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Abstract

Subclonal mutations reveal important features of the genetic architecture of tumors. However, accurate detection of
mutations in genetically heterogeneous tumor cell populations using next-generation sequencing remains
challenging. We develop MuSE (http://bioinformatics.mdanderson.org/main/MuSE),Mutation calling using a Markov
Substitution model for Evolution, a novel approach for modeling the evolution of the allelic composition of the tumor
and normal tissue at each reference base. MuSE adopts a sample-specific error model that reflects the underlying
tumor heterogeneity to greatly improve the overall accuracy. We demonstrate the accuracy of MuSE in calling
subclonal mutations in the context of large-scale tumor sequencing projects using whole exome and whole genome
sequencing.
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Background
The detection of somatic point mutations is a key com-
ponent of cancer genomic research that has been rapidly
developing since next-generation sequencing (NGS) tech-
nology revealed its potential for describing genetic alter-
ations in cancer [1–6]. As the cost of NGS has decreased,
the need to thoroughly interrogate the cancer genome has
spurred the migration from using whole exome sequenc-
ing (WES) to whole genome sequencing (WGS). A critical
challenge accompanying this migration is the rigorous
requirement of specificity, considering that a false positive
rate (FPR) of even 1 per megabase pair (Mbp) results in
3000 incorrect variant calls forWGS data. In addition, the
sequencing depth decreases from 100 − 200× for WES
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data to 30−60× forWGS data, resulting in a lower signal-
to-noise ratio and making accurate mutation calling more
difficult.
Another nontrivial difficulty is accounting for the influ-

ence of tumor heterogeneity that is commonly observed
in mutation calling. The presence of both normal cells and
tumor subclones in the sample causes this phenomenon
to vary from sample to sample [7, 8]. It is thus impor-
tant to identify sample-specific cutoffs dynamically and
report tier-based variant call sets instead of using a fixed
cutoff for all samples, which is current common prac-
tice. On the other hand, tier-based variant call sets that
inherently attach uncertainties will be helpful when eval-
uating the behavior of low variant allele fraction (VAF)
mutations and seeking to understand the effect of tumor
heterogeneity.
Here, we present a novel and automatic approach to

discovering somatic mutations, Mutation calling using a
Markov Substitution model for Evolution (MuSE), which
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models the evolution of the reference allele to the allelic
composition of the tumor and normal tissue at each
genomic locus. We further adopt a sample-specific error
model to identify cutoffs, reflecting the variation in tumor
heterogeneity among samples. We demonstrate the reli-
able performance of MuSE, a good balance of sensitivity
and specificity, with various types of data.

Results and discussion
MuSE design
MuSE comprises two steps (Fig. 1). The first step, ‘MuSE
call’ (Fig. 1a, b), takes as input the binary sequence
alignment map (BAM) formatted sequence data that
require special preparation from the pair of tumor and
normal DNA samples. The results of our investigation
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Fig. 1 Flowchart of the somatic point mutation caller MuSE. aMuSE takes as input the Burrows-Wheeler Aligner-aligned BAM sequence data from
the pair of tumor and normal DNA samples. The BAM sequence data are processed by following the Genome Analysis Toolkit Best Practices. Next, at
each genomic locus, MuSE applies seven heuristic pre-filters to screen out false positives resulting from correlated sequencing artifacts. bMuSE
employs the F81 Markov substitution model of DNA sequence evolution to describe the evolution from the reference allele to the tumor and the
normal allelic composition. It writes to an output file the MAP estimates of four allele equilibrium frequencies (π ) and the evolutionary distance (ν).
cMuSE uses the MAP estimates of π to compute the tier-based cutoffs by building a sample-specific error model. MuSE deploys two different
methods of building the sample-specific error model for the respective WES data and WGS data. Besides using the sample-specific error model,
MuSE takes into account the dbSNP information by requiring a more stringent cutoff for a dbSNP position than for a non-dbSNP position. The final
output is a Variant Call Format file that lists all the identified somatic variants. d Illustration of the sample-specific error model for WGS data. Tumor
heterogeneity is illustrated using TCGA lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), and stomach adenocarcinoma (STAD)
WGS data. All πsomatic selected for building the sample-specific error models are used to draw the densities that are on the logarithmic scale. At the
top right, we show a two-component Gaussian mixture distribution with means μ1 and μ2, standard deviations σ1 and σ2, and weights p and 1 − p,
for true negative and true positive, respectively. The expected false positive probability caused by the identified cutoff is the area labeled in red (on
the right side of the cutoff), and the false negative probability is the area labeled in blue (on the left side of the cutoff). We first identify a cutoff that
minimizes the sum of the two probabilities and add tiered cutoffs that are less stringent than the first one. e Illustration of the sample-specific error
model for WES data. Selected πsomatic are rescaled to fit a beta distribution. Tiers 1 to 5 are labeled for illustration purposes, but not in equal
proportion to those in the real data
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favored the co-local realignment of tumor and matched-
normal BAMs rather than the local realignment of tumor
and matched-normal BAMs separately (data not shown).
MuSE carries out pre-filtering on every genomic locus,
which is a common practice (e.g., see [5]) ahead of vari-
ant detection in order to accelerate the computing speed
and remove potential false positives. Next, MuSE accom-
plishes variant detection by employing the F81 Markov
substitution model [9], which provides the estimates of
equilibrium frequencies for all four alleles (πA,πC,πG,πT),
and the evolutionary distance (ν). In practice, we report
the maximum a posteriori (MAP) estimates of π and ν

