
Nazeen et al. Genome Biology  (2016) 17:228 
DOI 10.1186/s13059-016-1084-z

RESEARCH Open Access

Integrative analysis of genetic data sets
reveals a shared innate immune component in
autism spectrum disorder and its
co-morbidities
Sumaiya Nazeen1†, Nathan P. Palmer2†, Bonnie Berger1,3* and Isaac S. Kohane2*

Abstract

Background: Autism spectrum disorder (ASD) is a common neurodevelopmental disorder that tends to co-occur
with other diseases, including asthma, inflammatory bowel disease, infections, cerebral palsy, dilated cardiomyopathy,
muscular dystrophy, and schizophrenia. However, the molecular basis of this co-occurrence, and whether it is due to a
shared component that influences both pathophysiology and environmental triggering of illness, has not been
elucidated. To address this, we deploy a three-tiered transcriptomic meta-analysis that functions at the gene, pathway,
and disease levels across ASD and its co-morbidities.

Results: Our analysis reveals a novel shared innate immune component between ASD and all but three of its
co-morbidities that were examined. In particular, we find that the Toll-like receptor signaling and the chemokine
signaling pathways, which are key pathways in the innate immune response, have the highest shared statistical
significance. Moreover, the disease genes that overlap these two innate immunity pathways can be used to classify
the cases of ASD and its co-morbidities vs. controls with at least 70 % accuracy.

Conclusions: This finding suggests that a neuropsychiatric condition and the majority of its non-brain-related
co-morbidities share a dysregulated signal that serves as not only a common genetic basis for the diseases but also as
a link to environmental triggers. It also raises the possibility that treatment and/or prophylaxis used for disorders of
innate immunity may be successfully used for ASD patients with immune-related phenotypes.

Keywords: Autism spectrum disorder, Co-morbidities of ASD, Innate immunity pathways, Three-tiered meta-analysis,
Gene expression

Background
While at an organismal level, two or more diseases may
appear unrelated, at the molecular level, it is unlikely
that they arise entirely independently of one another.
Studies of the human interactome—the molecular net-
work of physical interactions (e.g., protein–protein, gene,
metabolic, regulatory etc.) between biological entities in
cells—demonstrate that gene function and regulation are
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integrated at the level of an organism. Extensive patterns
of shared co-occurrences also evidence molecular com-
monalities between seemingly disparate conditions [1].
Indeed, different disorders may sharemolecular compo-

nents so that perturbations causing disease in one organ
system can affect another [2]. Yet, since the phenotypes
appear so different, medical sub-disciplines address the
conditions with sometimes wildly differing treatment pro-
tocols. If investigators can uncover the molecular links
between seemingly dissimilar conditions, the connections
may help explain why certain groups of diseases arise
together and assist clinicians in their decision-making
about best treatments. Knowledge of shared molecular
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pathology may also provide therapeutic insights for repo-
sitioning of existing drugs [3].
Such thinking has emerged most recently in neuropsy-

chiatry, where many such illnesses do not have clear
boundaries in terms of their pathophysiology or diagno-
sis [4, 5]. Indeed, there is now growing evidence that
rare variants ranging from chromosomal abnormalities
and copy number variation (CNV) to single nucleotide
variation have implications for autism spectrum disor-
der (ASD) and other neuropsychiatric conditions [6–13].
For example, single nucleotide polymorphisms (SNPs),
which overlap genes in common molecular pathways,
such as calcium channel signaling, are shared in ASD,
attention deficit-hyperactivity disorder, bipolar disorder,
major depressive disorder, and schizophrenia [14]. CNVs,
especially the rare ones, can explain a portion of the
risk for multiple psychiatric disorders [10, 13]. For exam-
ple, the 16p11.2 CNV encompassing around 600 kb (chr
16:29.5, 30.2 Mb) has been implicated in multiple psychi-
atric disorders with the deletions being associated with
ASD, developmental delay, and intellectual disability, and
duplications being associated with ASD, schizophrenia,
bipolar disorder, and intellectual disability [10, 13, 15–19].
However, pathogenic variations are observed in only
about 30 % of the ASD-affected individuals [12, 20–23]
and these variations often fail to explain the idiopathic
(non-syndromic) ASD cases as well as why ASD-affected
individuals suffer from many other non-neuropsychiatric
conditions.
To complement the evidence of genome-wide

pleiotropy across neuropsychiatric diseases, rather than
looking at one neurodevelopmental disease (ASD) and
comparing it to other seemingly, brain-related diseases,
we expand our exploration outside of the brain to condi-
tions related to other organ systems that co-occur with
ASD. Recent studies based on electronic health records
[24, 25] have identified various co-morbidities in ASD,
including seizures [26, 27], gastrointestinal disorders
[28, 29], ear infections and auditory disorders, devel-
opmental disorders, sleep disorders [30], muscular
dystrophy [31–33], cardiac disorders, and psychiatric
illness [34, 35].
In this paper, we introduce an integrative gene expres-

sion analysis to identify a shared pathophysiological com-
ponent between ASD and 11 other diseases, namely,
asthma, bacterial and viral infection, chronic kidney dis-
ease, cerebral palsy, dilated cardiomyopathy, ear infection,
epilepsy, inflammatory bowel disease (IBD), muscular
dystrophy, schizophrenia, and upper respiratory infection,
that have at least 5 % prevalence in ASD patients [24, 25].
We asked the question, “Do these disease states—which
are not included in the definition of ASD but co-occur
at a significantly high frequency—illuminate dysregulated
pathways that are important in ASD?” We reasoned that

such pathwaysmay offer previously hidden clues to shared
molecular pathology.
Other investigators have integrated genomic data from

genome-wide association studies and non-synonymous
SNP studies for multiple immune-related diseases, reveal-
ing that combining genetic results better identified shared
molecular commonalities [36]. We believe that adopting
an integrative approach not only at the gene level but also
at the biochemical pathway and disease levels will power
the results still further.
Here we describe results from a novel three-tiered

meta-analysis approach to determine molecular similari-
ties between ASD and 11 of its co-morbid conditions. For
every disease condition, we (i) looked for statistically sig-
nificant differentially expressed genes, (ii) identified their
enrichment in canonical pathways, and (iii) determined
the statistical significance of the shared pathways across
multiple conditions. We are unaware of any analyses that
go from population-based co-morbidity clusters of ASD
to a multi-level molecular analysis at anywhere near this
breadth.
Our results unearth several innate-immunity-related

pathways—specifically, the Toll-like receptor and
chemokine signaling pathways—as significant players in
ASD and all but three of its examined co-morbidities.
Candidate genes in these two pathways significantly
overlap in conditions of ASD, asthma, bacterial and viral
infection, chronic kidney disease, dilated cardiomyopa-
thy, ear infection, IBD, muscular dystrophy, and upper
respiratory infection. Candidate genes did not appear
to be significantly shared in cerebral palsy, epilepsy,
or schizophrenia. Notably, although bacterial and viral
infection, respiratory infection, ear infection, IBD, and
asthma have well-known connections with the immune
system, we demonstrate that innate immunity pathways
are shared by ASD and its co-morbidities, irrespective of
whether they are immunity-related diseases or not.
Since both Toll-like receptor signaling and chemokine

signaling pathways play crucial roles in innate immu-
nity, the results suggest that this first-line defense system
(which protects the host from infection by pathogens and
environmental triggers) may be involved in ASD and spe-
cific co-morbidities. If the profiles of genetic susceptibility
pathways in relation to environmental triggers can be
ascertained, they may help in defining new treatments,
such as vaccination [37] or other tolerization therapies
[38]. Those may help individuals and families who are at
high risk for ASD to prevent and/or treat immune-related
phenotypes of the illness.

