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Cancer biomarker discovery is improved by
accounting for variability in general levels
of drug sensitivity in pre-clinical models
Paul Geeleher1, Nancy J. Cox2,3 and R. Stephanie Huang1*

Abstract

We show that variability in general levels of drug sensitivity in pre-clinical cancer models confounds biomarker
discovery. However, using a very large panel of cell lines, each treated with many drugs, we could estimate a
general level of sensitivity to all drugs in each cell line. By conditioning on this variable, biomarkers were identified
that were more likely to be effective in clinical trials than those identified using a conventional uncorrected
approach. We find that differences in general levels of drug sensitivity are driven by biologically relevant processes.
We developed a gene expression based method that can be used to correct for this confounder in future studies.

Background
Personalized cancer medicine promised the ability to
improve cancer treatment using molecular marker(s)
(e.g. genome sequence, gene expression) obtained from
the patient’s tumor. There have been some notable suc-
cesses, for example, tyrosine kinase inhibitors in BCR-
ABL1 positive chronic myeloid leukemia (CML) [1].
However, many other compounds/targets have proved
ineffective in clinical testing, resulting in financial and
human cost. Many studies have also proposed bio-
markers aimed at repurposing or improving the efficacy
of existing drugs, but there have been countless failures
when predictions from pre-clinical data have been
applied in the clinic. Overall, the number of clinically
applied biomarkers has been described as “staggeringly
small” compared to the number proposed in the litera-
ture [2]. Thus, there is an urgent need to improve bio-
marker discovery strategies.
Multi-drug resistance (MDR) is commonly observed in

clinical oncology. These are mechanisms that cause
cancer cells to develop resistance to many drugs [3]. A
canonical example is the upregulation of ABCB1 (also
known as multi-drug resistance protein 1 (MDR1)), an
efflux protein involved in removing foreign substances
(including drugs) from cells. There are many other

known mechanisms of MDR, including insensitivity to
drug induced apoptosis, activation of pro-survival path-
ways, and altered tumor permeability [3–5].
In drug development and repurposing, most biomarkers

are initially identified through cell line drug sensitivity
screening, due to established methods and comparatively
low cost [6]. The largest publicly available cell line
pharmacogenomics studies to date were screened by the
Cancer Genome Project (CGP; sometimes also referred to
as the Genomics of Drug Sensitivity in Cancer (GDSC))
and the Cancer Cell Line Encyclopedia (CCLE); both
screened panels of approximately 700 cell lines for sensi-
tivity to 138 and 24 compounds, respectively, along with
collecting extensive genomic and gene expression data [7,
8]. Additionally, a more recent study, the Cancer Thera-
peutics Response Portal (CTRP) performed drug sensitiv-
ity screening of 481 drugs on the CCLE cell lines [9, 10].
In this study, we show using these large cell line datasets
that variability in general levels of drug sensitivity (GLDS)
in pre-clinical data confounds biomarker discovery. We
have primarily focused on CGP for discovery and CCLE/
CTRP for validation and comparison. We present data
that suggests that GLDS is likely related to MDR in
clinical oncology (although we introduce the term “GLDS”
to avoid claiming that these are necessarily identical phe-
nomena). Accounting for the confounding effect of GLDS
improves power to discover aberrations truly relevant to
drug response and identifies false-positive associations.
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These findings are highly relevant to biomarker discovery
for existing drugs and in cancer drug discovery screens,
such as those often employed by large pharmaceutical
companies.

Results
Variability in general levels of drug sensitivity (GLDS) is
evident in cancer cell lines
To assess whether GLDS varies in pre-clinical models, we
used cell line data from the CGP. First, we performed
pairwise correlation between the half maximal inhibitory
concentration (IC50) values of all 138 drugs across all 714
cell lines. There was a clear pattern whereby some cell
lines were sensitive to many drugs, or resistant to many
drugs; but only moderate evidence of similar classes of
drugs clustering together (Fig. 1a, Additional file 1: Table
S1 and Additional file 2: Figure S1). However, there were
far more significant correlations between drug IC50 values
than expected by chance. In fact, of 9453 possible pair-
wise correlations 3597 reached a false discovery rate
(FDR) < 0.05 and 99 % of these were in a positive direc-
tion, showing that the effect of many drugs is much more
similar than expected by chance (Fig. 1b). This pattern
was even stronger in other large pharmacogenomics cell

line screening studies; in CCLE 274 of 276 pairwise corre-
lations reached an FDR < 0.05 and 100 % of these correla-
tions were in a positive direction (Additional file 1: Table
S2 and Additional file 2: Figure S2). In the CTRP drug
screening data, 77,789 of 115,440 pairwise correlations
reach an FDR of < 0.05, with 95 % of these in a positive
direction (Additional file 1: Table S3 and Additional file 2:
Figure S3). Remarkably, strong correlations were not only
observed between drugs within the same class, but also
clearly evident between drugs with different mechanisms;
examples from CGP include bortezomib, a proteosome
inhibitor and entinostat, a histone deacetylase inhibitor
(rs = 0.5, P = 1.4 × 10–8) or motesanib, an angiokinase
inhibitor and cisplatin, a cytotoxic platinating agent
(rs = 0.52, P = 2.12 × 10–9). These examples are among
many such associations evident in CGP, CCLE, and
CTRP (Additional file 1: Tables S1–S3) and support
the notion of mechanisms of GLDS affecting the level
of sensitivity to many drugs in pre-clinical models.