instead of exploring the full posterior distribution.
The second step, ‘MuSE sump’ (Fig. 1c), takes as input

the post-filtered πsomatic,tumor and computes tier-based cut-
offs from a sample-specific error model. As a unique
feature ofMuSE, the tier-based cutoffs (PASS, Tiers 1 to 5)
address the large variations observed in the distributions
of πsomatic,tumor across tumor samples (Fig. 1d). With WGS
data, we fit a two-component Gaussian mixture model
to log (2πsomatic,tumor) across positions in order to separate
the two major modes, one from true mutations that rep-
resent tumor growth dynamics that vary largely across
samples and one from reference positions with variations
in noise arising from sequencing machine errors or map-
ping errors. However, the degree of difference between the
true negative (reference) and true positive (somatic muta-
tion) positions and whether it is detectable depend on the
sequencing depth and the VAFs of the mutations. When
true mutations are of low VAF, presenting a distribution
that largely overlaps with that of the true negative posi-
tions, we use a cutoff of 0.005 as our lowest boundary
(Tier 5) to control the number of false positives. When the
number of true positives is relatively minimal compared
to that of true negatives, as in most WES data (mutation
rate up to 10/Mbp; [10]), we model πsomatic,tumor as a beta dis-
tribution (Fig. 1e) and call mutations as the extreme and
rare events on the right tail of the fitted distribution. We
take into account the dbSNP information by requiring a
cutoff that is two times more stringent for a dbSNP posi-
tion than for a non-dbSNP position. The final output of
the second step is a Variant Call Format (VCF) file that
lists the identified somatic variants.

Synthetic data
We measured the performance of MuSE using synthetic
data and compared the sensitivity and specificity of MuSE
with that of other state-of-the-art callers [1, 4, 5, 11].
MuSE is intended to run with little or no human cura-
tion. For that reason, all callers were evaluated without
human curation to yield a uniform comparison, although
in practice, output from mutation callers is often curated.
We first made the comparison using the synthetic data
IS1, IS2, and IS3 (9.11 gigabase pairs (Gbp)) from the

ICGC-TCGA DREAM Mutation Calling challenge [6].
The complexity of the three data sets increased because
of elevating mutation rates, declining VAFs, and incorpo-
rating multiple subclones. This increased data complexity
affected the performance of all callers, which was evi-
dent in the synchronized decreases in sensitivity (Fig. 2a).
In all three data sets, MuSE was more sensitive and spe-
cific than MuTect, SomaticSniper, Strelka, and VarScan2.
Moreover, MuSE identified cutoffs varying by the sample
(Fig. 2a, bottom right). These cutoffs at the PASS level are
located at the top left corners of the receiver operating
characteristic (ROC) curves, which suggests an ideal bal-
ance between sensitivity and specificity. Since IS1 was the
least complex and furthest away from real data, additional
tiers were not able to improve the sensitivity.
Furthermore, using the virtual-tumor benchmarking

