.04) systems. To systematically evaluate the efficiency of
inGAP-CDG, the running time and RAM usage were
compared with the four other gene prediction pipelines
using a publicly available RNA-seq dataset (SRR1045067).
Because the running time and memory usage of ESTScan,
TransDecoder, Prodigal, and GeneMarkS-T were negli-
gible, these tools were not included in this comparison.
We ran all four programs on a node with 2.13 GHz Intel
Xeon processors using eight CPUs on the Linux (Red Hat
6.3) system. As shown in Fig. 5d, among all of the pro-
grams, inGAP-CDG had the lowest peak RAM, which was
approximately one-third of that of Trinity. In addition,
inGAP-CDG was faster than Trinity and Velvet_Oases
but slower than SOAPdenovo-Trans. For the dataset
SRR1045067, consisting of 4.8G bases, inGAP-CDG took
approximately 350 min to construct CDSs from raw reads.
In detail, six-frame translation, SVM filtration, codon-
based de Bruijn graph construction, and traversal took
approximately 65, 135, 120, and 30 min, respectively.

Discussion
Transcript-based gene prediction methods exhibit in-
creased accuracy compared with ab initio methods, which
require high-quality training datasets to ensure reliability.
However, the limitations of current transcriptome
assemblers have precluded these methods from generating
high-quality and non-redundant CDSs. To address this
challenge, we present a novel tool, inGAP-CDG, for the
effective construction of full-length and non-redundant
CDSs from unassembled transcriptomes. By introducing
the newly developed codon-based de Bruijn graph to
simplify the assembly process and SVM to filter false-posi-
tives, inGAP-CDG can predict full-length CDSs at a low
level of redundancy and with a low false-positive rate.
Transcriptome sequencing is an efficient and cost-

effective route for generating vast sequence collections
representing expressed genes. This technology provides

a valuable starting point for phylogenomic analysis in
non-model organisms for which genomic sequence
information is not yet available [13, 14], especially when
whole-genome sequencing efforts are cost-prohibitive
and time-prohibitive. Several gene recognition methods
[15–17] that integrate de novo assembly and gene predic-
tion have been proposed. However, these methods result
in fragmented and redundant CDSs. These properties will
lead to incomplete or false orthologous genes and thus
generate low-quality and incongruent phylogenetic trees.
However, inGAP-CDG addresses this challenge by gener-
ating more one-to-one orthologous genes and improving
gene completeness for phylogenomic studies.
We have demonstrated that inGAP-CDG exhibited a

great advantage over all currently available transcriptome-
based gene prediction methods. The primary factor
underlying this advantage is the implementation of a
codon-based de Bruijn graph, which contains a con-
siderably decreased number of nodes and edges (by
approximately 60%) compared with the traditional graph.
Moreover, most of the structures in the codon-based de
Bruijn graph are simple components, indicating a low
level of topological complexity. Collectively, these features
allow for decreased complexity and redundancy in gene
prediction. Similar to the codon-based de Bruijn graph,
Youngik et al. employed an amino-acid alphabet-based de
Bruijn graph to simplify the traditional de Bruijn
graph and reconstructed protein sequences from next-
generation sequencing (NGS) metagenomic data [18].
Because each character of the amino acid alphabet-
based de Bruijn graph may be one of 20 amino acids
(i.e. fivefold larger than the number of nucleotides),
this type of graph contains an increased number of
nodes and edges while exhibiting decreased topo-
logical complexity compared with the codon-based de
Bruijn graph. Moreover, the outputted sequences of
the amino acid alphabet-based de Bruijn graph are
short peptides, which masks the original nucleic acid
sequence. In addition to generating a codon-based de
Bruijn graph, SVM filtration is an essential step in
the inGAP-CDG algorithm. SVM discards false-
positive CDSs generated by six-frame translation and
yields reliable ORFs to serve as landmarks, which can
dictate traversal. This filtration allows significantly
increased specificity compared with other methods.
Furthermore, inGAP-CDG directly recognizes CDSs
from unassembled reads and consequently avoids the
influence of uneven sequencing depth on assembly,
which may enhance the CDS length.
Compared with other methods, inGAP-CDG exhibited

a slight loss of sensitivity (approximately 6.5%) in gene
recognition from unassembled transcriptomic reads. The
main reason for this loss is the implementation of SVM
filtration in the algorithm. To ensure the accuracy of the
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result, inGAP-CDG used strict parameters in SVM to
filter false-positive ORFs, which may sacrifice a small
fraction of true-positive ORFs. Moreover, this filtration
ensures the robustness of inGAP-CDG to sequencing
errors. Further efforts could be made to improve the
sensitivity of inGAP-CDG by taking into account more
information (e.g. the coverage of kmers by mapping
reads to the codon-based de Bruijn graph, as well as
paired-end read linkage information). We believe that
inGAP-CDG is an important addition to the toolbox
used for phylogenomic studies and will greatly improve
our capacity to explore the functional potential of novel
species.