GLDS in cell lines can be summarized using
dimensionality reduction
The pattern of GLDS could be summarized using standard
dimensionality reduction techniques; however, to apply

Fig. 1 General levels of drug sensitivity can be estimated in a very large set of cell lines. a Heatmap showing pairwise correlations between IC50
values of all drugs in CGP. Drugs are arranged (by Euclidean distance) on the x-axis. A full heatmap with visible drug names and drug class labels
is provided in Additional file 2: Figure S1. b Histogram of P values for pairwise correlation between all 138 drugs in CGP. c Scatterplot of imputed
against measured IC50 values from eight-fold cross-validation in CGP. Imputed values were estimated using our iterative matrix completion algorithm.
d P values of the Spearman correlation of the IC50 values of 38 randomly chosen drugs against the first principle component of the IC50 values of the
remaining 100 drugs in CGP. Values above the dashed red line have P < 0.05

Geeleher et al. Genome Biology  (2016) 17:190 Page 2 of 11



such methods, a complete dataset (i.e. matrix of drug IC50

values) is required and there were a substantial number of
missing values in these datasets (drugs that had not been
screened against every cell line). Thus, we applied a
custom iterative matrix completion algorithm (see
“Methods”) similar to those previously applied to gene
expression microarray data [11]. We could impute
missing values very accurately, with an improvement
observed over previously proposed methods (Fig. 1c,
R2 = 0.79 in CGP from eight-fold cross-validation) [12].
With this completed dataset, we summarized the pattern
of GLDS using singular value decomposition (SVD). To
show that such an approach recapitulates a GLDS signa-
ture, we first applied the method to 100 randomly chosen
drugs from CGP (i.e. a matrix of IC50 values for 100
drugs). The first principle component (PC1) derived from
these 100 drugs (across all 714 cell lines) is positively cor-
related with the IC50 values of 33 of the 38 remaining
drugs (FDR < 0.05 using Spearman correlation). This dem-
onstrates that this approach is informative towards the re-
sponse to most additional drugs (Fig. 1d). Hence, we
proceeded to apply the approach to all 138 drugs in CGP.
PC1of this matrix represents the largest axis of variation
in GLDS, explaining 20.3 % of the variability in drug sensi-
tivity (Fig. 2a) and is positively correlated with the IC50

values of 114 of the 138 drugs at FDR < 0.05 (Fig. 2b) in
CGP. Likewise, 415 of 481 drugs were correlated with
PC1 in CTRP and all 24 drugs in CCLE (FDR < 0.05 from
Spearman correlation). Thus, this analysis has uncovered
a pervasive tendency of cell lines to exhibit sensitivity or
resistance to many drugs, regardless of canonical drug
mechanisms. As an alternative (and highly interpretable)
means to calculate general drug sensitivity, we also calcu-
lated the median drug sensitivity value for each cell line
across all drugs in CGP, which is unsurprisingly highly
correlated with PC1 (Additional file 2: Figure S4, rs = 0.87,
P < 2.2 × 10–16), demonstrating that this signal can be
recovered by independent analytical approaches.

Finding the biological drivers of GLDS in cell lines
Given that GLDS exists, i.e. that there is a reproducible
measurable consistency in the response of cell lines to
all drugs in these datasets, an obvious question is
whether this phenomenon is an experimental artifact, or
whether there appears a (consistent) biological basis for
the signal (although we emphasize that in either scenario
one should still control for this signal when searching
for predictors of drug response – see next subsection).
Firstly, tissue-of-origin appears to be a contributor, for
example in CGP a linear model fit for PC1 dependent
on tissue-of-origin (51 different tissues encoded as a
factor) is statistically significant; however achieves an
adjusted R2 of only 8 % (Fig. 2c), suggesting that there
may be other biological drivers of GLDS. Thus, we

