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Abstract

cancer patients.
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Background: The human lung tissue microbiota remains largely uncharacterized, although a number of studies
based on airway samples suggest the existence of a viable human lung microbiota. Here we characterized the
taxonomic and derived functional profiles of lung microbiota in 165 non-malignant lung tissue samples from

Results: We show that the lung microbiota is distinct from the microbial communities in oral, nasal, stool, skin, and
vagina, with Proteobacteria as the dominant phylum (60 %). Microbiota taxonomic alpha diversity increases with
environmental exposures, such as air particulates, residence in low to high population density areas, and pack-years of
tobacco smoking and decreases in subjects with history of chronic bronchitis. Genus Thermus is more abundant in
tissue from advanced stage (lllB, IV) patients, while Legionella is higher in patients who develop metastases. Moreover,
the non-malignant lung tissues have higher microbiota alpha diversity than the paired tumors.

Conclusions: Our results provide insights into the human lung microbiota composition and function and their link to
human lifestyle and clinical outcomes. Studies among subjects without lung cancer are needed to confirm our findings.

Background

The human body harbors extraordinarily diverse com-
munities of microbes (microbiota) that are increasingly
thought to be crucial for human health. Recent studies
have revealed intriguing correlations between specific
patterns of human microbiota and various diseases, in-
cluding autoimmune disorders, diabetes, obesity, and even
psychiatric conditions [1-6].

The healthy human lung was traditionally considered
sterile. However, since the first culture-independent re-
port of microbiota in asthmatic airways [7], more than
30 studies using diverse molecular techniques have sug-
gested that the healthy human lung is also home to
bacteria (reviewed in [8, 9]). Because lung biopsy collection
is not ethical in healthy human subjects, the study of lung
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microbiota has been mostly based on bronchoalveolar
lavage (BAL), bronchoscopic brushing, or sputum samples.
Reliance on these samples to determine lung microbiota is
problematic due to contamination by the upper respiratory
tract or oral microbiota [8]. To date, only four studies on
human lung tissue microbiota have been published.
These studies have considerable limitations, including
small sample size (#<33) and use of samples mostly
from patients with severe lung diseases, such as chronic
obstructive pulmonary disease (COPD) or cystic fibrosis
[10-13]. Therefore, the characteristics of lung tissue
microbiota remain largely unknown.

In this study, we characterized the taxonomic and
derived functional profiles of the microbiota in non-
malignant lung tissue samples from 165 lung cancer
patients and compared them with previously published
profiles from other body sites (including oral cavity, nasal
cavity, gut, skin, and vagina from the Human Microbiome
Project [14]). We also evaluated the associations between
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features of non-malignant lung microbiota and epidemio-
logical and clinical characteristics. Finally, we compared
non-malignant with tumor lung microbiota.

Results

Characteristics of the study participants

A total of 165 non-malignant lung tissue samples which
generated at least 1000 sequence reads per sample
(mean + standard deviation (sd), 4091 + 4167) were in-
cluded in the analysis. Additional file 1: Table S1 des-
cribes the study population. The participants were mainly
males (83 %) with a median age of 66.6 years; 53 % lived in
the urban area of Milan (see Additional file 2: Figure S1 for
a map of studied residential areas); most were smokers
(51 % current and 43 % former) with a median of 45.3
pack-years and 43.5 years of smoking; 10 to 25 % self-
reported a history of bronchitis, emphysema, and pneu-
monia; based on spirometry, 45 % subjects had a history
of COPD. Most had tumor in the upper or lower lobe and
3 % had tumor in the principal bronchus; 38 % had squa-
mous cell carcinoma and 59 % had adenocarcinoma; 92 %
were diagnosed in stages IA, IB, IIA, IIB, and IIIA and
only 8 % had more advanced cancer stages (IIIB, IV), as
expected, since patients with later cancer stages are usu-
ally treated with systemic therapy instead of surgery. No
patients had received chemotherapy, radiation therapy, or
other treatments for lung cancer before surgery. The
patients survived a median of 201.9 weeks after lung
cancer diagnosis.