approach [5], we studied the impact of sequencing depth
(10× to 60×) and VAFs (0.05, 0.1, 0.2, and 0.4) on MuSE
and MuTect in whole genomes (18.2 Gbp; Fig. 2b, Addi-
tional file 1: Table S1). Frommoderate (30×) to high (60×)
coverage, the MuSE curves stayed on top of the MuTect
curves. At low (10× and 20×) coverage, the two curves
crossed as FPR increased. These two low coverage data
sets had low signal-to-noise ratios and weremost sensitive
to losing true positives from post-filtering. Nevertheless,
for the segment of the curve that contained the MuTect
default cutoff, the MuSE curve was still on top of its coun-
terpart, except for one scenario, 10× and VAF of 0.4. The
incremental changes in calling accuracy from Tier 1 to
Tier 4 were more evident in scenarios with high VAFs
than in those with low VAFs. Different from the DREAM
challenge data, in this data set, Tier 1 cutoffs showed the
biggest improvement in sensitivity compared to one level
up, PASS, and moved closer to the top left corners of the
ROC curves in all simulation scenarios from 30× to 60×
coverage, except for 30× and VAF of 0.05. For different
VAF spike-in scenarios, again, MuSE identified Tier 1 cut-
offs that were distinct from each other (Fig. 2b, subplot on
30×). At low (10× and 20×) coverage, PASS performed
reasonably well. MuSE could not identify a cutoff compa-
rable to the MuTect default cutoff for 20× coverage, VAF
of 0.1 and 0.05. Tier 5 was helpful in improving sensitivity
while maintaining a low FPR at low coverage and low VAF.
Looking across the data sets with varied coverage but fixed
low VAF (VAF = 0.05), we observe that MuSE achieved
higher sensitivity than MuTect at the same level of speci-
ficity. Therefore,MuSEwill be helpful for calling subclonal
mutations in studies of the heterogeneity and subclonal
evolution of tumors. AlthoughMuSE demonstrated better
accuracy than MuTect using the virtual-tumor bench-
marking data, the two callers generated intersecting sets
(Additional file 1: Figure S1), which provides a conspic-
uous demonstration of the importance and necessity of
using multiple callers in somatic variant detection.
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Fig. 2 Comparison of sensitivity and specificity of MuSE and MuTect using synthetic data. a Comparison of sensitivity and specificity of MuSE (solid
line), MuTect (dotted line), SomaticSniper (solid square), and Strelka (solid triangle) using the synthetic data IS1, IS2, and IS3 from the ICGC-TCGA
DREAM Mutation Calling challenge. The numbers of positions with positive conditions are 3535, 4322, and 7903, respectively. Both tumor and
matched-normal data have∼30× average coverage. The three synthetic data sets are color-coded using red, blue, and orange, respectively, and the
associated ROC curves, focusing on an FPR between 0 and 1× 10−6, are ordered from top left to bottom right. The tier-based sample-specific cutoffs
of MuSE and the MuTect default cutoff are labeled correspondingly. The embedded plot focuses on a narrow range of true positive rates. The two
times when PASS cutoffs were identified are listed at the bottom right corner. Sensitivity and specificity of VarScan2 (not plotted because they were
out of bounds) were 0.9859 and 8.369 × 10−6 (IS1), 0.9704 and 1.294 × 10−6 (IS2), and 0.8602 and 1.478 × 10−6 (IS3), respectively. b Comparison of
sensitivity and specificity of MuSE (blue line) and MuTect (red line) using the virtual-tumor benchmarking approach. The ROC curves focus on an FPR
between 0 and 5× 10−6. Tumor sample sequencing depth varies from 10× to 60×, and matched-normal sample sequencing depth is fixed at 30×.
Four scenarios of spike-in VAF 0.05 (dot-dashed), 0.1 (dotted), 0.2 (dashed), and 0.4 (solid) are plotted for every sequencing depth. The tier-based
sample-specific cutoffs of MuSE and the MuTect default cutoff are labeled accordingly. Some MuSE cutoffs are close to each other and overlap on
the plot. For 30× coverage, the two times that Tier 1 cutoffs were identified are listed at the bottom right corner of the corresponding subplot

Real data
We evaluated MuSE using multiple real WES and WGS
data sets and compared MuSE with other calling pipelines
(anonymous). Specifically we focused on comparing with
Caller A, which is one of the best-in-breed mutation
callers based on the ICGC-TCGADREAMMutation Call-
ing challenge. With TCGA and ICGC samples, we used
calls that were prepared and provided by the correspond-
ing institutes where individual calling pipelines were run.
We first tested the performance of MuSE using data
from 91 tumor-normal paired WES samples (3.21 Gbp)
from patients with adrenocortical carcinoma (ACC; [12])
(Fig. 3a). Taking into account the tier-based distribution
of MuSE calls (Additional file 1: Table S2), we com-
puted the validation rates of MuSE total calls and unique
calls, and obtained 84.50 % and 26.34 %, respectively. We
repeated a similar calculation for Caller A, which gave
the respective validation rates of total calls and unique
calls as 87.39 % and 24.79 %. Considering that the val-
idation rate could not measure sensitivity, we extracted
the multi-center somatic variant calls from the TCGA
mutation annotation format (MAF) file, made an artifi-
cial truth set by taking calls that were shared by at least
three callers, and computed a sensitivity of 98.71 % for
MuSE and a sensitivity of 95.10 % for Caller A (Fig. 3b).

Moreover, MuSEmissed only 7 calls that were captured by
the other four callers, compared with 66, 36, 807, and 1626
missed calls from Caller A, Caller 1, Caller 2, and Caller
3, respectively. As an alternative to the deep sequenc-
ing validation on a small set of positions, we regarded
all calls outside of the artificial truth set as false pos-
itives to calculate positive predictive values (PPVs). In
agreement with previous findings of the validation rates,
Caller A benefited from its low number of unique calls
and obtained the second best PPV, which in turn helped
Caller A acquire a better F1 score [13]. However, using
the F2 score, which placed a relatively higher weight on
sensitivity, we demonstrated the good performance of
MuSE (F2 = 0.9366). When we used more stringent
tiers, we obtained a smaller number of MuSE unique calls,
changing from 2152 to 378, without losing much sensitiv-
ity; i.e., the number of missed calls that were shared by the
other four callers increased from 7 to 14 (Additional file 1:
Figure S2).
We then applied MuSE to WES data from 48 multi-