investigated whether any of these could be elucidated
using gene expression analysis and Gene Set Enrichment
Analysis (GSEA). Firstly, in all 3 studies, many genes
were significantly associated with PC1 of the drug sensi-
tivity matrix, with 810, 4,680 and 4,457 genes reaching
an FDR of < 0.05 in CGP, CCLE and CTRP respectively
(Fig. 3a). Of these 185 genes were identified in all 3
studies, which is more than would be expected by
chance (P = 1.3 × 10-11), meaning that there is some
cross-study consistency among the genes potentially in-
volved in GLDS. If the biology of multi-drug resistance
in cancer is reflected in this pre-clinical setting, there
are widely accepted processes that we would expect to
be associated with GLDS. These are (1) factors related to
the accumulation of drugs within cells, for example the
expression of drug efflux pump MDR1, (2) cell growth
rate, because the most broadly accepted reason for the
effectiveness of most chemotherapeutics has been the
susceptibility of fast growing cells [13]; and (3) the activ-
ity level of apoptotic pathways [14].
Canonical multidrug resistance gene MDR1 is associ-

ated with GLDS in all three studies, e.g. it is associated
(P < 0.05 from Spearman correlation) with six, two, and
three of the first ten principal components (PCs) derived
from the drug sensitivity matrix in CGP, CCLE, and
CTRP, respectively. In order to systematically elucidate
the biology of GLDS we performed a GSEA analysis,
whereby we investigated the association between Gene
Ontology (GO) terms and PCs derived from the drug
sensitivity matrices in each of CGP, CTRP, and CCLE;
we generated results for each of the first five PCs in each
study. Because of the different composition of drugs and
cell lines in each study, the same signal is not necessarily
represented on the same PC in each study (Additional
file 3: Tables S1–S30). Strikingly, among the most
strongly associated processes in CGP were cell cycle,
growth, and apoptosis (Additional file 3: Table S1,
Fig. 3b), which is an interesting result as most conven-
tional chemotherapeutics are believed to be effective by
targeting fast dividing cells [13]. Another widely cited
theory is that generally chemo-sensitive cancer cells are
those that are primed for apoptosis [14]. Our results
suggest that high baseline expression of genes involved
in both of these processes are indeed important; how-
ever, neither is likely sufficient to fully predict general
effectiveness of chemotherapeutics alone. These associ-
ations were also identified as nominally significant in
CTRP, whereby GO process “Growth” is associated with
PC2 (P = 0.03) and “Regulation of Apoptosis” is associ-
ated with PC3 (P = 0.01) and PC5 (P = 0.01). Further-
more, in CTRP the strongest association with drug
resistance (on PC1) is for “Lipid Transporter Activity.”
This gene set contains several ABCB transporter genes
and is a process thought to play a role in drug efflux
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(and thus resistance) [15]; this process was also associ-
ated with PC2 in CGP (P = 0.05). Finally, included
among the GO terms most strongly associated with
drug sensitivity in both CTRP and CGP are processes
related to transcription and RNA processing and spli-
cing; while it is not immediately obvious why such pro-
cesses may be strongly associated with GLDS, we have
noted that a previous GO analysis of NCI60 cell lines
against a growth rate phenotype [16] reveled a very
strong enrichment of similar processes (e.g. RNA
processing P = 1.6 × 10–64 and RNA splicing P = 1.2 ×
10–46), suggesting that the enrichment observed in

these processes may simply be a proxy for growth rate in
cancer cell lines. These results are suggestive of (at least in
part) a biological basis for GLDS, but it seems that this
basis is complex and is likely affected by many processes
and pathways; thus we caution against over-interpreting
any single association or claiming an overly-simplistic bio-
logical mechanism (particularly from CCLE as the results
were derived from only 24 drugs – thus we have not
discussed these in detail). Overall however, these findings
were broadly consistent with canonical mechanisms of
multi-drug resistance, in that growth rate, apoptosis, and
mechanisms affecting drug accumulation/efflux exhibit

Fig. 2 General levels of drug sensitivity in a panel of cancer cell lines. a The proportion of variability in the data explained by each of the PCs of
the fully imputed drug sensitivity (IC50) data matrix in CGP. PCs are arranged by associated eigenvalue. b Histogram of Spearman correlations of
the IC50 values of all 138 drugs in CGP with PC1 of the fully imputed IC50 matrix. c Boxplot of PC1 (estimated in all 714 cell lines) against tissue-of-origin
in CGP. Boxes are colored by cancer type
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the strongest associations; but most importantly, these
results suggest that GLDS is influenced by factors intrinsic
to the cancer cells themselves, rather than extrinsic factors
or an experimental artifact.