Taxonomic and functional profiles of the non-malignant
lung tissue microbiota

The taxonomic and functional profiles of lung microbiota
are presented in Fig. 1. Here, we defined the core member
of lung microbiota if it is observed in 80 % of samples, re-
gardless of the relative abundance. The core lung micro-
biota of non-malignant tissue samples at the phylum level
included Proteobacteria, Firmicutes, Bacteroidetes, and
Actinobacteria (Fig. 1a). At the genus level, the core lung
tissue microbiota included five Proteobacteria genera:
Acinetobacter, Pseudomonas, Ralstonia, and two unknown
genus-level groups, one each from Comamonadacea and
Oxalobacteraceae (Fig. 1b).

We also examined the NIAID (National Institute of
Allergy and Infectious Diseases) class A—C pathogen
genera and opportunistic “pathogens” as defined by the
PATRIC database [15]. The potentially pathogenic genera
Staphylococcus, Streptococcus, and Burkholderia were ob-
served with low average relative abundances of around
2 %. Although Pseudomonas, which was frequently present
in the lung tissue, is not included in the NIAID pathogen
list, it could be pathogenic in immunosuppressed subjects.
Other than these, “pathogens” were rarely observed in the
non-malignant lung tissue (Additional file 1: Table S2).
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Predicted functions based on Phylogenetic Investigation
of Communities by Reconstruction of Unobserved States
(PICRUSt) analysis of 16S rRNA gene taxonomic data are
shown in Fig. 1c for the most abundant modules. The
functional profiles exhibited less variation across indi-
viduals than found for taxonomic profiles (compare
Fig. 1a and 1c).

Analysis of negative controls

We sequenced four negative controls at the same time
as our original lung tissue analysis to test PCR amplifica-
tion and sequencing (“PCR negative controls”). More-
over, we sequenced an additional 20 negative controls
that were subjected to DNA extraction and PCR amplifica-
tion (“Extraction negative controls”). At the same time, we
PCR-amplified and re-sequenced DNA from ten previously
extracted lung tissue specimens. All samples were ex-
tracted by the same laboratory and the same laboratory
technician, using the same kit and following the same ex-
traction and PCR procedures we had used for the original
lung tissue specimens. Finally, we sequenced a vagina sam-
ple and a fecal sample as positive controls. We found that:

1. The number of reads in all negative controls
(44-351 reads) was much lower than the number
of reads in lung tissue samples (1551-12,340 reads)
and the positive samples (2703-58,201)

(Additional file 1: Table S3).

2. We found five operational taxonomic units (OTUs)
that were shared across all negative controls.

None of these five OTUs were present in the lung
tissue samples.

3. At the phylum level, there was a strong difference
in microbial profiles between the lung tissue
samples and the 20 extraction negative controls
(P=0.001, performed on the Euclidean distance of
phylum-level profiles by non-parametric permutation
multivariate analysis of variance (MANOVA), Adonis
test with 1000 permutations). The lung tissue samples
also differed from the four PCR negative controls,
although the P value was not statistically significant
(P=0.1) because of the small sample size (n = 4)
of these negative controls.

4. There were 173 OTUs shared between the negative
controls and the lung tissue samples. When we
excluded the shared 173 OTUs from the original
analysis, all results regarding lung tissue remained
virtually unchanged.

Comparison of microbiotas from non-malignant lung
tissue and other body sites

We compared the bacterial composition and abundance of
non-malignant lung tissue with those of other body sites as
established by the Human Microbiome Project (HMP)
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Fig. 1 Taxonomic and functional profiles of non-malignant lung tissue microbiota. a Phylum-level taxonomic profiles. b Genus-level taxonomic
profiles. ¢ Kyoto Encyclopedia of Genes and Genomes (KEGG) module-level functional profiles. Each vertical bar represents a unique sample. Samples
were ordered by anatomical sites shown below the figure. The y-axis shows the relative abundance of each phylum/genera/module. The average

relative abundance (percentage) is shown in parentheses after each taxon or module. Only the most common taxa or modules are shown

phase 1 using sequence data from the 16S rRNA gene re-
gions V3-V5. We computed Euclidean distances between
phylum/KEGG module relative abundance profiles, ex-
tracted the principal components of the corresponding
distance matrix, and plotted the first three principal com-
ponents to visualize samples (Fig. 2). The lung tissue
microbiota formed a distinct cluster, largely separated from
the oral microbiota and the microbiota commonly found
at other body sites in healthy humans (Fig. 2a). The separ-
ation of the lung microbiota is even clearer based on func-
tional profiles (Fig. 2b), for which almost no overlap was
observed between lung and oral microbiota. Bray—Curtis
distances provided similar results.