Conclusions
This study presents a novel algorithm, inGAP-CDG, for
effective gene construction from unassembled transcrip-
tomes. The main advantage of inGAP-CDG is that it
combines a newly developed codon-based de Bruijn
graph to simplify the assembly process and a machine
learning based approach to filter false positives. Com-
pared with traditional de Bruijn graph, the codon-based
de Bruijn graph exhibits significantly decreased number
of nodes and edges (by approximate 60%), as well as a
considerable low level of topological complexity. These
features of the codon-based de Bruijn graph allow de-
creased complexity and redundancy in gene prediction.
Through extensive evaluation on both simulated and real
datasets, as well as comparisons with alternative methods,
we demonstrate that inGAP-CDG has an excellent and
unbiased performance on gene reconstruction.

Methods
Overview of inGAP-CDG
The inGAP-CDG algorithm is a four-step process that in-
cludes six-frame translation, SVM filtration, codon-based
de Bruijn graph construction, and traversal (Fig. 1). First,
input sequences (e.g. reads or transcriptomic assemblies)
are translated into potential ORFs. Due to sequencing and
frame translation errors, a significant number of predicted
ORFs are false positives. Next, inGAP-CDG employs a
combination of SVM and codon-based de Bruijn graphing
to obtain a set of highly reliable ORFs (rORFs) to serve as
landmarks in the next step. Finally, because short
predicted ORFs are occasionally discarded by SVM [19],
inGAP-CDG builds a codon-based de Bruijn graph based
on all predicted ORFs and generates full-length CDSs by
traversing the graph under the guidance of rORFs
(Additional file 1: Figure S8).

Codon-based de Bruijn graph construction
The input sequences are split into kmers, with a sliding
window of k (default of 27 bp) and a step size of 3 bp.
Then, the codon-based de Bruijn graph is built using the

resulting kmers. We define the directed de Bruijn graph
as a codon-based graph G = (V, E) that has a set of verti-
ces V = {v1, v2, …, vn} and a set of edges E = {(v1, v5), (v1,
v3), …, (vm, vk)|vm, vk ∈ V} that are formed by pairs of k-
3 bp overlapping kmers. The set of nodes is created by
assigning each kmer v ∈ V to a unique vertex. A path
from v1 to vj through the contig graph consists of a se-
quence of nodes (e.g. (v1, v7, v4, vj)). The graph G1 = (V1,
E1) is a subgraph of G = (V, E) if (1) V1⊆V and (2) every
edge of G1 is also an edge of G. The subgraph G1 = (V1,
E1) is a connected component of G = (V, E) if G1 satisfies
three conditions: (1) V1⊆V; (2) every edge of G1 is also
an edge of G; and (3) any two nodes in G1 are connected
to each other by a path, and no paths can be found to con-
nect the nodes between V1 and (V–V1). A head is defined
as the style of arrowhead on the head node of an edge and
a tail is the style of arrowhead on the tail node of an edge.

Six-frame translation
Sequences for six-frame translation can be single-end
reads, paired-end reads, or transcriptomic assemblies. If
paired-end reads are provided and each pair exhibits
overlaps (insert size < the summed length of a read pair),
these reads are merged into long sequences using
FLASH [20] software. Otherwise, these reads are treated
as single-end reads. Then, for each inputted sequence,
the positions of all of the stop codons are recorded.
Then, all translated ORFs are collected and sorted by
length. In the six-frame translation of the inGAP-CDG
algorithm, we obtain two types of ORFs based on differ-
ent parameters. The first type includes strict-translated
ORFs that are the same length as the original sequence
and do not contain a stop codon. The second type con-
sists of loose-translated ORFs that cover at least 80% of
the original sequence (Additional file 1: Figure S9).