Conditioning on GLDS in pre-clinical data improves
biomarker discovery
We strongly emphasize that there are two crucial reasons
why controlling for GLDS in the pre-clinical biomarker
discovery phase will improve clinical translation. First,
cancer drug biomarkers, discovered in pre-clinical data,
are often subsequently tested on relapsed patients, who
have undergone multiple rounds of chemotherapy and de-
veloped resistance to many drugs (i.e. high levels of
MDR). We showed above that patterns of GLDS were evi-
dent in pre-clinical data and are likely related to clinical
MDR. Thus, the variability in GLDS in pre-clinical data
acts as a confounding factor in discovery of biomarkers
relevant in the refractory clinical setting. Second, and per-
haps even more important, new drugs are often tested in
addition to existing standard-of-care multi-drug regimes.
In this scenario, only the drug-specific effect, independent
of the drugs already used in the treatment, is relevant in
predicting response following the addition of a new drug.
Controlling for GLDS will allow the identification of drug
markers relevant independent of the general effects of
chemotherapeutic regimes that are already being used,
thus identifying compounds likely to actually improve the
effectiveness of existing regimes.
Hence, we describe a method to estimate and remove

this “unwanted variability” in GLDS from pre-clinical
biomarker-discovery data: for each drug, we selected a set
of unrelated drugs as “negative controls” (see “Methods”)
and derived a GLDS signature using SVD as described
above. We used this conservative approach by employing
an orthogonal set of drugs as negative controls to avoid
removing drug specific signal; estimating GLDS a single
time from the full dataset (e.g. by the median IC50 or

PC1) would risk removing a drug-specific signal and thus
over-correcting the results and furthermore would not be
generalizable to other studies. Conceptually, our proposed
approach is similar to methods for removing unwanted
variation in gene expression data [17, 18]. Similarly, we
controlled for unwanted variation (in GLDS) by including
the first ten PCs of the negative control drugs as covari-
ates in a general linear model (see “Methods”). Using this
stringent approach, we tested the IC50 of each of 138
drugs against the mutation status of the 71 cancer genes
sequenced by CGP. Controlling for GLDS has a profound
impact on the results. P values for some mutation-drug
associations fall substantially, while many others improve.
Following correction, a total of 210 significant associations
(Additional file 1: Table S4) drops to 79 (Additional file 1:
Table S5). Sixty-one of these were among the original 210
associations, while 18 were novel (Additional file 1: Table
S6). Of note, in the CTRP data the number of biomarkers
discovered (at FDR < 0.05) actually increases slightly
from 62 to 75. Given that CGP was a slightly smaller
dataset but had a larger number of significant associa-
tions, we discuss the impact of these analyses on CGP
in greater detail below, but also include the top results
of the corrected analysis of CTRP data in Additional
file 1: Table S7. The results for all associations tested
are included in Additional files 4 and 5 for CGP and
CTRP, respectively.
There were 8881 total mutation-drug association tests

conducted on the CGP data. The 25 most significant
results were indicative of the effectiveness of this
approach (Fig. 4a) and are discussed here in detail; nine
of these 25 P values improved, 16 become weaker, with
four no longer significant at FDR < 0.05. An improved
P value can be explained by the inclusion of GLDS as a
meaningful covariate (thus improving power); whereas
a weaker P value suggests that the GLDS variable was
confounding the original result. Remarkably, in all
cases, the associations for which the P value improves

Fig. 3 Gene expression and biological processes are associated with GLDS. a A QQ-plot where the P values for an association between gene
expression and the first principle component of the completed drug sensitivity matrix are plotted against a theoretical uniform distribution. A
deviation from the diagonal line in all three datasets is indicative of an enrichment of low P values. b GSEA enrichment plots for enrichment of
Gene Ontology biological processes against GLDS in CGP. Data are shown for two of the most significant processes: “Growth” (left) and
“Programmed Cell Death” (right)
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are supported by existing evidence. For example, six of the
top 25 associations were for tyrosine kinase inhibitors
(TKI) and BCR-ABL1 positive cell lines. These have argu-
ably been the most successful class of targeted cancer drug
in vivo, having transformed the treatment of CML [19].
Tellingly, when we conditioned on GLDS, the P values for
five of these six associations improved, mirroring the clin-
ical success of these drugs.
Furthermore, a notable improvement in P value was

observed for lapatinib and ERBB2, a drug which is estab-
lished as an effective treatment for ERBB2-positive breast
cancer patients [20]. Also among the top associations, an
improved P value was observed for PLX-4720 and BRAF
mutation. Supporting this, vemurafenib, which is identical
to PLX-4720 except for small modification for pharmaco-
kinetic reasons, was the first BRAF inhibitor approved for
the treatment of melanoma patients [21]. A similar
improvement was observed for the BRAF inhibitor
SB590885; while the effectiveness of this recently devel-
oped compound is supported by pre-clinical studies [22],
it is yet to undergo clinical trial. Finally, an improvement
was observed for PD-0332991 (palbociclib) and RB1
(mutation predictive of resistance). PD-0332991 is de-
signed to inhibit the cyclin D-cyclin-dependent kinases 4
and 6 (CDK4/6)-retinoblastoma (RB) pathway [23]; RB1
expression is an established clinical predictor of sensitivity