region tumor-normal paired samples (2.46 Gbp) from
11 patients with lung adenocarcinoma, which provided
17,155 deep sequencing validated calls that were originally
selected from all calls made by Caller A [14]. MuSE con-
firmed 16,907 and missed 248 Caller A validated calls,
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Fig. 3MuSE performance in two WES data sets and one WGS data set. a Venn diagram of MuSE and Caller A calls from 91 pairs of ACC WES samples.
The calls are overlaid with 550 positions that were selected for deep sequencing validation. The numbers of validated calls are shown in boldface.
For selected MuSE unique, MuSE and Caller A shared, and Caller A unique calls, 35 out of 139, 268 out of 290, and 30 out of 121 are validated,
respectively. b Venn diagram of calls from five different callers using the same ACC data. All the calls except those of MuSE are extracted from TCGA
mutation annotation format (MAF) file. The circles label the numbers of calls missed by one caller but captured by the other four callers. The blue
dotted circle denotes the number of calls missed by MuSE, and the red solid circle indicates the number of calls missed by Caller A. TPR, PPV, F1, and
F2 scores are calculated and listed below the Venn diagram. The truth set is defined as calls shared by at least three callers. cMutation plot and
summary table of MuSE and Caller A calls from 48 pairs of multi-region lung adenocarcinoma WES samples. Each gray column represents a sample.
MuSE and Caller A share 33,035 calls and possess 3750 and 7886 unique calls, respectively. Only calls from Caller A were further validated. MuSE
confirms 16,907 and misses 248 Caller A validated calls. Calls from chromosome 18 are shown in the mutation plot to illustrate how the artificial
truth set and false positives are defined. The vertical gray lines separate 11 patients who have samples from 3 to 5 regions of one tumor. The
numbered shapes combined with different call types are examples for defining the artificial truth set as positions that fall into any of the three
categories: shared or validated (oval 1), called in all regions by including Caller A unique (oval 2), called in all regions by including MuSE unique (oval
3), and false positives: unique and single calls (star 4 and star 5). Correspondingly, the TPR∗ , PPV∗ , F∗

1 , and F∗
2 scores are calculated and listed beside

the mutation plot. d Venn diagram of calls from five different callers using 56 pairs of ICGC Pilot-63 WGS samples on chromosome 1. The circles label
the number of calls missed by one caller but captured by the other four callers. The blue dotted circle denotes the number of calls missed by MuSE,
and the red solid circle indicates the number of calls missed by Caller A. TPR, PPV, F1, and F2 scores are calculated and listed below the Venn diagram
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a sensitivity of 98.55 %, given 3750 unique calls com-
pared with 7886 unique calls from Caller A. In contrast
to the ACC data, this validated data set could not pro-
vide unbiased evaluation of the two callers. However,
the multi-region design of this data set was unique. We
therefore built our artificial truth set by taking all val-
idated calls (Fig. 3c; orange in oval 1), all shared calls
(Fig. 3c; black in oval 1), and all trunk mutation calls
that occurred at the same genomic locus in all tumor
regions of one patient (Fig. 3c; ovals 2 and 3). This design
allowed us to consider unique and unvalidated calls from
each caller as true positives when they appeared as trunk
mutations (Fig. 3c; red in oval 2 and blue in oval 3).
We regarded all other calls that were subclonal as false
positives (Fig. 3c; red in five-pointed star 4 and blue
in five-pointed star 5). The F∗

1 (0.9468) and F∗
2 (0.9717)

scores acquired by MuSE were higher than those of
Caller A.
We further compared MuSE with other callers using

56 pairs of ICGC Pilot-63 WGS samples on chromosome
1 (14.0 Gbp; [15]). We downloaded the related somatic
VCF files that were generated by multiple callers from the
ICGC Pilot-63 study. In accordance with the ACC multi-
caller result, MuSE missed 942 calls that were captured
by the other four callers, which was the least number of
missed calls and therefore indicated the highest sensitiv-
ity among all five callers (Fig. 3d). Caller 4 and Caller 6
gave the best and the second best F1 scores due to their
high PPVs (Fig. 3d). Caller 5, which had low sensitivity,
could not achieve a better F1 score, although its PPV was
higher than that of Caller 6. The F1 score of MuSE was
higher than those of Caller A and Caller 5, but could not
compete with those of Caller 4 and Caller 6. However,
considering that Caller 4, Caller 5, and Caller 6 respec-
tively missed 10,734, 20,664, and 11,424 calls that were
shared by the other four callers, the loss of sensitivity as a
tradeoff for greater specificity may raise concerns. Among
all five callers, MuSE had the best F2 score, emphasizing
the importance of sensitivity.