Results
Three-tiered meta-analysis pipeline
We examined ASD and 11 of its most common co-
morbidities (Table 1) through a three-tiered lens of gene,
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Table 1 Co-morbidities of autism spectrum disorders

Disease group Clinical manifestations References

Multisystem disorders (congenital anomalies, auditory disorders, Asthma Becker, 2007 [100];

infections, gastro-intestinal disorders, cardiac disorders etc.) Doshi-Velez, Ge,

and Kohane, 2014 [25]

Bacterial and viral infections Atladóttir et al., 2010 [78];

Atladóttir et al., 2012 [79];

Garbett et al., 2012 [63];

Hagberg, Gressens,

and Mallard, 2012 [101]

Chronic kidney disease Curatolo et al., 2004 [102];

Loirat et al., 2010 [103]

Cerebral palsy Surén et al., 2012 [104];

Doshi-Velez, Ge,

and Kohane, 2014 [25]

Dilated cardiomyopathy Witchel, Hancox,

and Nutt, 2003 [105];

Bilder et al., 2013 [106]

Ear infection/otitis media Konstantareas and

Homatidis, 1987 [107];

Rosenhall et al., 1999 [108];

Porges et al., 2013 [109]

Inflammatory bowel disease Horvath et al., 1999 [28];

(Crohn’s disease, ulcerative Horvath and Perman, 2002 [29];

colitis) Walker et al., 2013 [110]

Muscular dystrophy Wu et al., 2005 [31];

Hendriksen and Vles, 2008 [32];

Hinton et al., 2009 [33];

Kohane et al., 2012 [24]

Upper respiratory infection Shavelle, Strauss,

and Pickett, 2001 [111];

Porges et al., 2013 [109];

Bilder et al., 2013 [106]

Seizures Epilepsy Mouridsen et al., 1999 [26];

Tuchman and Rapin, 2002 [27];

Surén et al., 2012 [104];

Bilder et al., 2013 [106]

Psychiatric disorders Schizophrenia Morgan, Roy,

and Chance, 2003 [34];

Tabarés-Seisdedos

and Rubenstein, 2009 [112];

Ingason et al., 2011 [113];

Smoller et al., 2013 [14];

Murdoch and State, 2013 [114]
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pathway, and disease. Figure 1 shows our three-tiered
meta-analysis pipeline. Differential analysis of expression
data from 53 microarray studies (see Additional file 1:
Table S1) related to the 12 disease conditions revealed

different numbers of significant genes per disease depend-
ing on different false discovery rate (FDR) corrections
(shown in Table 2). The complete lists of p values per gene
per disease under different FDR corrections are given in

Fig. 1 Three-tiered meta-analysis pipeline. a Data preparation: Select the GEO series relevant to ASD and co-morbid diseases. b Three tiers: (1) For
each disease, select significant genes from differential expression analysis of GEO series with a Fisher’s combined test with p < 0.05 after
Benjamini–Yekutieli (BY) FDR adjustment. (2) For each disease, select significant pathways from hypergeometric enrichment analysis with p < 0.05.
(3) Identify significant shared pathways across diseases using Fisher’s combined test with p < 0.05 after Bonferroni FDR correction. Exclude the
non-significant pathways in ASD. c Post analysis. (1) Using the gene expression data from a healthy cohort, generate a null distribution of pathway p
values and calculate prior probabilities of pathways being significant by chance. (2.1) Using the prior probabilities, pathway p values in each
individual disease, and the Fisher’s combined p values of significant pathways across diseases, calculate minimum Bayes factors and minimum
posterior probabilities of null hypotheses for each significant pathway in each disease and in the combined case. (2.2) Combine the pathway p value
distribution of each disease with the average null distribution of p values using Fisher’s combined probability test and compare the combined p
value distribution with the background chi-squared distribution using a QQ plot for significance. Identify the significant pathways using the
combined p values, minimum posterior probabilities, and QQ plots. ASD autism spectrum disorder, BY Benjamini–Yekutieli correction, FDR false
discovery rate, GEO Gene Expression Omnibus, QQ plot, quantile–quantile plot
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Table 2 Number of differentially expressed genes selected
under different FDR corrections for different diseases

Bonferroni BY BH Nonea

ASD 157 1258 5104 9176

Asthma 238 852 2501 5555

Bacterial and viral infection 1613 3630 6016 8183

Chronic kidney disease 66 416 3771 12577

Cerebral palsy 93 220 646 2352

Dilated cardiomyopathy 146 349 908 3455

Ear infection/otitis media 1629 3867 6708 6708

Epilepsy 5 4 12 2242

Inflammatory bowel disease 831 2547 4771 6897

Muscular dystrophy 207 517 1303 3885

Schizophrenia 54 149 508 2881

Upper respiratory infection 32 59 172 2664

Significance cutoff of p < 0.05
ASD autism spectrum disorder, BY Benjamini–Yekutieli, BH Benjamini–Hochberg,
FDR false discovery rate
aNo FDR correction

Additional file 2. To select the most informative FDR cor-
rection test, we looked at the accuracy of classification of
cases vs. controls for each disease using the disease gene
sets selected under different FDR corrections. We found
the Benjamini–Yekutieli (BY) adjustment to be the most
informative and accurate—classification accuracy being
at least 63 % using the genes selected under BY adjust-
ment as features for a support vector machine (SVM)
classifier. This was true for all the diseases examined (see
“Methods” section as well as Additional file 3: Figure S1
for details).
Hypergeometric enrichment analysis on individual

pathway gene sets from the Kyoto Encyclopedia of Genes
andGenomes (KEGG), BioCarta, Reactome, and the Path-
way Interaction Database (PID) collections, as well as on
the combined gene set of all canonical pathways, helped
us to obtain a p value per pathway per disease. For dif-
ferent pathway gene set collections, the complete lists
of p values per pathway in each disease are provided in
Additional file 4. Combining the p values per pathway
across all the diseases using Fisher’s combined probabil-
ity test [39] and correcting for multiple comparisons using
Bonferroni correction, we measured the shared signifi-
cance of pathways across ASD and its co-morbidities (see
“Methods” section for details). After selecting any path-
way that had an adjusted p value < 0.05 as significant
and filtering out the pathways that are not significant in
ASD, we found a list of pathways that are dysregulated in
ASD and at least one of its co-morbidities (see Additional
file 4).
To confirm that the presence of multiple significant