to this drug, which remains under rigorous clinical in-
vestigation in RB expressing breast cancers, where
some have reported a doubling of progression-free sur-
vival time [24, 25]. These results reveal that inactivating
mutations may be equally important in prediction of
PD-0332991 resistance.
Equally important, after controlling for GLDS, many

mutations that had previously been associated with drug
sensitivity were no longer statistically significant. One
striking example is that of PARP inhibitors and EWS-
FLI1, a relationship that was initially highlighted by the
CGP [7]. EWS-FLI1 translocations are characteristic of
Ewing’s sarcoma and this putative biomarker was subse-
quently shown to be an effective predictor in mouse
xenograft [26]. Based on these results, PARP inhibitors
were tested in patients with refractory Ewing’s sarcoma,
who had failed standard chemotherapy. No significant
response or durable disease control was observed in the
patient cohort [27]. Using a conventional approach, we
also found the association of PARP inhibitors in EWS-
FLI1 mutation to be among the most significant in these
data (P = 2.6 × 10–9, P = 1.9 × 10–8; FDR = 1.15 × 10–6,
FDR = 7.35 × 10–6 for rucaparib (AG-014699) and ola-
parib (AZD-2281), respectively; Fig. 4a). However, when
we conditioned on GLDS, these associations were se-
verely affected and for both drugs the association was no

Fig. 4 Controlling for general levels of drug sensitivity substantially affects biomarker discovery in the CGP cell lines. a Dot-plot showing the
change in P values for the top 25 associations for all sequenced cancer genes across all drugs in CGP. Results are plotted when controlling for
GLDS and for an uncorrected approach. Also included are the results when controlling for GLDS estimated from expression data. The triangle is
pointing in the direction of the effect (i.e. a triangle pointing up indicates a positive effect). b A similar dot-plot for the 18 novel associations
identified in CGP when controlling for GLDS
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longer significant following correction for multiple test-
ing (P = 1.3 × 10–3, P = 2 × 10–3; FDR = 0.1 and FDR =
0.13 for rucaparib and olaparib, respectively; Fig. 4a).
Thus, these associations were identified because of con-
founding with GLDS across the biomarker discovery co-
hort. Conditioning on GLDS predicts the failure of this
marker and while other clinical tests of this compound
in Ewing’s sarcoma are ongoing, our results do not sup-
port any potential benefit in refractory patients. Interest-
ingly, the association between EWS-FLI1 and sensitivity
to IGFR inhibitors (OSI-906 and BMS-754807) was also
identified using an uncorrected approach; however, these
associations actually improved when conditioning on
GLDS (Additional file 1: Table S5). The possibility of tar-
geting IGFR in Ewing’s sarcoma has been recognized
and even though clinical studies are in the early stage, a
complete clinical response of Ewing’s sarcoma following
treatment with these compounds has been observed
[28, 29]. Thus, we have demonstrated that conditioning
on GLDS can not only identify spurious biomarkers,
but can also enrich for associations of clinical utility
that would otherwise be missed.
Aside from EWS-FLI1 and PARP inhibitors, two other

associations among the top 25 were no longer significant
(at FDR < 0.05; Fig. 4a) following correction for GLDS,
namely BRAF mutation and AZ628 and NOTCH1
mutation and ATRA. To our knowledge, there is no
evidence supporting the clinical utility of either of these
biomarkers. These observations show that our approach
is enriching for biomarkers of clinical utility, which
highlights the remarkable potential for this approach to
impact personalized medicine.

Controlling for GLDS identifies new mutation-drug
associations
Further interesting associations are those that were identi-
fied as significant (FDR < 0.05) when controlling for
GLDS, but were not when using an uncorrected approach.
In total, 18 novel candidate gene drug associations were
identified (Fig. 4b). Among these associations, the BCR-
ABL1 fusion gene was predicted to confer resistance to
three drugs. These drugs were sunitinib (a receptor tyro-
sine kinase inhibitor), pazopanib (used to treat a subtype
of BCR-ABL-positive cancer albeit with a specific type of
mutation), and AMG-706 (an angiokinase inhibitor)).
Interestingly, there exists a clinical case report that has
documented cases of patients receiving the first of these
drugs, sunitinib, actually developing CML [30]. While the
possibility of CML developing as a side effect of drug
treatment remains speculative, our data are not inconsist-
ent with this observation, although further work will be
required to rigorously address this hypothesis.
When conditioning on GLDS a new significant associ-