Conclusions
In summary, we present a somatic point mutation caller,
MuSE. We design MuSE as an automatic approach with
two steps. The first step, ‘MuSE call’, implements the
heuristic pre-filters and uses the Markov substitution
model to describe the evolution of the reference allele to
the allelic composition of the matched tumor and normal
tissue at each genomic locus, which provides the sum-
mary statistics πsomatic. The πsomatic,tumor associated ROC curve
is shown to stand above that from Caller A, suggesting a
good ability to discriminate mutations from references of
the MuSE pipeline. The second step, ‘MuSE sump’, iden-
tifies tier-based cutoffs on πsomatic,tumor. We build a sample-
specific error model to account for tumor heterogeneity

and to identify cutoffs that are unique to each sample,
achieving high accuracy in mutation calling. With the
two steps, we aim at mitigating users’ curation of out-
put. We provide five tiers. From experience, we suggest
using calls up to Tier 4 for WES data, and calls up to
Tier 5 for WGS data. These suggested cutoffs are derived
based on our observation of real data and serve the goal of
maximizing sensitivity and maintaining a good specificity.
Typically, the ‘MuSE call’ step takes ∼4 hours to pro-
cess a tumor-normal paired WGS sample with 30 − 60×
coverage when the WGS data is divided into ∼50 equal-
sized blocks and each block is assigned with 1 CPU core
and 2 GB memory, and the ‘MuSE sump’ step requires
∼1 hour for WGS data given 1 CPU core and 4 GB
memory.
We demonstrate the reliable performance of MuSE

using both synthetic and real data, such as the ICGC-
TCGA DREAM Mutation Calling challenge WGS data,
the virtual-tumor benchmarking approach, TCGA ACC
WES data, the multi-region lung adenocarcinoma WES
data, and the ICGC PanCancer Pilot-63 WGS data. We
demonstrate the superior sensitivity of MuSE, especially
to low VAF mutations, and its capacity to identify an
appropriate balance of sensitivity and specificity in each
sample with varying levels of heterogeneity. This feature is
essential for downstream analyses, such as finding tumor
subclonal structures and understanding the evolution of
tumors, a broad interest in the cancer community and
beyond. So far, we have found substantially more sub-
clones using MuSE calls (up to Tier 5) than using calls
from other callers in ICGC PanCancer Analysis of Whole
Genomes (data not shown; [16]).
Copy number aberration (CNA), tumor purity, and

tumor subclonality commonly exist in our data, both syn-
thetic and real. All influences of CNA, tumor purity, and
tumor subclonality on the mutant chromosome content
of a tumor reduce to the same question of VAF, and the
mechanism of creating or changing the VAF is not as
important as the VAF itself in terms of somatic muta-
tion calling. Therefore, we use the F81 Markov substitu-
tion model to capture the VAF dynamics at each locus.
Our πsomatic,tumor is directly related with the configuration
of local copy number variation, purity, and subclonality
of the position. Our two-component Gaussian mixture
model was motivated when we tested the performance
of MuSE using the virtual-tumor benchmarking approach
(Additional file 1: Figure S3). Therefore, we aim to decon-
volute two log (2πsomatic,tumor) distributions, one from true
mutations that represent tumor growth dynamics and
one from reference positions that arise from sequencing
machine errors or mapping errors. When there are mul-
tiple peaks in each distribution, as often observed in real
data (Fig. 1d), our assumption that true mutations from
multiple subclones and reference positions from machine
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or mapping errors can be separated by finding two major
modes is supported by the high sensitivity and specificity
of MuSE calls in the validation data. We chose the Gaus-
sian mixture model because of its robustness to model
assumption and easy implementation with a closed-form
likelihood function. However, alternative distributions,
for example the gamma mixture distribution, may also
be appropriate due to the fact that log (2πsomatic,tumor) is
bounded by 0.
We considered two aspects when using the F81 model:

(1) the number of free parameters in the model should
remain small to allow for higher accuracy in estimation
for each position; and (2) the F81 model can be extended
to take into account mutational contexts, which will be
our future work. One potential benefit of considering the
mutational contexts is to further reduce false positives.
We accessed MuSE calls in annotated CpG islands (UCSC
Genome Browser CpG Island Annotation Track) using the
TCGAWES data from ACC. The validation rate of MuSE
total calls decreased from 0.8450 to 0.7245, and the vali-
dation rate of MuSE calls shared with Caller A decreased
from 0.9889 to 0.8829.
We will further validate MuSE through participation

in the ICGC-TCGA DREAM Mutation Calling chal-
lenge and the ICGC Pilot-63 study, both of which
have promised independent experimental validations. We
have also applied MuSE to analyze the WES data of
chromophobe renal cell carcinoma (KICH; [17]) and
liver hepatocellular carcinoma (LIHC), which are part
of the TCGA project. The corresponding calls have
been made available to the TCGA community. MuSE
is being used by two new ongoing consortium projects:
TCGA PanCanAtlas and ICGC PanCancer Analysis
of Whole Genomes, which includes WGS data from
more than 2800 pairs of tumor and matched-normal
samples.
Despite the satisfactory performance of MuSE, we con-