pathways among ASD and its co-morbidities was due

to shared biology, we estimated minimum Bayes factors
(BFs) and minimum posterior probabilities of the null
hypothesis for each of the significant KEGG pathways in
ASD and its co-morbidities (Fig. 1 and Additional file 5).
The priors for the pathways were estimated from 100 null
distributions of p values generated by differential expres-
sion analysis and pathway analysis performed on the
gene expression data of a healthy cohort (GEO accession
GSE16028) (see Fig. 1 and “Methods” section for details).
Looking at the significant pathway p values in each dis-
ease and their corresponding posterior probabilities of the
null hypothesis, we found that, for the significant p val-
ues (p < 0.05), the posterior probabilities of the p values
being significant by chance were always less than 5 %. The
quantile–quantile (QQ) plot of combined p values of path-
ways across ASD and its co-morbidities shows marked
enrichment of significant p values indicative of shared dis-
ease biology captured by the pathways tested (Fig. 2a). The
QQ plots of hypergeometric p values of pathways in ASD
and its co-morbid diseases against theoretical quantiles
also show significant enrichment (see Additional file 3:
Figure S2). For contrast, we combined pathway p values
from each disease separately with the null p value distribu-
tion. When the pathway p value distribution in a disease is
combined with the null p value distribution, the QQ plots
do not show much deviation from the background distri-
bution (see Additional file 3: Figure S3), indicating both
that there is a lack of shared biology (as expected) and that
our analysis does not cause systematic inflation.

Involvement of innate immunity pathways in ASD and its
co-morbidities
The results demonstrate that pathways that are dys-
regulated across ASD and its co-morbidities with the
highest statistical significance (i.e., the lowest Bonferroni-
corrected combined p value) are all related to innate
immunity. For the KEGG, BioCarta, and PID gene sets,
the Toll-like receptor signaling pathway was found to be
the most significant (Additional file 4). For the KEGG
database, the top two significant pathways were Toll-
like receptor signaling and chemokine signaling (Table 3
and Additional file 4). The top three significant path-
ways, revealed from the analysis of the Reactome data set,
include chemokine receptor signaling, innate immunity,
and Toll-like receptor signaling (Additional file 4). When
we expanded our aperture of analysis to the gene sets from
all canonical pathways, the Toll-like receptor signaling and
chemokine signaling pathways were still found to be the
most significantly dysregulated in the disease conditions
(Additional file 4). Thus, we primarily focused our atten-
tion on these two pathways in ASD and its co-morbidities
and then, for completeness, extended to other innate
immunity KEGG pathways that were found significantly
dysregulated (Table 3).
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Fig. 2 Quantile–quantile plots showing p value distributions for a combined analysis. It combines pathway p values across a ASD and all its
co-morbidities, and b ASD and its non-immune-related co-morbidities. ASD autism spectrum disorder, CKD chronic kidney disease, CP cerebral
palsy, DC dilated cardiomyopathy,MDmuscular dystrophy, S schizophrenia

Both Toll-like receptor signaling and chemokine sig-
naling pathways are key pathways in the innate immune
response mechanism. Toll-like receptors are the most
common pattern recognition receptors that recognize dis-
tinct pathogen-associated molecular patterns and partici-
pate in the first line of defense against invading pathogens.
They also play a significant role in inflammation, immune
cell regulation, survival, and proliferation. Toll-like recep-
tors activate various signal transduction pathways, which
in turn activate expression and synthesis of chemokines,
which together with cytokines, cell adhesion molecules,
and immunoreceptors, orchestrate the early host response
to infection. At the same time they represent an impor-
tant link in the adaptive immune response [40]. Our
study revealed that the KEGG Toll-like receptor signal-
ing pathway, by itself, was significantly dysregulated (with
a combined p value of 1.7 × 10−30 after Bonferroni cor-
rection) in ASD, asthma, chronic kidney disease, dilated
cardiomyopathy, ear infection, IBD, muscular dystrophy,
and upper respiratory infection with the minimum poste-
rior probability of appearing significant by chance being
at most 1 %. In addition, the KEGG chemokine signal-
ing pathway was found significantly dysregulated (with a
combined p value of 1.02×10−21 after Bonferroni correc-
tion) in ASD, asthma, bacterial and viral infection, dilated
cardiomyopathy, ear infection, IBD, and upper respira-
tory infection with the minimum posterior probability of
appearing significant by chance being at most 2.4 % in
each case. These findings indicate the role of immune
dysfunction in this wide range of seemingly unconnected
disease conditions. Although there is some experimen-
tal evidence linking an abnormal chemokine response to
Toll-like receptor ligands associated with autism [41, 42],
no study so far has linked them to the co-morbidities
suffered by ASD-affected individuals.

When we looked at the other significant KEGG
pathways, we found two others involved in innate immu-
nity, namely, the NOD-like receptor signaling and leuko-
cyte transendothelial migration pathways. The NOD-like
receptor signaling pathway, by itself, was significantly dys-
regulated (with a combined p value of 2.6 × 10−15 after
Bonferroni correction and a minimum posterior probabil-
ity of the null hypothesis at most 4 %) in ASD, asthma, bac-
terial and viral infection, chronic kidney disease, dilated
cardiomyopathy, ear infection, IBD, and upper respira-
tory infection. The leukocyte transendothelial migration
pathway was significantly dysregulated (with a combined
p value of 1.4 × 10−6 after Bonferroni correction and a
minimum posterior probability of the null hypothesis at
most 1.7 %) in ASD, asthma, cerebral palsy, and muscu-
lar dystrophy. SomeNOD-like receptors recognize certain
types of bacterial fragments; others induce caspase-1 acti-
vation through the assembly of multi-protein complexes
called inflammasomes, which are critical for generat-
ing mature pro-inflammatory cytokines in concert with
the Toll-like receptor signaling pathway. While the Toll-
like receptor, chemokine, and NOD-like receptor signal-
ing pathways have more to do with the recognition of
infectious pathogens and initiating response, the leuko-
cyte transendothelial migration pathway orchestrates the
migration of leukocytes from blood into tissues via a pro-
cess called diapedesis, which is vital for immune surveil-
lance and inflammation. During this diapedesis of leuko-
cytes, the leukocytes bind to endothelial cell adhesion
molecules and then migrate across the vascular endothe-
lium to the site of infection. Notably, increased permeabil-
ity of the blood–brain barrier favoring leukocyte migra-
tion into the brain tissue has been implicated in ASD
before [43], but not as a shared transcriptomic common-
ality among its co-morbidities.
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Table 3 KEGG pathways significantly shared among ASD and its co-morbiditiesa

Pathway ASD Asthma Bacterial Chronic Cerebral Dilated Ear Epilepsy Inflammatory Muscular Schizo- Upper Chi- p value from Bonferroni
and viral kidney palsy cardio- infection bowel dystrophy phrenia respiratory square chi-square corrected
infection disease myopathy disease infection value distribution p value