SVM filtration
inGAP-CDG employs SVM to train the prediction
model and to recognize candidate ORFs in the test data-
set. The positive and negative datasets used in SVM are
prepared using a codon-based de Bruijn graph strategy.
First, inGAP-CDG chooses all ORFs that contain no stop
codon and have the same length as the original sequence.
Second, a codon-based de Bruijn graph is built based on
these ORFs, and contigs are generated by traversing the
graph. Third, the long contigs (default > = 1 kb) are used
as the positive dataset, whereas for each long contig, the
predicted ORFs for the other five frames are treated as the
negative dataset. Finally, SVM trains a classification model
by taking the codon usage frequency of each sequence as
a feature vector to generate a set of rORFs from the test
dataset (Additional file 1: Figure S8).
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CDG traversal and coding sequence generation
Because some true ORFs are discarded during SVM fil-
tration, a codon-based de Bruijn graph constructed from
rORFs alone may result in fragmented CDSs. To solve
this problem, we generated a more complete but noisy
graph using the SVM test dataset (all ORFs translated
via six-frame translation) and mapped rORFs to the
graph to generate full-length CDSs. In detail, we split
the ORFs in the test dataset into kmers and constructed
a new codon-based de Bruijn graph. To simplify this
graph, we executed two functions: “tips trimming” and
“bubbles merging” (Additional file 1: Figure S10A–F). If
a “tip,” which is defined as a chain of nodes disconnected
on one end, is shorter than a given length (default:
2*kmer), it will be removed. A “bubble” is defined as
several similar paths with the same start and end nodes
on the graph. The paths in a bubble are compared, and
the identity among these paths is calculated. If the identity
reaches a cutoff of 95%, the longest path is reserved, and
all other paths are discarded. The rORFs are then mapped
to the simplified graph and the mapped kmers, referred to
as landmarks, will be used for traversing the graph. Rather
than traversing the entire graph, inGAP-CDG employs a
depth-first searching algorithm, which starts at each land-
mark and searches against the graph to identify the path
that connects two landmarks. Once all landmarks have
been visited, the nodes along the searched path are assem-
bled into a final CDS. Notably, inGAP-CDG can be
performed under two different modes: default and strict.
The strict mode is designed to obtain longer unigenes
with a lower level of redundancy. Unless specified,
inGAP-CDG is performed in the default mode.

Design of simulation studies
The D. melanogaster gene FBgn0039298, downloaded
from FLYBASE [21], was used to compare the traditional
and codon-based de Bruijn graphs. This gene is 5489 bp
in length and contains four exons and three introns.
First, a set of 100-bp single-end DNA-seq reads with a
sequencing depth of 30-fold was simulated based on this
gene using the Wgsim program from the SAMtools
package [22] and the dataset was used by inGAP-CDG
to construct a codon-based de Bruijn graph. Next, a set
of 100-bp single-end RNA-seq reads was simulated from
the CDSs of this gene using FluxSimulator [23] to con-
struct a traditional and a codon-based de Bruijn graph.
To test the feasibility of SVM filtration, three sets of

150-bp single-end RNA-seq reads were simulated from
chr3, chr19, and chr20 of the reference human genome
(hg19) using FluxSimulator with the default parameters.
These simulated datasets were then subjected to SVM
filtration as implemented in inGAP-CDG. After SVM fil-
tration, the receiver operating characteristic (ROC)
curve of each dataset was plotted in R using the

LIBSVM packages (e1071). To test the effect of read
length on the performance of inGAP-CDG, four RNA-
seq datasets with read lengths of 100, 300, 500, and 800
were simulated from the CCDS of hg19.
To test the performance of inGAP-CDG using tran-

scriptomic data with sequencing errors, three sets of 200-
bp paired-end RNA-seq reads were simulated from chr3
of hg19 using RNASeqReadSimulator (https://github.-
com/davidliwei/RNASeqReadSimulator) with error rates
of 0.5%, 1%, and 2%, respectively. Furthermore, the
metrics of sensitivity, redundancy, mean length, and base
error rate were used to assess the resulting CDS
predictions.

Real datasets
Three paired-end RNA-seq datasets generated from
Homo sapiens were downloaded from the NCBI
Sequence Read Archive (SRA) database [24] (accession
numbers ERR188040, ERR1161592, and SRR1045067).
These datasets contained 27.8, 24.4, and 19.2 million
read pairs with read lengths of 75, 100, and 150 bp, re-
spectively. Because the paired reads of the SRR1045067
dataset contained overlaps, we merged these reads into
long reads using FLASH and obtained 13.4 million
merged reads.
To verify the performance of inGAP-CDG on real data-

sets, three paired-end RNA-seq datasets from D. melano-
gaster (accession numbers: SRR3332174, SRR3332175,
and SRR3332176) were downloaded from the NCBI SRA
database [25]. These datasets consisted of 100-bp reads
and a library size of 165 bp and contained 28.9, 43.4, and
102.8 million read pairs, respectively. Because the frag-
ment size of these datasets was less than twice the read
length, overlapping paired-end reads were merged into
long reads using FLASH to obtain 21.2, 28.5, and 81.3
million merged reads, respectively.
We further examined whether SVM filtration could

reduce the complexity of the codon-based de Bruijn
graph using the ERR188040 dataset. First, the reads were
assembled into transcripts using Trinity. Second, two
codon-based de Bruijn graphs were constructed using the
predicted ORFs of these transcripts before and after SVM fil-
tration, respectively. The node number and the ratio of posi-
tive nodes in the components of each graph were calculated.
To assess the performance of inGAP-CDG when iden-

tifying orthologous genes for phylogenetic analysis, two
100-bp paired-end RNA-seq datasets were downloaded
from the NCBI database (SRA accession numbers of
SRR3151756 and SRR2922678). These two datasets
contained 45.5 and 45.2 million read pairs and were
generated by sequencing brain tissue samples from H.
sapiens and M. musculus, respectively. Because the
paired reads in both datasets contained overlaps, we
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merged these reads into longer reads using FLASH to
obtain 27.1 and 26.2 million merged reads, respectively.