tend that there is no comprehensive caller that can
replace all the others; each caller has strengths and
unique attributes. We support the trend to incorporate
call sets from multiple callers in future NGS analyses,
for example, using SomaticSeq [18]. Due to its ensem-
ble nature, SomaticSeq relies on the performance of its
callers, and is bounded by the best sensitivity among indi-
vidual callers [18]. Therefore, when MuSE is included as
one of the callers to be integrated, we expect Somatic-
Seq to generate results that are more accurate than it can
produce currently. We welcome the usage of other post-
filtering methods on MuSE calls, for instance, panel of
normal samples, when data from the appropriate con-
trol samples are available. Our method can be extended
for calling binucleotide, triplet, or small insertion-deletion
variants by modifying the F81 Markov substitution
model.

Methods
BAM preparation
All the sequence reads were aligned against the hg19
reference genome using the Burrows-Wheeler Aligner
(BWA) with either the backtrack or the maximal exact
matches (MEM) algorithm [19]. In addition, data sets
(3), (4), and (5) were processed by following the Genome
Analysis Toolkit (GATK) Best Practices [20–22] that
include marking duplicates, realigning the paired tumor-
normal BAMs jointly, and recalibrating base quality
scores.

Variant heuristic pre-filters
In order to detect context-based sequencing artifacts,
remove potential false positives, and accelerate the com-
puting speed, we apply heuristic pre-filters to every
genomic locus in advance of variant detection.

(1) Neighboring to indels: No less than 3 insertions
or 3 deletions are observed in an 11-base window
centered on the locus.
(2) Variant in matched-normal : The candidate
variant allele is observed no less than twice or its
variant allele fraction is no less than 3 % in the
matched-normal data; moreover, the sum of the
variant allele’s base quality scores is more than 20.
However, this genomic locus is kept if the candidate
variant allele turns out to be the germ-line variant in
the matched-normal data and the second variant
allele is rejected by the above test.
(3) Minimum variant allele fraction: The candidate
variant allele fraction in the tumor data is smaller
than 0.005.
(4) Strand bias: The p value that is computed from
Fisher’s exact test using tumor allele count data
comparing sense and antisense strands is less than or
equal to 1e-5.
(5) Dubious mapping quality: The average mapping
quality score of reads that carry a candidate variant
allele is less than or equal to 10.
(6) Read-end cluster: For each read that has the
candidate variant allele, we record the smallest
distance there can be from the current genomic locus
to either the left end or the right end of the read
alignment. We disregard the current genomic locus if
the median of all these distances is less than or equal
to 10 and the median absolute deviation is less than
or equal to 3.
(7) Confident variant : We require there to be at least
one variant read that meets the following criteria: (a)
the read and its mate are mapped in a proper pair; (b)
its mapping quality score is no less than 30; and (c)
the base quality score of its candidate variant allele is
greater than or equal to 25.
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Variant detection
For each genomic locus, we denote the base of read r (r =
1 . . .N) that covers the locus as br , where r ∈ {1 . . .N}
andN is the depth of the locus. By knowing the associated
Phred quality score qr of br , we denote the probability of
br being the four different alleles (A, C, G, T) as

L(x) =
{
1 − 10− qr

10 if br = x,
1
310

− qr
10 if br �= x,

where x ∈ {A,C,G, T}. We use a continuous-time Markov
chain to describe the DNA evolution from the reference
allele R to the allelic composition b = (br : r ∈ {1 . . .N})
at each locus, namely, the F81 Markov substitution model
[9]. The F81 model can be expressed using a 4-state ×
4-state instantaneous rate matrix, Q:

A C G T

Q =
A
C
G
T

⎛
⎜⎝

−(1 − πA) πC πG πT
πA −(1 − πC) πG πT
πA πC −(1 − πG) πT
πA πC πG −(1 − πT)

⎞
⎟⎠μ,

where each entry represents the changing rate from allele i
to allele j in an infinitesimal time dt,μ stands for the mean
instantaneous substitution rate, and πA,πC,πG,πT are the
equilibrium allele frequencies. The transition matrix that
consists of the probabilities of change between any two
states in time t can be calculated from the exponential of
the instantaneous rate matrix, P(t) = eQt . Specifically,

Pij(t) =
{

πj +
(
1 − πj

)
e−μt if i = j,

πj
(
1 − e−μt) if i �= j.