Toll-like receptor 0.0048* 5.52E-06* 0.0762 0.0114* 0.6550 0.0034* 4.28E-16* 1 5.93E-05* 0.0210* 1 1.14E-10* 189.1151 1.1745E-32* 1.703E-30*

signaling pathway

Chemokine signaling 0.0145* 0.0003* 0.000051* 0.2197 0.8628 0.0194* 3.21E-10* 1 1.37E-06* 0.5703 1 8.89E-09* 170.8496 7.0449E-26* 1.022E-21*

pathway

NOD-like receptor 0.0342* 9.02E-05* 0.0136* 0.0019* 0.4760 0.0019* 1.99E-08* 1 0.0036* 0.7335 1 9.04E-05* 116.9434 1.7813E-17* 2.583E-15*

signaling pathway

Ribosome 6.49E-13* 0.9647 4.84E-10* 0.1720 0.6006 1 0.984089 1 0.9460 0.0026* 1 1 119.0004 3.68E-17* 5.336E-15*

Spliceosome 6.70E-05* 0.9541 6.39E-06* 0.2965 0.3831 0.2746 0.920135 1 1.36E-05* 0.5081 0.1721 1 82.5337 9.9149E-09* 1.438E-06*

Leukocyte trans- 0.0023* 0.8201 0.0110* 0.0797 0.0002* 0.8164 0.097372 1 0.1238 7.63E-06* 0.5000 1 75.6280 9.962E-09* 1.445E-06*

endothelial migration

Regulation of actin 0.0234* 0.9080 0.2734 0.1131 0.0745 0.0355* 0.227981 1 0.2032 5.90E-05* 0.1330 1 73.9701 2.7324E-05* 0.003962*

cyto-skeleton

Tight junction 0.0359* 0.5613 0.4111 0.1064 0.0005* 0.8542 0.303934 1 0.1900 0.0006* 1 1 56.2763 6.9114E-05* 0.010022*

ASD autism spectrum disorder, KEGG Kyoto Encyclopedia of Genes and Genomes
aThe entries with value ‘1’ indicate where there was no overlap between the pathway and the disease gene set
*Entries with significant p values
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To confirm that the presence of multiple significant
innate-immunity-related pathways among ASD and its
co-morbidities was due to shared biology, we repeated the
combined p value analysis excluding the immune-related
diseases (bacterial and viral infection, asthma, IBD, upper
respiratory infection, and ear infection). Innate immunity
pathways (leukocyte transendothelial migration, Toll-like
receptor signaling, and NOD-like receptor signaling path-
ways) still appeared among the most significant dysreg-
ulated pathways shared by ASD, cerebral palsy, chronic
kidney disease, and muscular dystrophy. The QQ plot of
combined p values of pathways across ASD and its non-
immune-related co-morbidities shows marked enrich-
ment of significant p values indicative of the shared
disease biology of these conditions (Fig. 2b). Additional
file 1: Table S2 shows themost significant KEGG pathways
that are shared by ASD and its non-immune-related co-
morbidities. For other pathway gene set collections, the
complete lists of Fisher’s combined p values per pathway
per disease are provided in Additional file 6.

Disease–innate immunity pathway overlap at gene level
To examine the shared innate immunity KEGG path-
ways through a finer lens, we examined the genes that
overlapped with them (Table 4 and Additional file 3:
Figure S4). Although these pathways have a broad involve-
ment in a variety of diseases, a small number of genes in
these pathways appear dysregulated most often in ASD
and its co-morbidities. Thus, we took a closer look at
the genes that are shared by ASD and at least one of its
co-morbid conditions.
In the Toll-like receptor signaling pathway, as shown in

Fig. 3a, commonly shared, differentially expressed genes
include CD14 and LY96 (also known as MD-2), responsi-
ble for mediating the lipopolysaccharide response, which
itself has been shown to create an autism-like phenotype
in murine model systems [44], but has never been linked
to the shared biology of ASD, cerebral palsy, dilated car-
diomyopathy, muscular dystrophy, and IBD. The widely
expressed Toll-like receptors, especially, TLR1, TLR2, and
TLR9, mediate the recognition of foreign substances,
including infectious pathogens, and the regulation of the
subsequent cytokine production required for the immune
response. Although these genes have been known to be
involved in immunity-related conditions, they have not
been implicated in the co-occurrence of such conditions
in ASD patients. Other genes involved were CCL4, also
known as Macrophage inflammatory protein 1β (MIP-
1β), which is the most upregulated chemokine in natu-
ral killer cells of children with autism [45]; MAPK21, a
gene upstream of theMAP-kinases that mediates multiple
intra- and extra-cellular signals; JUN (a subunit of tran-
scription factor AP-1), which regulates gene expression
in response to a variety of stimuli, including cytokines,

growth factors, stress, and bacterial and viral infections;
SPP1 (also known as OPN), a cytokine that upregulates
expression of interferon-γ (IFN-γ ), which itself has been
implicated in ASD and other diseases characterized by
social dysfunction [46]; and TBK1, a gene that can medi-
ate NFκB activation in response to certain growth factors
and is often considered as a therapeutic target for inflam-
matory diseases.
In the chemokine pathway, as shown in Fig. 3b, the com-

monly shared genes include the chemokines (e.g., CCL4,
which had altered expression levels in asthma and ear
infection) and MAP-kinases (e.g., MAP2K1, which had
altered expression levels in ASD, dilated cardiomyopa-
thy, ear infection, and muscular dystrophy). The HCK
gene, which belongs to the Src family of tyrosine kinases,
showed altered expression levels in ASD, asthma, IBD,
ear infection, bacterial and viral infection, and muscu-
lar dystrophy. Considering HCK’s role in microglia and
macrophages in controlling proliferation and cell sur-
vival [47], this finding is not surprising. JAK2, which
is dysregulated in ASD and its multiple immune-related
co-morbidities, regulates STAT3 activity, which in turn
transduces interleukin-6 (IL-6) signals. Increased IL-6 in
the maternal serum has been known to alter fetal brain
development, impairing social behaviors in the offspring
[48, 49]. The alpha and beta subunits of G-proteins, dys-
regulated in ASD, asthma, IBD, and bacterial and viral
infections, are important signaling molecules, which are
often considered to have weak links to a number of
brain conditions. The RAP1B gene, a member of the
RAS family, regulates multiple cellular processes includ-
ing cell adhesion, growth and differentiation, and integrin-
mediated cell signaling. This protein also plays a role
in regulating outside-in signaling in platelets, and G-
protein coupled receptor signaling. Thus, it may be of
importance.
In the NOD-like receptor signaling pathway, the genes

NOD1 and NOD2 drive the activation of NFκB and
MAPK, the production of cytokines, and apoptosis. The
BIRC2 and BIRC3 genes (which had altered expressions
in ASD, asthma, ear infection, and bacterial and viral
infections) are members of the inhibitor-of-apoptosis pro-
tein family and are key regulators of NOD1 and NOD2
innate immunity signaling. In the leukocyte transendothe-
lial migration pathway, the TXK gene, which is a non-
receptor tyrosine kinase (with altered expression in ASD,
ear infection, IBD, and bacterial and viral infections),
specifically regulates IFN-γ gene transcription and the
development, function, and differentiation of conven-
tional T cells and nonconventional NKT cells. Mutation
of the TXK gene has been identified to be a segregat-
ing factor for a number of neurodevelopmental disor-
ders, including ASD, bipolar disorder, and intellectual
disabilities [50].
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Table 4 Differentially expressed genes in ASD and co-morbidities that overlap with innate immunity pathways