Figure 2c depicts the clustering of average phyla relative
abundances by body site. The lung microbiota is distinct
from that of other body sites in having a higher relative

abundance of Proteobacteria, Thermi, and Cyanobacteria.
Interestingly, Thermi had an average relative abundance of
8.8 % in lung but was rare in other body sites, with a high-
est average of 0.05 % in left antecubital fossa (Additional
file 2: Figure S2). The Taq DNA polymerase used in this
study was produced from Escherichia coli, not from
Thermus aquaticus; therefore, it is unlikely that the
Thermi observed in our samples were due to contamin-
ation. To confirm this, we re-sequenced five samples that
originally included Thermi and five samples that originally
had no Thermi. Five out of five positive samples remained
positive in the re-sequencing data and five out of five
negative samples remained negative in the re-sequencing
data (Additional file 1: Table S4). These replication
data argue strongly against laboratory contamination
during PCR amplification or sequencing as the source
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Fig. 2 Comparison of microbiotas from non-malignant lung tissue and other human body sites (HMP 165 V3-V5 phase 1 data). a, b Principal coordinates
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J

phylum/module compared with all the other body sites” samples combined (P < 0.05 by Wilcoxon test with Bonferroni correction)

of Thermus (Thermi) in the lung specimens, in which  samples. This may be due to batch effects in the PCR
Thermus (Thermi) was one of the most abundant genera.  amplification or because the DNA amount remaining for
In the repeated sequencing, the copy numbers of Thermi  the replication assay was lower than the amount used for

in the five positive cases were lower than in the original  the original analysis.
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Analogous clustering of predicted functions (Fig. 2d)
shows that the lung microbiota had high relative abun-
dance of the KEGG modules amino acid metabolism,
xenobiotic biodegradation and metabolism, and lipid me-
tabolism. Functional profiles and taxonomic profiles were
correlated (Additional file 2: Figure S3).

Demographic and clinical associations of non-malignant
lung tissue microbiota

We found significant differences in taxonomic alpha di-
versity and Proteobacteria relative abundance by patient
residence (Fig. 3a). In particular, samples from partici-
pants living in Varese, which has a low population density
(1470 inhabitants/km?), had low alpha diversity and high
Proteobacteria abundance, while samples from partici-
pants living in Milan, with a high population density
(7389 inhabitants/km?), had high alpha diversity. Similar
associations with alpha diversity and Proteobacteria rela-
tive abundance were found when plotted against atmos-
pheric particulate matter 10 micrometers in diameter
(PM;) concentrations at the time of participants’ enroll-
ment (Fig. 3b), which is likely to reflect previous exposures
[16]. These associations remained after regression adjust-
ment for history of bronchitis and tumor stage (see below
for associations with these factors). The regressions that
included both PM;, concentrations and residential area
indicated non-statistically significant main effects for both.
No KEGG module/pathway relative abundance was as-
sociated with residential area or PM,, concentration
(results not presented).

Analysis of beta diversity by residential area or PM;o
MANOVA adjusted for history of bronchitis and tumor
stage) showed a statistically significant association based
on unweighted UniFrac distance (P=0.009 and 0.006,
respectively) but not on weighted UniFrac distance (P =
0.14 and 0.16, respectively). However, when both resi-
dential area and PM;, were included in the same model,
PM,, (P=0.003), but not residential area (P=0.17),
remained statistically significant.