ation appears between MK-2206 and PIK3CA mutation

(FDR = 5.1 × 10–4), a result that is supported by recent
phase II clinical studies [31]. CI-1040 sensitivity is now
also associated with KRAS mutation, supported by in
vitro and in vivo data [32, 33]. Bosutinib is now pre-
dicted to be effective against PTEN wild-type cell lines
and while this has not been explored in vivo, it has been
recently described in pre-clinical data and the mechan-
ism has been rigorously documented [34]. RDEA119 (an
experimental MEK inhibitor) is now predicted as effect-
ive against KRAS and APC mutated cell lines. A phase II
clinical study did not show a difference in response
between KRAS mutation and WT pancreatic cancers
[35], although this being an experimental compound,
this lack of difference could be as a result of lack of
efficacy generally; to our knowledge, the effect of APC
mutation on RDEA119 sensitivity has not been studied.
The remainder of the observed novel associations were
primarily for experimental compounds, for which few
clinical data have been generated; these associations rep-
resent a valuable starting point for follow-up studies.
We have also included results of ElasticNet regression

models when GLDS is controlled for, a method often
used for constructing predictive models from these types
of data (Additional file 1: Table S8); predictors assigned
the largest weights were consistent with results obtained
when linear regression was used for statistical inference.
Finally, we compared the results when tissue or origin
was used as a covariate in analyses, instead of GLDS.
This is sometimes employed in analysis of large panels
of cell lines; however, in any analysis of these or any data
obtained from a diverse set of cancers, tissue of origin
(or cancer type) will often be highly confounded (and
sometimes perfectly confounded) with certain mutations;
extreme examples include BCR-ABL1 in CML and
EWS-FLI1 in Ewing’s sarcoma, where almost all samples
will harbor these aberrations (and other cancer types will
not). When tissue of origin is included as a covariate,
the number of significant mutation-drug (FDR < 0.05)
associations drops to 30 (Additional file 1: Table S9)
compared to 79 when GLDS is included instead. Inter-
estingly, for every gene-drug association discussed above
that has strong clinical evidence, the P value achieved by
the GLDS approach is lower than that achieved when
instead controlling for tissue of origin, suggesting that
GLDS may provide improved power in a diverse set of
cancer samples, obviating the need to include tissue of
origin as a covariate.

Controlling for GLDS improves reproducibility between
large pharmacogenomics datasets
Reproducibility in large pharmacogenomics screens, spe-
cifically between the CCLE and CGP datasets, has been a
recent source of debate [36, 37]. Thus, we were interested
if controlling for GLDS could also improve concordance
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between these studies. To test this, we compared gene-
drug associations for 15 drugs and 63 sequenced cancer
genes common to both CCLE and CGP. Unsurprisingly,
conditioning on GLDS improves the reproducibility of
findings between these two large studies. Using a naïve
approach, 47 % (11 of 23) of mutation-drug associations
identified in CGP at FDR < 0.05 were validated at a nom-
inally significant threshold (P < 0.05) in CCLE; however,
this rises markedly to 62.5 % (10 of 16 remaining signifi-
cant associations) when we include GLDS as a covariate
in the models used to identify these associations in CGP.
This finding suggests that variation in GLDS may be at
least in part responsible for supposed reproducibility is-
sues in pre-clinical data, as well as clinical data.

GLDS can be estimated from expression data and used as
a covariate in subsequent analysis
The association between expression and GLDS (discussed
above) raises a key opportunity to estimate this con-
founder in a much broader context. It was possible to
estimate GLDS in the CGP data because the same cell
lines were screened against many drugs. Although data
suitable for such analysis likely exists in the drug
development realm of large pharmaceutical companies,
currently the CGP and CTRP are the only public stud-
ies to have performed such a large-scale screening.
Hence, our SVD-based approach is not applicable to
the majority of conventional biomarker discovery studies.
However, measuring genome-wide gene expression using
microarrays or RNA sequencing (RNA-seq) is common
and straightforward. Thus, using CGP, we have derived a
GLDS signature from gene expression microarray data, by
identifying the genes most strongly correlated with GLDS
(see “Methods”). Unsurprisingly, this set of genes includes
canonical MDR genes, such as ABCB6. In CGP, control-
ling for the first ten PCs of these 65 genes (Additional file
1: Table S10) had a similar effect as controlling for the
GLDS principle components derived from drug sensitivity
data (Fig. 4a, Additional file 1: Table S11). Controlling for
the expression of these genes is somewhat more conserva-
tive, as the number of significant associations between
drugs and cancer gene mutations drops to 30. However,
25 of these 30 were also among the 79 identified when
controlling for GLDS using the method based on the full
set of drug sensitivity data. Thus, controlling for these
genes dramatically improved the positive predictive value
(PPV) from 33.8 % to 83.3 % over an uncorrected ap-
proach. This presents the possibility that anybody could
estimate the pattern of GLDS in their pre-clinical data
without having to screen a vast number of drugs, using
gene expression data in the samples under study. If a puta-
tive association is robust to controlling for these genes,
these results suggest that it is far less likely to be con-
founded by GLDS, which is a key to successful clinical