Toll-like receptor signaling pathway Chemokine signaling pathway NOD-like receptor signaling pathway Leukocyte transendothelial migration pathway

Autism spectrum disorder TLR9, MAP2K4, CCL4, LY96, CCL4, JAK2, GRK7, CCL17, BIRC3, MAPK13, SUGT1, PSTPIP1, TXK, NCF2, JAM2, GNAI2, GNAI3,

CD14, TAB2, MAP2K2, MAPK13, CCL21, CCL22, GNB3, GNAI2, PYCARD, TAB2, BIRC2 CLDN23, ACTN3, ICAM1, ACTN1, MAPK13,

MAP2K1, TBK1, TLR1, TLR2 CCR2, CXCR3, GNAI3, CCR10, CD99, RAP1B, CLDN14, MSN

ADCY6, PREX1, HCK, MAP2K1,

RAP1B

Asthma STAT1, IKBKE, NFKB1, RELA, STAT1, CCL2, GNB4, JAK2, CXCL1, RIPK2, BIRC3, CCL2, TXK, ACTN2, ICAM1

TLR7, TICAM1, IL8, IFNAR1, CCL20, NFKB1, RELA, CXCL5, IL8, CASP5, NFKB1, RELA,

IFNAR2, TICAM2, CD40, CXCL9, XCR1, PLCB1, CXCL1, PRKCD, CXCL2, IL6

TLR3, IL6, IRF7 HCK, IL8, CCL1, CXCL2,

CXCL9, LYN

Chronic kidney disease JUN, CTSK, NFKBIA, FOS CCL17, NFKBIA, CXCR6 NFKBIA, HSP90AA1, NLRC4, CLDN16, ACTN4, CLDN9

HSP90AB1

Cerebral palsy CD14 CCL2 CCL2 JAM3, MMP2, VCAM1, ACTN4, ACTG1,

MSN, CTNNA3

Dilated cardiomyopathy MYD88, LY96, CD14, NFKBIA, CCL2, CCL11, CCL8, NFKBIA, RIPK2, CCL2, CCL11, CCL8, PIK3R1

MAP2K1, PIK3R1 MAP2K1, CCR1, PIK3R1 NFKBIA

Ear infection JUN, CD86, STAT1, CCL3, STAT3, STAT1, STAT2, CCL2, CASP8, CXCL1, RIPK2, TNF, TXK, NCF4, VCAM1, PIK3R5, CLDN23,

MYD88, CCL5, CCL4, LBP, CCL3, CCL5, CCL4, CX3CR1, BIRC3, CCL2, CCL5, CCL11, CLDN10, CLDN8, MYL9, CLDN5, ICAM1,

TLR6, MAP3K8, CD14, IKBKE, CCL11, CCL7, CXCL14, JAK3, CCL7, MEFV, CASP1, TNFAIP3, ACTN4, CLDN19, CLDN22, RASSF5,

NFKB1, NFKBIA, PIK3R5, TLR5, JAK2, CCL17, CCL20, CCL19, MAPK3, NFKB1, NFKBIB, NFKBIA, CLDN7, CLDN4, PIK3R2

ITIRAP, RELA, TOLLIP, CXCL11, CCL22, NFKB1, NFKBIB, NFKBIA, IL18, RELA, IL1B, NLRP3,

TLR7, TLR8, CXCL10, CASP8, PIK3R5, RELA, GNG7, FGR, GNG11, BIRC2, CXCL2, IL6

TNF, IL12B, MAP2K3, MAP2K1, GNGT2, XCL1, CXCL5, ADCY3, CXCL11,

MAP2K6, MAPK3, IL1B, CD40, ADCY2, CXCL10, CXCL1, PLCB3,

TBK1, CXCL9, TLR3, TLR4, CXCR5, CXCR2, GNG8, HCK,

TLR1, FOS, TLR2, IL6, MAP2K1, CCR5, CCR7, MAPK3,

IRF7, PIK3R2 CXCL16, CCR1, CXCL13, CXCL2,

CXCL3, CXCL9, LYN, PIK3R2

Epilepsy – – – –
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Table 4 Differentially expressed genes in ASD and co-morbidities that overlap with innate immunity pathways (Continued)

Toll-like receptor signaling pathway Chemokine signaling pathway NOD-like receptor signaling pathway Leukocyte transendothelial migration pathway

Inflammatory bowel disease CD86, MYD88, CCL4, LY96, CCL2, CCL4, CCL11, CCL7, CHUK, CXCL1, BIRC3, CCL2, TXK, ITGA4, NCF4, MMP9, NCF2,

MAP3K8, AKT1, CD14, CTSK, AKT1, CCL18, ARRB2, CCL20, CARD6, CCL11, CCL7, IL8, MYL12A, THY1, GNAI2, MYL5, RHOH,

SPP1, TOLLIP, CXCL11, TLR8, GNG5, GNB3, GNB2, CCL24, CASP5, CASP1, MAPK3, IL1B, CLDN8, MYL9, CLDN15, MYL12B, RAP1A,

CXCL10, TICAM1, CHUK, IL8, PRKX, GNG10, GNAI2, GNG11, NLRP1, CXCL2, HSP90AB1 PIK3CA, MSN, VAV3

MAP2K3, IL12A, MAPK3, IRF3, XCL1, CXCL11, CXCL6, CCR10,

IL1B, PIK3CA, CXCL9, TLR4, CXCL10, ADCY6, CHUK, CXCL1,

TLR1, TLR2 PLCB3, CXCR2, CXCR1, HCK,

IL8, ADCY4, PRKCZ, MAPK3,

CCR1, XCL2, CXCL13, RAP1A,

PF4, CXCL2, CXCL3, PF4V1,

PIK3CA, CXCL9, PPBP, VAV3,

LYN

Bacterial and viral infection TLR9, MYD88, CCL5, LY96, STAT3, STAT2, CCL5, DOCK2, CHUK, RIPK2, CCL5, NOD1, TXK, ITGAM, NCF4, MMP9, NCF2, VAV1,

CD14, NFKBIA, TLR5, TLR8, JAK2, VAV2, NRAS, NFKBIA, CARD6, CCL8, CARD8, CASP5, VASP, MYL12A, VAV2, ITGB2, CTNNA1,

CHUK, IRAK4, MAP2K7, IRF3, GNG7, GNG5, GNB2, GNG10, NOD2, NFKBIA, IKBKG, PYCARD, GNAI3, EZR, PLCG1, RHOH, PRKCA,

IKBKG, TICAM2, IL1B, TBK1, GNG11, ADCY3, CXCR3, CCL4L1, NLRC4, IL1B, BIRC2 ESAM, RAC2, CD99, ITK, NCF1, CYBA,

TLR4, TLR1, FOS, TLR2, GNAI3, GNB1, SOS2, CHUK, CYBB, MYL5, RHOA

IRF7 RAF1, RHOA, CXCR2, CXCR1,

PRKCD, HCK, RAC2, RASGRP2,

ADCY4, CCR3, CCR4, CXCR6,

CCR7, GRB2, IKBKG, HRAS,

GSK3B, CCR1, ITK, NCF1,

PPBP, LYN

Muscular dystrophy LY96, CD14, CTSK, SPP1, GNG10, HCK, MAP2K1, GNG12 PYCARD JAM3, MMP2, NCF2, VCAM1, ITGB2,