Because of the confounding nature of the μt product, it
is customary to rescale the instantaneous rate matrix so
that the mean substitution rate at equilibrium is 1, and
replace t with the evolutionary distance ν that represents
the expected number of substitutions per base. Conse-
quently, the transition matrix of the F81 model is altered
as

Pij(ν) =
{

πj +
(
1 − πj

)
e
{−ν/

(
1−π2

A−π2
C−π2

G−π2
T
)}

if i = j,
πj

(
1 − e

{−ν/
(
1−π2

A−π2
C−π2

G−π2
T
)})

if i �= j,

and the likelihood function f (b,R|π , ν) can be expressed
as

f (b,R|π , ν) =
N∏
r=1

⎧⎨
⎩

∑
xm

πxm

⎡
⎣∑

xh

Pxm,xh
(ν

2

)
L(r)
h (xh)

⎤
⎦

×
⎡
⎣∑

xk

Pxm,xk
(ν

2

)
Lk(xk)

⎤
⎦

⎫⎬
⎭ ,

where (1) xm, xh, xk ∈ {A,C,G, T}; (2) ν connects the ref-
erence allele R and the allelic composition b; (3) h and k
denote the b and R tips of ν, respectively; (4) m denotes

the middle point of h and k so that the evolutionary dis-
tance ν from m to h is equal to the distance from m to
k, i.e., ν/2. Because of the time-reversible characteristic of
the F81 model,m can be any point along the evolutionary
distance ν that connects the h and k tips without affecting
the final result. We set m as the midpoint for the purpose
of calculation convenience; (5) Lk(xk) = 1 if xk = R, and
Lk(xk) = 0 otherwise; and (6) all the other notation is the
same as that used above.
We obtain the joint posterior probabilities of π and

ν, f (π , ν|b,R), by setting the priors of π and ν to be
the Dirichlet distribution Dir(1,1,1,1) and the exponen-
tial distribution Exp(1000), respectively. In practice, we
employ the Broyden-Fletcher-Goldfarb-Shanno algorithm
and Brent’s algorithm to search for the maximum a poste-
riori (MAP) estimates of π and ν instead of exploring the
full posterior distribution.
We apply the above method to both loci of the tumor-

normal paired sequencing data and obtain the πsomatic, tumor

and the πsomatic, normal estimates accordingly.We designate the
non-reference and non-germline allele that has the largest
π as the somatic variant allele. The somatic variant allele
should pass all the pre-filtering examinations.

Post-filtering criteria
After we obtain the πsomatic, tumor and πsomatic, normal, we require
that: (1) the minimum coverage of tumor and matched-
normal data is 8 at given genomic loci; and (2) the ratio
πsomatic, normal
πsomatic, tumor

is less than or equal to 0.05, which tolerates
the contamination of matched-normal data with tumor
data in a reasonable amount and dynamically changes the
constraint on matched-normal data.

Sample-specific error model
We provide two options for building the sample-specific
error model. One is applicable toWES data, and the other
to WGS data. By plotting the densities of log (2πsomatic,tumor)

from MuSE on all positions (see Additional file 1:
Figure S3), we observed that (1) the density of log-
transformed πsomatic,tumor showed a bimodal behavior that
could be approximated using a Gaussian mixture distri-
bution; (2) the true positives (red) and reference positions
(blue) correspond to each of the modes so that a cutoff
can be identified to separate the two types of calls; (3) as
expected, the separation of two modes becomes easier at
higher coverage and higher variant allele fraction (VAF).
For most WES data, there are not enough true muta-
tions that can form a detectable secondmode as compared
to the reference positions. As πsomatic,tumor provides a good
ranking of true versus false mutations, we fit a beta distri-
bution on the πsomatic,tumor in this case and call mutations as
the extreme and rare events on the right tail of the fitted
distribution. For the WGS data, we transform all post-
filtered πsomatic,tumor to a logarithmic scale and then fit a two-
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component Gaussianmixture distribution on it. Given the
means μ1 and μ2, standard deviations σ1 and σ2, and
weights p and 1− p of the two Gaussian distributions that
are estimated using the expectation-maximization algo-
rithm, we first calculate the cutoff that minimizes the
misclassification, the sum of the false positive probability
and the false negative probability:

PrFP = p
∫ ∞

cutoff
N(μ1, σ1; x)dx

PrFN = (1 − p)
∫ cutoff

−∞
N(μ2, σ2; x)dx.

If the cutoff is larger than 0.01, we consider it as PASS
and 0.01 as Tier 1, or vice versa. We take the top 0.1, 0.5,
and 1 percentiles of the Tier 1 truncated Gaussian distri-
bution as Tier 2, Tier 3, and Tier 4, respectively. For the
WES data, we build the sample-specific error model upon
post-filtered πsomatic,tumor that are within the interval (0.0025,
0.01). We first rescale all selected πsomatic,tumor to the range
(0, 1), and then fit a beta distribution on them. We report
0.01 as PASS, and cutoffs that are transformed from the
top 0.1, 0.5, 1, and 2 percentiles of the beta distribution as
Tier 1, Tier 2, Tier 3, and Tier 4, respectively.