Evaluation of inGAP-CDG performance
Currently, inGAP-CDG is the only tool available that
can directly predict genes from unassembled transcrip-
tomic reads. Several tools, such as TransDecoder (http://
transdecoder.sourceforge.net/), Prodigal [26], GenMarkS-
T [27], and ESTScan [28], predict genes from long tran-
scripts that are generated by transcriptome assemblers
(e.g. Trinity, SOAPdenovo-Trans [29], and Oases [30]).
Therefore, we built several pipelines to benchmark the
performance of inGAP-CDG by combining transcriptome
assembly and gene prediction tools. These pipelines
include: SOAPdenovo-Trans + ESTScan, SOAPdenovo-
Trans +GeneMarkS-T, SOAPdenovo-Trans + Prodigal,
SOAPdenovo-Trans + TransDecoder, Trinity + ESTScan,
Trinity + GeneMarkS-T, Trinity + Prodigal, Trinity +
TransDecoder, Velvet_Oases + ESTScan, Velvet_Oases +
Prodigal, and Velvet_Oases + TransDecoder. Furthermore,
we prepared a reference gene set to evaluate the perform-
ance of these pipelines and inGAP-CDG. We first aligned
transcriptomic reads to the hg19 reference genome using
TopHat [31] and used Cufflinks [32] to generate tran-
scripts. The resulting transcripts were aligned to the
CCDS dataset using BLAT [33] and aligned transcripts
with identities greater than 95%, matched lengths longer
than 1 kb and coverages greater than 90% were selected as
the reference gene set.
For each pipeline and inGAP-CDG, the length

distributions of the predicted CDSs were surveyed.
The predicted CDSs were aligned to the reference
dataset to determine the redundancy, ROC [34], aver-
age fragment number per gene, base error rate, and
chimera rate. Specifically, alignments with identities
greater than 90%, query CDS coverages greater than
90%, and reference gene coverages greater than 90%
were reserved. Redundancy was calculated as the
number of aligned predicted CDSs divided by the ref-
erence gene number. The ROC, which captures the
trade-off between sensitivity and specificity, was deter-
mined by calculating the true-positive rate (TPR) and the
false-positive rate (FPR). Notably, the sensitivity is equal to
the TPR, which is the percentage of the reference gene set
covered by predicted genes. The specificity is 1-FPR, which
represents the percentage of predicted genes covered by
the reference gene set. Fragment number, which reflects
the number of CDSs belonging to the same reference gene,
is computed using the equation

Pn
i¼1npi , where i is the

number of predicted CDSs aligned to the same reference
gene, n is the maximum number of i , and pi is the prob-
ability of i in all reference genes. The base error rate for a
predicted CDS was calculated as the number of

mismatches divided by the alignment length. Chimeric
CDSs derived from the concatenation of two or more
genes were detected and the percentage of chimeras was
also calculated. Specifically, the detection strategy was initi-
ated with predicted CDSs larger than 500 bp and these se-
quences were compared against the reference genes. A
predicted CDS was treated as a chimera if it had two or
more unique alignments with different genes and each align-
ment accounted for at least 30% of the length of this CDS.
Moreover, we compared inGAP-CDG with the Trinty +

Transdecoder pipeline for orthologous gene recognition
using two real RNA-seq datasets from H. sapiens and M.
musculus brain tissue samples. First, CDSs were predicted
using these two strategies. inGAP-CDG assembled the tran-
scriptomic reads according to the default parameters. In the
pipeline, the reads were assembled into transcripts using
Trinity with default parameters and CDSs were predicted
by implementing Transdecoder on these transcripts. Next,
orthologous gene pairs between H. sapiens and M. muscu-
lus were downloaded from the OrthoMCL database [35].
The one-to-one (one human orthologous gene correspond-
ing to one mouse orthologous gene) orthologous gene pairs
were selected and divided into two reference datasets ac-
cording to their original species. For each species, the pre-
dicted proteins obtained from these two strategies were
aligned to the reference dataset using BLAT. Finally, the
alignments were filtered to identify mapped CDSs. In detail,
alignments with identities greater than 95%, query CDS
coverages greater than 50%, and reference gene coverages
greater than 50% were reserved. If there was only one query
CDS uniquely aligned to a reference orthologous gene, the
aligned length was greater than 250 codons (i.e. half of the
average reference orthologous gene length). For each one-
to-one orthologous pair, the numbers of translated proteins
aligned to the human and mouse reference orthologous
genes were counted, respectively.
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