MAP2K1, FOS JAM2, MYL5, CD99, ACTG1, MYL12B,

MSN, CYBA

Schizophrenia – – – CD99

Upper respiratory infection CCL4, CXCL11, CXCL10, IFNB1, STAT2, CCL2, CCL4, CCL7, CCL2, CCL7, IL6 –

CXCL9, IL6, IRF7 CXCL11, CXCL10, CXCL9

ASD autism spectrum disorder
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Fig. 3 a Toll-like receptor signaling pathway color-tagged by co-morbidity findings. b Chemokine signaling pathway color-tagged by co-morbidity
findings. Genes were mapped onto corresponding KEGG pathway using the “user data mapping tool” from KEGG [91, 92]. Genes are represented by
rectangular boxes on KEGG pathways. We put color tags on a gene to indicate in which diseases it is differentially expressed. Sometimes a set of
genes are mapped onto a single box. In that case, the color tags on that box represent the union set of all diseases in which those genes are
differentially expressed. ASD autism spectrum disorder, CKD chronic kidney disease, CP cerebral palsy, DC dilated cardiomyopathy, EI ear infection,
IBD inflammatory bowel disease, Infection bacterial and viral infection, KEGG Kyoto Encyclopedia of Genes and Genomes,MDmuscular dystrophy,
URI upper respiratory infection

Besides the immune-related ones, Table 3 documents
several other pathways and gene sets including the ribo-
some and spliceosome gene sets, which have roles in
genetic information processing and translation and the

actin cytoskeleton regulation pathway, which controls var-
ious cellular processes like cell motility. Neuronal signal
processing and neuron motility have often been associ-
ated with ASD, thus these findings are not surprising. The
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genes in the tight junction pathway mediate cell adhesion
and are thought to constitute the intra-membrane and
para-cellular diffusion barriers. These findings implicate
the involvement of these cellular processes in the shared
pathology of ASD and its co-morbidities.

Discriminatory power of innate immunity pathway genes
We assessed the discriminatory power of the innate
immunity pathway genes, by taking the union of the
genes from the chemokine signaling and Toll-like receptor
signaling pathways and performing threefold SVM classi-
fication of cases vs. controls for each of the 12 disease con-
ditions. We could achieve an average accuracy of at least
70 % (Fig. 4). We also performed the same classification
using the same number of randomly selected genes that do
not overlap with these pathways. With randomly selected
genes, the classification accuracy was much lower. This
result suggests that the genes that have altered expres-
sions in the diseases examined and are present in these
innate immunity pathways were sufficient to partially dis-
tinguish the disease states from the controls. When we
included the overlapping genes in the NOD-like recep-
tor signaling and transendothelial migration pathways
in this analysis, the classification accuracy was at least
65 % (see Additional file 3: Figure S5), which was still bet-
ter than for the randomly selected non-immune genes.
In fact, a recent functional genomic study showed that
immune/inflammation-related genes can provide reason-
able accuracy in the diagnostic classification of male
infants and toddlers with ASD [51].

Discussion
This study bridges previous analyses based on the elec-
tronic health records of the co-morbidities of large

populations of individuals with ASD and the gene expres-
sion profiles of each of these co-morbid diseases as well
as ASD against their respective control cases. We have
identified that the most significantly and consistently dys-
regulated pathways shared by these diseases are the innate
immunity signaling pathways. For most of these disor-
ders, the genes in these pathways can classify the disorders
with respect to their controls withmoderate accuracy, fur-
ther evidence of the extent of the dysregulation in these
pathways.
In contrast to traditional approaches that look at a

group of disorders of the same organ system, we have
focused on ASD and its co-morbidities, which often occur
in different organ systems, with a view to finding their
shared genetics. It would have been ideal to perform the
study on a sufficiently large cohort of ASD patients hav-
ing enough representatives of all the co-morbid diseases,
but in practice, such a study is currently infeasible due to
cost constraints and/or patient availability. Thus, to per-
form this study with existing data sets for ASD and its
co-morbidities, we make use of the power of statistics
and computation. First, we look at the functional genomic
makeup of patients with ASD and its co-morbid dis-
eases separately, and then find the commonalities between
them. Some of the microarray studies we looked at have
small sample sizes, which gives rise to the possibility
of poor random error estimates and inaccurate statisti-
cal tests for differential expression. For this reason, we
selected limma t-statistics, an empirical Bayes method
[52], which is reportedly one of the most effective meth-
ods for differential expression analysis even for very small
data sets [53]. To find the combined significance of the
pathways across multiple diseases, we used Fisher’s com-
bined probability test [39], because, it gives a single test

Fig. 4 Accuracy of classification for case–control groups in different diseases using differentially expressed genes that overlap in the KEGG Toll-like
receptor signaling and chemokine signaling pathways versus randomly selected disease genes that do not overlap in the innate immunity
pathways. Diseases for which the differentially expressed genes are not over-represented in the Toll-like receptor signaling and chemokine signaling
pathways, are omitted here. ASD autism spectrum disorder, IBD inflammatory bowel disease, KEGG Kyoto Encyclopedia of Genes and Genomes
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of significance for a number of not-so-correlated tests of
significance performed on very heterogeneous data sets.
When the individual tests do not appear as significant,
yet have a combined effect, Fisher’s combined p value can
indicate whether the probability of the combined effect is
on the whole lower than would often have been obtained
by chance. Notably, a significant statistic from Fisher’s test
implies that the pathway is involved in the biology of at
least one of the diseases. Thus, to ensure that the com-
bined significant statistic is due to the shared biology of
multiple diseases, we calculate minimum BFs and mini-
mum posterior probabilities of significance by chance for
each significant pathway, and also compare the combined
p value distributions of diseases and the null data set using
QQ plots. We draw our conclusions using a combination
of the p values and the posteriors to avoid any systematic
bias inherent to the methods used.
As expected for a neurological disease, the pathways

that are most significantly dysregulated in ASD are often
the pathways involved in neuronal signaling and devel-
opment, synapse function, and chromatin regulation [12].
Similarly, for immune-related diseases, like, asthma, IBD,
and various infections, the role of innate immunity path-
ways is well documented in individual studies [54–60].
Despite some controversy, in the last 15 years, exper-
imental evidence has also pointed in the direction of
dysregulated immunological signaling in at least some
subsets of individuals with autism. This evidence includes
findings of an abnormal chemokine response to Toll-like
receptor ligands associated with autism in experimental
studies [41, 42], and differential gene and protein expres-
sion in the central nervous system and peripheral blood of
patients with ASD [35, 41, 61–68]. Many reports suggest
the alteration of the activation, amount, and distribu-
tion of microglia, a representative immune cell in the
brain, and its autophagy to be involved in ASD [69–72]. A
recent study implicates adaptive immune dysfunction, in
particular, disruption of the IFN-γ signaling driven anti-
pathogen response, to be related to ASD and other dis-
eases characterized by social dysfunction [46]. However,
that dysregulation of innate immunity pathways connects
ASD with some of its non-immune-related co-morbidities
(e.g., chronic kidney disease, cerebral palsy, and muscular
dystrophy) is rather intriguing.
That the innate immunity pathways are shared between