We observed no statistically significant differences
among microbiota from various anatomical locations in
the lung (Additional file 1: Table S5). Samples from the
principal bronchus had non-significantly higher taxo-
nomic alpha diversity than samples from lung lobes
(observed species (mean +sd), 116.6 + 53.6 in principal
bronchus versus 84.0 +24.0 in lobes), but this test was
based on only five principal bronchus samples. Alpha
diversity was similar in different lobes of the lung
(Additional file 1: Table S5).

We observed a significant positive association of pack-
years of cigarette smoking with taxonomic alpha diver-
sity (Shannon index, Pyenq =0.04 and observed species
Pirena = 0.04). No other significant association for lung
microbiota measures was observed by smoking status,
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years of smoking, or cigarettes per day (Additional file 1:
Table S6).

Compared with patients with no history of previous lung
diseases, patients with a history of emphysema, COPD, and
pneumonia had similar levels of taxonomic alpha diversity
(Additional file 1: Table S7), but patients with a history
of bronchitis had significantly decreased alpha diversity
(observed species, P=0.05; PD_whole_tree, P=0.02). No
difference in beta diversity and relative abundance of any
taxa was found between patients with and without previous
lung diseases (data not shown). The dominant phylum,
Proteobacteria, did not differ by previous disease status, in-
cluding COPD (mean + sd, 0.60 £ 0.22 and 0.62 + 0.25 for
patients with and without COPD, respectively). We also ex-
amined the association of spirometry-based lung function
measures, including forced vital capacity, forced expiratory
volume in 1 s, peak expiratory flow, and the ratio of forced
vital capacity and forced expiratory volume in 1 s, with lung
tissue microbial features, including alpha and beta diversity
and taxa relative abundance, and found no association
(data not shown).

Microbiota from non-malignant lung tissue had sig-
nificantly increased PD_whole_tree, but not Shannon’s
index in late stages IIIB and IV (Fig. 3c). Beta diversity
(adjusted MANOVA analysis) was also significantly asso-
ciated with tumor stage (P =0.001 for both unweighted
and weighted UniFrac). The genus Thermus (Thermi)
had significantly higher abundance in stages IIIB and IV
(Fig. 3c). With respect to predicted function, microbiota
significantly differed by tumor stage in predicted KEGG
modules and pathways (Additional file 2: Figure S4). Spe-
cifically, compared with patients in stages IA to IIIA,
microbiota in stage IV patients had increased relative
abundance for the excretory system module and the
amino acid metabolism, aldosterone regulated sodium re-
absorption, and amoebiasis pathways. Moreover, micro-
biota in patients with both stage IIIB and IV had reduced
abundance for signal transduction (Additional file 2:
Figure S4).

We observed no difference in taxonomic alpha diver-
sity or beta diversity by metastasis status after diagnosis.
However, the non-malignant samples from patients who
developed metastases, compared with those without me-
tastases, had significantly increased relative abundance
of Legionella (Proteobacteria) (mean *sd, 0.003 +0.008
versus 0.001 + 0.004, P(Bonferroni) = 0.01).

Difference between lung tumor and non-malignant tissue
microbiotas

We had fresh frozen tumor tissue samples from 56 sub-
jects. After excluding samples with <1000 reads per sample,
we included data from 31 tumor samples for comparison
with non-malignant tissues. Several measures of alpha
diversity were significantly higher in non-malignant than in
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model with PMq, history of chronic bronchitis, and tumor stage in the model. The asterisks in a indicate areas significantly different from the overall
mean. Proteobacteria for residential areas and air pollution and Thermus for tumor stage are the only taxa that showed significant association according
to both an adjusted linear regression model and a Kruskal-Wallis test with Bonferroni correction

tumor lung tissues (e.g., PD_whole_tree; Fig. 4a). In
addition, microbiota differed significantly between non-
malignant and tumor tissue by tumor histology (Fig. 4b).
While no major differences were observed in non-
malignant tissue by tumor histology, the tumor tissues

with adenocarcinoma had significantly higher phylo-
genetic diversity (PD_whole_tree; Fig. 4b), increased
relative abundance of Thermus (Thermi; 0.285 + 0.231 ver-
sus 0.017 +£0.084, P(Bonferroni) =0.02), and decreased
relative abundance of Ralstonia (Proteobacteria; 0 +0.001
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versus 0.026 * 0.046, P(Bonferroni) = 0.04) than tumor tis-
sues with squamous cell carcinoma. In contrast, weighted
UniFrac distance did not significantly differ between non-
malignant and tumor tissue and was lower within than
between subjects (Additional file 2: Figure S5).