application. To test the performance of this signature
on an external dataset, we applied it to the CTRP data;
as above, the first 10 PCs of these 65 genes were calcu-
lated from the available gene expression data and
included in gene-drug association models as proxy for
GLDS. The actual GLDS corrected CTRP data (corrected
using the drug data itself, see “Methods”) were treated as a
gold standard and the performance of the 65 gene signa-
ture was compared to an uncorrected approach. At an
FDR of 0.05 the performance increase was moderate; there
were 75, 62, and 53 associations in the GLDS corrected
(see “Methods”), uncorrected, and expression signature-
corrected data, respectively. The PPV in the expression
signature-corrected data was 68 %, compared to 62 % for
an uncorrected approach. However, upon relaxing the
FDR threshold and allowing more associations (thus more
power to find agreement/disagreement between the
three sets of results), it seemed that the expression
signature was performing well, for example at a more
liberal FDR of 0.25, we found 390, 760, and 368 associa-
tions in the GLDS corrected, uncorrected, and expression
signature-corrected data, respectively. A total of 201 and
232 true discoveries were identified by the expression cor-
rected and uncorrected approaches, respectively (again
using GLDS-corrected as a gold standard); however, the
uncorrected approach identified over three times as many
false-positive associations (528 versus 167; PPV 30.5 %
versus 54.6 %, P = 1.35 × 10–14 from Fisher’s exact test).
Thus, it is likely that this approach improves discovery on
external datasets; however, we stress that this is a concep-
tually novel class of problem and the community may find
ways to improve upon our proposed of solution.
Finally, we investigated whether the set of 65 genes

consistently associated with GLDS showed evidence of an
association with vital status in 1093 breast cancer samples
obtained from the Cancer Genome Atlas (TCGA). Of
these genes, 60 were quantified in TCGA RNA-seq data
and, indeed, 32 of these were associated with alive/dead
status at P < 0.05 (from Wilcoxon rank-sum test), which
represents a strong enrichment for this set of genes. This
suggests that this set of genes, identified in a panel of cell
lines, may also be associated with drug response (and
hence survival) in an in vivo setting.

Discussion
Countless proposed cancer biomarkers and novel targeted
therapeutics have failed and in this study we have eluci-
dated an important reason why this is the case and
developed a widely applicable method to solve this
problem. Using the largest available sets of cell line
screening data, we found that general levels of drug
sensitivity vary in pre-clinical data. Integrative analysis
with gene expression data suggests that this phenomenon
is likely related to clinical MDR. Many of the biomarkers
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identified using these cell line data were confounded by
this signal, which we have referred to as GLDS. This
confounding is highly problematic, because biomarkers
(for new or existing drugs) are often tested: (1) on refrac-
tory patients (who will typically have developed high levels
of MDR); or (2) in conjunction with the current standard
of care, whereby only a drug-specific signal is likely to be
predictive of response given the addition of the new drug.
We showed that it is possible to estimate GLDS in these
data and to condition on this signal to identify biomarkers
of clinical relevance. Overall, while the reasons for con-
trolling for GLDS are clear, the improved results that we
presented were highly predictive of clinical biomarker suc-
cess, demonstrating the utility of the approach. Indeed, a
recent study has also suggested that, similar to GLDS,
explicitly controlling for growth rate in these types of
assays improved discovery [38]; although our GLDS
approach may take this a step further by additionally
controlling for other key processes in an unbiased and
unsupervised manner. We showed that the expression of
various genes, processes, and mutations were associated
with GLDS, many of which are also related to clinical
MDR; in future it may be possible to derive a model from
such a set of mutations and/or expression estimates,
which may be useful as an in vivo pan-cancer prognostic
indicator. We also showed that it is possible to apply our
findings in a broader context, by using our proposed gene
expression based signature. This would mean avoiding
much of the costs associated with ultimately unsuccessful
clinical trials. This study elucidated the nature of GLDS
using cell lines; but crucially, relevant biological processes
underlie the signal. Thus, a similar bias will almost cer-
tainly be evident in other pre-clinical models (e.g. mouse
xenografts) and in data derived directly from clinical
studies. Larger datasets will allow these hypotheses to be
tested for these platforms, but in the meantime these types
of studies should carefully consider our findings.

Conclusion
In conclusion, we have identified variability in GLDS as
a novel phenomenon confounding biomarker discovery.
We have developed methods to estimate and remove
this confounder and overall, these findings can poten-
tially dramatically improve the clinical success rate of
drug discovery and repurposing.