ASD and the other co-morbid states does notmean that all
cases of ASD are characterized by a disorder in these path-
ways. For example, in our previous work we have shown
that although, on average, the gene expression profile of
children with ASD shows dysregulated innate immunity
signaling, this is a reflection of the smaller number of
individuals with ASD who are outliers in this pathway
[73]. With our growing understanding of the heterogene-
ity of ASD and the characterization of ASD populations

with distinct co-morbidity associations [25], the integra-
tive analysis we describe here may, therefore, implicate a
subset of individuals with ASD with innate immune dys-
regulation that is either the result of genetic vulnerabilities
[74] or particular exogenous stimuli such as infections or
disordered microbiome ecologies [75].
Although it is tempting to consider that innate immu-

nity signaling is primarily driven by external environ-
mental stimuli such as infection, we have to recognize
that the same signaling mechanisms may be repurposed
by different organs for different purposes. For example,
21 % of the genes described in the KEGG long-term
potentiation pathway (one of the mechanisms underlying
synaptic plasticity) overlap with the genes in the Gene
Ontology’s collection of immune genes. It may be, as
suggested by large epidemiological studies, that some-
times the disorder is in the signaling system and at other
times it is because of an external stimulus. Specifically,
nationally scaled studies have demonstrated increased
autoimmune disease frequency in the parents of children
with ASD [76], increased gestational C-reactive protein
in mothers of children with ASD [77], and increased fre-
quency of ASD after pregnancies complicated by infection
[78, 79]. Some early studies also suggest the infectious
exposure may be directly from the gastrointestinal micro-
biome [80–84], which also can engage the innate immune
system. The success of treatment and/or prophylaxis for
disorders of innate immunity in some of the diseases that
are co-morbid with ASD raises the possibility that similar
treatments may also be successful for subsets of those with
ASD.

Conclusions
Over the years, ASD has baffled researchers not only
with its heterogeneity, but also its co-occurrence with
a number of seemingly unrelated diseases of different
organ systems. In this study, we introduced a three-tier
meta-analysis approach to capture the shared genetic sig-
nals that form the basis of ASD’s co-occurrence with
other diseases. For ASD and 11 of its most frequently
occurring co-morbidities, we extracted significant differ-
entially expressed genes, measured their enrichment in
canonical pathways, and determined the pathways that
are shared by the diseases in question in a statistically
rigorous fashion. An analysis of this scale for studying
ASD and its co-morbidities is unheard of as per our
knowledge. Our results reveal the involvement of two
disrupted innate immunity pathways – Toll-like receptor
signaling and chemokine signaling – in ASD and sev-
eral of its co-morbidities irrespective of whether they are
immune-related diseases or not. We also showed that the
disease genes that overlapped with these pathways could
discriminate between patients and controls in each dis-
ease with at least 70 % accuracy, further proving their
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importance. As innate immunity pathways are impera-
tive in orchestrating the first line-of-defense mechanism
against infection-causing pathogens and environmental
triggers, their involvement in ASD and its co-morbidities
can be thought of as the missing genetic link for environ-
mental factors in the pathophysiology of ASD. This mind-
set also raises the possibility that successful treatments for
innate immunity disorders may help ASD patients.

Methods
Overview of the three-tiered meta-analysis
To analyze genome-wide expression studies across ASD
and 11 of its co-morbidities (Table 1), we introduced
a step-wise three-tiered meta-analysis pipeline (Fig. 1).
Our meta-analysis started at the gene level, in which we
first identified the genes that are differentially expressed
among cases and controls for a given disease. We then
extended this analysis to the pathway level, where we
investigated the pathways that were significantly enriched
in candidate genes for a given disease. Finally, we iden-
tified the pathways that were significant across multiple
diseases by newly combining pathway-level results across
diseases and performing a Bayesian posterior probability
analysis of null hypotheses for pathways in each disease
as well as in the combined case. Details are described
below.

Gene-centric expression analysis per disease
Using the GEOquery package [85] from Bioconductor in
R, we downloaded the gene expression data for each dis-
ease in gene matrix transposed (GMT) format from the
Gene Expression Omnibus (GEO). The accession identi-
fiers for the disease studies are listed in Additional file 1:
Table S1. We removed ‘NA’ values from the data and log-
normalized the expression values for subsequent analysis.
Then, we performed differential expression analysis on
each data set using the limma package [52] from Biocon-
ductor in R, and obtained p values for each gene in each
experiment.
To determine the degree of correlation between the dif-

ferential expression analyses of the p values of data sets
selected under each disease, we calculated the pairwise
Pearson correlation coefficient of p values (Additional
file 1: Table S3). Considering a Pearson correlation coeffi-
cient of at least 0.30 with p < 0.05 as significant, we found
that the p values are not significantly correlated. This lack
of correlation allowed us to use Fisher’s combined prob-
ability test to calculate combined p values for the genes
in each disease condition. We used Fisher’s combined
probability test as follows:

P ∼ χ2 = −2
k∑

i=1
ln(pi).

Here, pi is the p value of test i, χ2 is the chi-squared
distribution, k is the number of tests, and P is the adjusted
p value (p < 0.05 was considered significant).

Selecting themost informative FDR correction test for
multiple comparisons
To adjust the combined p values, we considered differ-
ent FDR corrections [i.e., Bonferroni, Benjamini–Yekutieli
(BY), and Benjamini–Hochberg (BH)].We also considered
the ‘no correction’ case for completeness. We selected
the most informative one, based on the level of accuracy
we could achieve in classifying cases of a particular dis-
ease, vs. controls, using the genes selected under a specific
test with a significance cutoff of p < 0.05. We tested
the accuracy of the case–control classification for each
of the 53 disease data sets using four different classifica-
tion methods, namely, naive Bayes method, Fisher’s linear
discriminant analysis, k nearest neighbor, and SVM. The
set of significant genes selected under different FDR cor-
rections was considered as a feature of the classification
methods. We performed threefold cross validation and
calculated the average accuracy. We selected the FDR cor-
rection test that produced the best average accuracy in
each disease. See Additional file 3: Figure S1 and the sup-
plementary text on different classification techniques for
microarray gene expression data provided in Additional
file 7 for more details.

Pathway-centric enrichment analysis per disease
From the disease-level gene-centric expression analysis,
we obtained a list of significant genes per disease. For each
disease, we then performed a hypergeometric enrichment
test for each pathway. This test uses the hypergeomet-
ric distribution to calculate the statistical significance of
k or more significant disease genes, out of n total genes,
appearing in a specific pathway gene set. It helps identify
whether or not the specific disease gene set is over-
represented in a certain pathway, by providing a p value
per pathway per disease.