Discussion

In the largest study of human non-malignant lung tis-
sue to date, we describe the taxonomic and functional
profiles of lung tissue microbiota. The lung tissue
microbiota was clearly distinct from the microbiotas re-
ported at other body sites (oral cavity, nasal cavity, gut,
skin, and vagina). Moreover, it showed increased alpha
diversity with environmental exposures such as air par-
ticulates, residence in high population density areas,
and pack-years of tobacco smoking. Microbiota also
varied by clinical endpoints, with increased alpha diver-
sity in non-malignant lung tissue from advanced stages
of cancer and decreased alpha diversity in lung affected
by chronic bronchitis. Microbiota alpha diversity also
significantly differed between non-malignant and tumor
lung tissue.

Most previous studies on the airway microbiota were
based on BAL, bronchoscopic brushing, or sputum
samples [7, 10, 17-26]. A common concern of these
samples is that they may be contaminated by the upper
respiratory tract and oral microbiota [8]. In our study,
samples were surgically resected from lung tissue dis-
tant from the tumors and with no evidence of tumor
nuclei. We found that five Proteobacteria genera had high
relative abundance in lung tissue with and without COPD
or other lung diseases and each genus was found in 80 %
of samples. In contrast, previous studies of BAL showed

high abundance of genera Prevotella (Bacteroidetes),
Streptococcus (Firmicutes) and Veillonella (Firmicutes)
(Additional file 1: Table S8), which are commonly
found in the oral cavity (Additional file 1: Table S9).
Reassuringly, the only four previous, very small studies
of lung tissue also indicated members of the phylum
Proteobacteria as predominant (Additional file 1: Table S6)
[10-13]. Notably, we found that Thermi, although present
in only 27 % of subjects, had high relative abundance in
samples from these subjects (mean + sd, 32 + 20 %). To
our knowledge, only one BAL-based study reported the
presence of high relative abundance of Thermi (Thermus,
~96 %) in one healthy subject [24]. Moreover, our data
clearly show that the lung microbiota is distinct from di-
gestive tract microbiota of healthy subjects, even at high
taxonomic (phylum) and functional (KEGG module) level
(Fig. 2a, b). Taken together these data suggest that the
lung microbiota is unique.

A concern is that our lung tissue assays might be
contaminated during DNA extraction, PCR amplifica-
tion, or sequencing. Analyses of 24 negative controls and
re-amplification and re-sequencing of DNA from ten pre-
viously analyzed lung specimens argue strongly against
distortion of our results by contamination. Although
Thermi has high resistance to environmental hazards
[27] (Thermus acquaticus can survive at 50 to 80 °C
and is the source of thermostable Taq DNA polymerase,
which is commonly used for DNA amplification (https://
en.wikipedia.org/wiki/Thermus_aquaticus)), we found no
evidence for Thermi contamination. Repeat amplification
and sequencing of five initially Thermi-negative DNA
samples yielded five negative results and five initially
Thermi-positive DNA samples yielded five repeat positive
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results. More generally, when all the 173 OTUs that were
common to 24 negative control samples and to any lung
cancer sample were excluded, the lung cancer analyses
were virtually unchanged.

We found a positive association between microbiota
alpha diversity in the lung and subjects’ residential area
(from low to high density population), with evidence
that this association reflected exposure to air pollution
(PMyp). We did not find significant differences in the
lung tissue microbiota by smoking status, smoking in-
tensity, or lifetime smoking duration, probably because
there was no great variability across study subjects since
most of them were heavy smokers. However, we did find
significantly higher alpha diversity with increased pack-
years of cigarette smoking. Together, these findings suggest
that the lung microbiota may be altered by cumulative ex-
posure to tobacco smoke and other air pollutants or life
style conditions linked to high density population. Pre-
viously, analysis of 16 sputum samples revealed higher
alpha diversity in samples from women in China who used
smoky coal for cooking and heating compared with those
using smokeless coal. Also, increased diversity and altered
abundances of certain taxa in smokers’ versus non-
smokers’ subgingival samples have been shown [28].
Chronic inhalation of dust or tobacco-related particles
could allow increased diversity by impeding the dispersion
and clearance of microbes from the bronchopulmonary
system. Alternatively, particulates in the air could function
as vectors for inhalation of microbes, as suggested by a
study in which the dust from households with a dog or a
cat had higher microbial diversity compared with the dust
from households with no furred pets [29].