Methods
Iterative matrix completion algorithm
Drug sensitivity data were obtained from the CGP website
(www.cancerrxgene.org), from the CCLE website (http://
www.broadinstitute.org/ccle/), and from Additional file 1:
Table S3 of the original CTRP publication [9]. Missing
drug IC50 values were imputed using the following itera-
tive matrix completion algorithm. The IC50 values for each

of m cell lines and n drugs is first arranged in an m × n
matrix X. The rows of X are then ordered (ascending) by
the number of missing values. The algorithm is initialized
by setting all missing values to the mean IC50 value of that
particular drug, e.g. all IC50 values of cell lines that were
not screened with cisplatin are set to the mean value of all
cell lines that were screened for cisplatin. Next, we esti-
mated the PCs of X. Then, for each missing value of X
(Xij) we fit a lasso regression model using the PCs of all
other rows of X as predictors of all other values (both
measured and imputed) for that cell line. The tuning par-
ameter lambda for the lasso regression is selected using
cross-validation (implemented in the glmnet package in
R). The above model is then applied, yielding an updated
estimate for Xij. Repeating this procedure for all missing
values of X yields an updated matrix X’. We then estimate
A, the sum of the total difference between each of the
elements of X and X’. This procedure is repeated itera-
tively until the total change in A converges, which takes
approximately 50 iterations. This algorithm offers an im-
provement over those previously described for expression
microarray data; by substituting standard linear regression
for lasso regression, we avoid selecting arbitrary numbers
of PCs as predictors, because the lasso automatically se-
lects the optimal predictors in the model.

Controlling for GLDS
For each drug, we selected a set of unrelated drugs as
negative controls from which GLDS was estimated. The
reason for using negative controls to estimate GLDS, as
opposed to the entire dataset, is that using all of the
data would also risk removing a drug-specific signal (in
addition to GLDS). The negative control drugs were se-
lected based on both their (manually curated) canonical
mechanism of action and their empirical correlation in
the CGP data itself. For each drug, all drugs with an
unrelated mechanism of action (Additional file 1: Table
S12) were first selected as negative controls; then, any
drugs remaining in this set that were among the 20 in
CGP or 100 in CTRP most highly correlated drugs with
the drug under scrutiny were also removed from the set
of negative controls. This second step is implemented
to avoid possible issues with the subjective nature of
manual drug classification. It is important to stress that
the number of closely correlated drugs to remove is
somewhat subjective, and careful consideration needs
to be paid to each datasets where this is applied, based
on the types of drugs in the dataset, their relatedness
and the number of drugs available—the key being to be
sure to remove closely related drugs, but to keep
enough drugs to still reliably calculate the GLDS signal.
Typically, approximately 100 drugs remained as nega-
tive controls in CGP and 350 in CTRP. GLDS was then
estimated as the first 10 PCs of this set of negative
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controls. These PCs were then included as covariates in
the linear model used to perform the subsequent cor-
rected cancer gene mutation to drug IC50 association
analysis. Linear models were fit using the standard lm()
function in R and P values were calculated using the sum-
mary() function, which calculates significance of model
coefficients using t-tests. ElasticNet models were fit using
the glmnet [39] package in R, with an alpha value of 0.5.

Association of gene expression, GO terms, and gene
mutations with GLDS
Gene expression and mutation data were obtained
from the CGP website or from the CCLE website. For
CGP, gene expression data were preprocessed using
the robust multi-array average (RMA) method [40];
for the summarization step, probes were remapped to
the latest version of Entrez Gene using BrainArray an-
notations [41]. The obtained CCLE data were already
pre-processed using the BrainArray approach. The as-
sociation between gene expression levels and the first
principle component of the fully imputed drug sensi-
tivity matrix was assessed using a linear model in R.
To assess the enrichment of GO terms, first, the po-
tential confounding effect of tissue of origin was first
removed by using the residuals of a linear model of
the expression of each gene against tissue of origin
encoded as a factor. Enrichment of GO biological
processes against the first five PCs of the fully imputed
drug sensitivity matrix was then assessed using the GSEA
software [42]. Genes were ranked by Pearson’s correlation
and significance was established using sample label
permutations, using at least 1000 permutations.

Selecting gene expression values as a proxy for GLDS
To identify genes whose expression could potentially be
used as proxy for GLDS we performed a Spearman
correlation against each of the ten PCs (identified by
the method described above) against the expression of
every gene. This was repeated for each of the ten GLDS
PCs identified for all 138 drugs. For each drug, we
compiled a list of the top 50 genes correlated with each
PC (i.e. 500 genes for each drug). From this set of
genes, we identified 65 genes that were consistently in-
cluded in this list (i.e. for all 138 drugs). Thus, these
genes were always highly correlated with GLDS, regardless
of the set of drugs from which GLDS was calculated. The
first ten PCs of the expression of these 65 genes were then
included as covariates in the linear model used for subse-
quent corrected gene-drug association analysis.
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