Sensitivity and specificity
For the virtual-tumor benchmarking data, we measured
sensitivity and specificity by applying MuSE and MuTect
[5] to the combination of 24 spike-in BAMs (4 different
variant allele fractions × 6 distinct depths) with the same
depth non-spike-in WGS BAMs. The matched-normal
WGS BAM was fixed at 30× depth. We considered any
missed calls from our in silico spike-in ground truth as
false negatives, and any calls from the non-spike-in WGS
BAMs as false positives. The denominator for the FPR cal-
culation is the total length of the hg19 reference genome
from chromosome 1 to chromosome X.
For the DREAM challenge IS1, IS2, and IS3 data, we

took the organizer provided script and the truth VCF files
to compute sensitivity and specificity [23]. We extracted
the sensitivity and specificity of SomaticSniper, Strelka,
and VarScan2 from the DREAM challenge leaderboards.
The denominator for the FPR calculation is the total
length of the hg19 reference genome from chromosome 1
to chromosome X.
For the multi-region lung adenocarcinoma data, we cal-

culated sensitivity and the positive predictive value (PPV)
based on an artificial truth set for the reason that the
known validation set was extracted and compiled from the
paper’s supplementary document and was biased toward
Caller A. The artificial truth set included shared calls
(Fig. 3c; black in ovals 1, 2, and 3), validated calls (Fig. 3c;
orange in oval 1), and unique-not-validated calls that
helped the recognition of trunk mutations (Fig. 3c; red in

oval 2 and blue in oval 3). Here, a trunk mutation was a
somatic variant call that all tumor regions of one patient
had at the same genomic locus. All the other calls were
considered as false positives (Fig. 3c; red in five-pointed
star 4 and blue in five-pointed star 5). We evaluated
accuracy using the F1 and F2 scores, which were defined
as

Fβ = (
1 + β2) PPV × TPR(

β2 × PPV
) + TPR

β = 1 or 2.

To compare the performance of multiple callers in the
ACC WES data and the ICGC Pilot-63 WGS data, we
also made the artificial truth sets by taking calls that were
shared by at least three callers, and computed sensitiv-
ity. We regarded other calls as false positives to calculate
PPVs. We calculated the F1 and F2 scores by following the
same equation above.

Validation
To validate variants identified byMuSE and Caller A in the
ACC data, we selected 550 patient-specific positions and
designed NimbleGen probes correspondingly for the pur-
pose of targeted capture enrichment and deep sequenc-
ing. Paired-end Illumina resequencing was carried out to
an average sequencing depth at 1500×. After mapping the
reads against the hg19 reference genome using BWA, we
considered a somatic variant as validated if its p value cal-
culated from Fisher’s exact test comparing the tumor and
matched-normal samples was not larger than 0.05. The
validation rates of MuSE and Caller A were calculated
as

validation rate of MuSE unique calls

= 1
139 + 2303

[
8
11

· (11 + 141) + 7
39

· (39 + 221)

+ 5
34

· (34+345)+ 8
25

· (25+494) + 7
30

· (30 + 1102)
]

≈ 0.2634,

validation rate of MuSE shared calls

= 1
290 + 9584

[
125
125

· (125 + 8900) + 99
111

· (111 + 472)

+25
29

· (29 + 109) + 12
17

· (17 + 52) + 7
8

· (8 + 51)
]

≈ 0.9889,

validation rate of MuSE total calls

= 1
139 + 290 + 2303 + 9584

× [0.2634 · (139 + 2303) + 0.9889 · (290 + 9584)]
≈ 0.8450,
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validation rate of Caller A unique calls

= 30
121

≈ 0.2479,

validation rate of Caller A total calls

= 1
121 + 290 + 1693 + 9584
× [0.2479 · (121 + 1693)+0.9889 · (290+9584)]

≈ 0.8739.

Additional file

Additional file 1: Table/figure. (PDF 2826 kb)

Availability of data andmaterials
(1) We downloaded the WGS BAM files of NA12878 and NA12981 [24], and
followed the procedures described in Cibulskis et al. [5] to simulate the
virtual-tumor benchmarking data set.
(2) We downloaded the ICGC-TCGA DREAM Mutation Calling challenge IS1,
IS2, and IS3 WGS BAM files and VCF files of simulated truths [23].
(3) According to TCGA cancer types, we downloaded the tumor-normal paired
WGS BAM files of 3 patients in LUAD, LUSC, and STAD, and the tumor-normal
paired WES BAM files of 91 patients in ACC from the UCSC Cancer Genomics
Hub (CGHub).
(4) We obtained the tumor-normal paired WES BAM files of 11 patients with
lung adenocarcinoma, including 48 multi-regions that were collected and
generated at MD Anderson Cancer Center [14].
(5) We obtained somatic SNV VCF files of 56 samples that were generated by
multiple callers from the ICGC Pilot-63 study [25].
(6) The MuSE source code (v1.0 rc) is available on GitHub (https://github.com/
danielfan/MuSE) under the GNU General Public License, version 2.0 (GPL-2.0).
It has also been deposited at Zenodo (https://zenodo.org/) with a DOI (http://
dx.doi.org/10.5281/zenodo.57283).
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