Long lasting and repetitive irritation of inhaled sub-
stances such as tobacco smoke, dust and silica may pro-
mote the development of bronchitis. Early clinical features
of bronchitis include hyper-secretion of mucus and hyper-
trophy of sub-mucosal glands, eventually leading to chronic
airway obstruction and possibly secondary growth of spe-
cific bacteria. This could be related to the lower alpha diver-
sity we identified in subjects affected by chronic bronchitis.
Clearly, larger clinical studies and investigations in model
systems are warranted to further understand the viability of
the microbiota, its role in chronic diseases, and its potential
use for prevention and treatment strategies.

Despite painstaking exclusion of samples adjacent to
tumors, we observed alteration of the lung microbiota in
non-malignant tissue samples from subjects with ad-
vanced tumor stages (IIIB and IV). Specifically, these
samples had higher phylogenetic diversity, high relative
abundance of Thermus (Thermi), and increased/decreased
abundance of several functional modules compared with
samples from patients with earlier stages of lung cancer.
Moreover, subjects who developed metastases had high
relative abundance of Legionella (Proteobacteria). These
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data suggest that Thermus and Legionella might play a
role in tumor progression, partially through the different
microbiota functions, e.g., reduced signal transduction,
increased excretory systems, amino acid metabolism, al-
dosterone-regulated sodium reabsorption, or amoebiasis
pathways. Alternatively, tumor progression could affect
the microenvironment and microbiota of a larger sur-
rounding area. Given our collection methods and careful
histological review, it is unlikely that the non-malignant
tissue samples from advanced-stage subjects were con-
taminated by their tumor microbiota. In fact, the tumor
microbiota showed low phylogenetic diversity that was
unlike the corresponding non-malignant tissue. Moreover,
while the microbiota differed in the tumor samples between
subjects with adenocarcinoma and squamous cell car-
cinoma, the corresponding microbiota in these subjects’
non-malignant samples did not differ. This suggests that
the microbiota from non-malignant lung tissue samples
are different from that of the tumor lung tissue samples,
as has been previously shown for tumor/non-malignant
samples from colorectal cancer patients [30]. It will be
important to explore whether the microbiota in non-
malignant lung tissue from advanced disease stages, or in
tumor tissue, plays a role in tumor progression or is just a
passive byproduct of tumor progression.

This study includes noteworthy strengths and limita-
tions. It is the largest study of the non-malignant lung
tissue microbiota to date. Moreover, we used uniform
surgical procedures performed under sterile conditions
for obtaining the surgical samples, which were frozen
immediately. Also, we examined a comprehensive list of
detailed and validated epidemiological and clinical vari-
ables in relation to features of the lung microbiota. Fur-
thermore, we performed rigorous analysis to take into
account correlations across subjects and paired samples
and sequenced negative controls to exclude the possibility
of contamination. One important caveat is that we com-
pared our lung data with that of healthy individuals en-
rolled in the HMP. The two populations are very different,
in age and health status, with young and extremely healthy
individuals in the HMP study and older (average age
67 years) lung cancer patients in this study. Further,
DNA extraction techniques, 16S rRNA gene primers,
and sequencing platforms were all different and have
been previously shown to potentially introduce some
biases [31]. However, we minimized the effects of these
differences by restricting our comparisons to the highest
and least variable taxonomic level (phylum level) and
functional entity (KEGG module). In addition, a meta-
analysis of microbiota studies revealed that differences
in microbial populations across body sites are significantly
larger than those driven by the experimental protocols,
age, geography, and other population characteristics [32].
Another limitation is that we could not study the effect of
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antibiotic use on the lung microbiota because most pa-
tients were treated with antibiotics at the time of surgery.
In addition, as in most microbiota studies, we do not
know whether the DNA we studied corresponded to living
or dead bacteria and further studies are needed to ad-
dress this issue. Furthermore, because we used a strin-
gent threshold (1000 reads) to obtain reliable estimates
of microbiota relative abundance, we had to exclude ~23
and ~45 % of samples from non-malignant and tumor
sites, respectively. If we had used a less stringent thresh-
old, e.g., 500 reads (which is still larger than the number
of reads identified in most negative controls), we would
have excluded only 13 and 25 % of samples, respectively.
We opted to use a more stringent threshold since this is
the first large study of microbiota in human lung tissue
and it is important to report data with enough reads to
characterize the lung bacterial community accurately.
Finally, although we found no association between micro-
biota features and COPD or spirometry-based lung func-
tion, we cannot exclude that the lung cancer patients had
abnormalities in their lungs that could affect our results.
Our findings in lung cancer patients, although based on
non-malignant tissues, may not be completely applicable
to healthy subjects.