Disease-centric analysis of pathways
Once we obtained the p values for the pathways per
disease, first we calculated the pairwise Pearson corre-
lation of pathway p values across diseases (Additional
file 1: Table S4). Since the distributions were not signif-
icantly correlated (Pearson correlation coefficient <0.30
with p value <0.05), we safely assumed the distributions
to be independent. Next, we calculated combined p val-
ues for each pathway across all the diseases using Fisher’s
combined probability test. We corrected for multiple
comparisons using Bonferroni correction. We defined a
significance threshold of adjusted p value<0.05 and called
any pathway that passed this threshold, significant. We
restricted our results to the pathways that appeared sig-
nificant in ASD.
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Calculation of priors, minimumBFs, andminimumposterior
probabilities of null hypotheses
To estimate the prior probability of pathways, we selected
a publicly available GEO study of 109 gene expression pro-
files of blood drawn from healthy individuals enrolled at a
single site (GEO accession: GSE16028).We assigned case–
control labels randomly to the samples and performed
differential expression analysis using R package limma.
We selected differentially expressed genes using uncor-
rected p values (<0.05), because after BY correction none
of the genes remained significant. On the significant gene
list, we performed hypergeometric enrichment analysis to
obtain a pathway p value distribution. We repeated this
process 100 times to obtain 100 null p value distributions.
We calculated the prior for each pathway by looking at
howmany times the pathway appeared significant (p value
<0.05) during these 100 runs. We took an average of the
100 distributions to obtain the null p value distribution.
The null hypothesis for pathway p values is that p values

are uniformly distributed and the alternative hypothesis
is that smaller p values are more likely than larger p val-
ues. Following the approach of Sellke, Bayarri, and Berger
[86], we estimated the minimum BFs using the following
formula:

BF =
{

−ep log(p), if p < 1
e ,

1, otherwise,

where e is Euler’s constant.
For calculating minimum BFs for χ2-distributed test

statistics, we used Johnson’s formula [87]:

BF =
{

( vx )
− v

2 exp(− x−v
2 ), for x > v,

1, otherwise,

where x is the chi-square statistic that gave rise to the
observed p value and v is the degrees of freedom.
Following Goodman’s approach [88], we used the prior

probability distribution drawn from the null data set and
the minimum BF to estimate a lower bound on the pos-
terior probability of the null hypothesis based on Bayes’
theorem as follows:

Minimum Posterior Probability =
(
1 +

(
BF × q
1 − q

)−1
)−1

where q is the prior probability.
The null distributions and priors for all KEGG pathways

and the minimum BFs, and minimum posterior probabil-
ities of null hypotheses for KEGG pathways are given in
Additional file 5.

Measuring the discriminatory power of overlapping innate
immunity genes
We performed threefold classification and measured the
average accuracy of the case–control classification for

each disease with the SVM classifier using the union
set of the genes from KEGG Toll-like receptor signal-
ing and chemokine signaling pathways shared across
ASD and its co-morbidities to see how well the over-
lapping genes could distinguish the disease state from
controls and compared it with the classification accu-
racy using randomly selected genes that do not over-
lap with these two pathways (Fig. 4). We repeated the
same test for the overlapping genes in the four innate
immunity KEGG pathways and compared the classifi-
cation accuracy with the discriminatory power of ran-
domly selected non-immunity genes (Additional file 3:
Figure S5).

Data set selection
Gene expression data sets
We selected 11 disease conditions that co-occur most
commonly in ASD patients. Each of these diseases has at
least 5 % prevalence in ASD patients [25]. The prevalence
of a co-morbid condition can be defined in two ways: (i)
the percentage of ASD patients having a co-morbid dis-
ease and (ii) the percentage of patients with a co-morbid
disease having ASD [24]. The diseases that satisfy either of
these criteria include asthma, bacterial and viral infection,
cerebral palsy, chronic kidney disease, dilated cardiomy-
opathy, ear infection/otitis media, epilepsy, IBD, muscular
dystrophy, schizophrenia, and upper respiratory infection.
Table 1 shows the disease groups along with the literature
references.
To identify publicly available studies relevant to these

co-morbidities, we performed an extensive literature
search of the GEO of the National Center for Biotech-
nology Information (NCBI) [89, 90]. Using the advanced
search tool provided by GEO, we searched series data sets
from studies that performed expression profiling by array
on either human ormouse. The search results were parsed
using a custom-built parser. It identified 1329GEO studies
for ASD and 11 of its co-morbidities that have been pub-
licly available since 2002. We verified the search results
by hand to remove false positives. From the hand-curated
results, we retained only those series that corresponded to
case–control studies and had complete gene annotations
supplied by either NCBI or the submitter. We investigated
whether case–control studies had matched controls for
the disease cases as well as to reduce noise. We made
sure that we had at least 30 samples under each disease.
For each selected GEO series, the accession identifier as
well as abridged study details including the organism, tis-
sue type, platform, and number of samples is provided in
Additional file 1: Table S1. To remove the potential for
biases that could arise from using gene expression data
sets from different array platforms, tissues, and species,
we avoided combining the actual measurements of
expression values across platforms, tissues, and diseases.
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Instead, we performed differential expression analysis on
each study separately and then combined the p values
only.

Pathway gene sets
We collected 1320 curated pathway gene sets, includ-
ing those from the KEGG pathways [91, 92], Reac-
tome pathways [93, 94], BioCarta pathways [95], PID
pathways [96], SigmaAldrich gene sets, Signaling Gate-
way gene sets, Signal Transduction KE gene sets, and
SuperArray gene sets from the Molecular Signatures
Database (MSigDb) version 4.0 [97]. The gene sets
were downloaded in GMT format. Of the available
gene sets, we used those that were expert-curated:
C2:CP (canonical pathways), C2:CP-BioCarta (BioCarta
gene sets), C2:CP-KEGG (KEGG gene sets), C2:CP-
Reactome (Reactome gene sets), and PID (Pathway Inter-
action Database gene sets extracted from C2). From the
KEGG collection, we excluded the disease- and drug-
related gene sets. After excluding too large (>300 genes)
and too small (<10 genes) gene sets, 1261, 146, 211,
629, and 196 gene sets remained in these categories,
respectively.
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hypergeometric test p values per pathway per disease for KEGG, BioCarta,
Reactome, and PID pathway collections as well as all canonical pathway
gene sets collected from MSigDB version 4.0., and Fisher’s combined p
values for ASD and its co-morbidities. (XLS 1444 kb)
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minimum Bayes factors and minimum posterior probabilities for null
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Finally, it has Fisher’s combined p values for ASD and its co-morbidities
with the null p value distribution (one sheet per disease). (XLSX 380 kb)

Additional file 6: Pathway enrichment analysis for non-immune diseases.
This Excel file contains hypergeometric test p values per pathway per
disease for KEGG, BioCarta, Reactome, and PID pathway collections as well
as all canonical pathway gene sets collected from MSigDB version 4.0, and
Fisher’s combined p values for ASD and its co-morbidities excluding the
immune-related diseases: bacterial and viral infection, asthma, inflammatory
bowel disease, upper respiratory infection, and ear infection. (XLS 673 kb)
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we used for classifying cases vs. controls in microarray gene expression
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