Conclusions

In the largest study of non-malignant lung tissue to date,
we show that the lung microbiota has distinct features
that differ from those of the oral cavity and other body
sites and is dominated by Proteobacteria (60 %). The lung
microbiota is affected by exposure to air pollution and to-
bacco smoking and is different in subjects with chronic
bronchitis or advanced tumors. The genus Thermus is
more abundant in tissue from advanced stage patients,
while Legionella is higher in patients who develop metas-
tases. Further studies in lung tissue and animal model sys-
tems are necessary to investigate the role of microbiota in
the development of lung diseases and whether it can be
exploited for treatment purposes.

Methods

Subject characteristics and epidemiological and clinical
data collection

The study is nested in the Environment and Genetics in
Lung cancer Etiology study (EAGLE), which was de-
scribed in detail previously [33]. In brief, EAGLE is an
integrated population-based study of lung cancer with
the aim to capture the major risk factors and genetic basis
of lung cancer. The study was conducted in the Lombardy
region of Italy and the catchment area included five cities
(Milan, Monza, Brescia, Pavia, and Varese) and their sur-
rounding municipalities (see Additional file 2: Figure S1
for a map). The lung cancer cases were enrolled from 13
hospitals that covered approximately 80 % of lung cancer
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cases from the catchment area. The epidemiological data
were collected by a computer assisted personal interview
and a self-administered questionnaire at the time of lung
cancer diagnosis. The clinical data were collected by phy-
sicians from the clinical charts and hospital discharge
records. The average annual atmospheric concentration
(ug/m?) of particulate matter of 10 micrometers in diame-
ter (PMjp) in the subjects’ cities of residence during the
year of their enrollment was estimated by combining
land-use regression data with aerosol optical depth data
from the MODIS (Moderate Resolution Imaging Spectro-
radiometer) instrument onboard the National Aeronautics
and Space Administration’s Terra satellite [34].

Biospecimen collection

Lung tissue samples were snap-frozen in liquid nitrogen
within 20 minutes of surgical resection. Surgeons and
pathologists were together in the surgery room at the
time of resection and sample collection to ensure correct
sampling of tissue from the tumor, the area adjacent to
the tumor, and an additional area distant from the tumor
(~1-5 cm), without adversely affecting the participant.
The precise site of tissue sampling was indicated on a
lung drawing and the pathologists classified the samples
as tumor, adjacent lung tissue, and distant non-involved
lung tissue. For the current study, we used lung tissue
sampled from an area distant from the tumor (defined
here as “non-malignant lung tissue”) to reduce the po-
tential for local cancer field effects. For each subject,
usually more than one non-malignant lung tissue sample
was collected and at least one sample was examined by a
pathologist to confirm the absence of tumor nuclei. All
the tools and materials in contact with the lung tissues
were sterile. Based on sample availability, we selected
233 non-malignant and 56 tumor samples. Results are
based on 165 non-malignant and 31 tumor samples after
quality control-determined exclusions.

16S rRNA gene sequence analysis

Fresh frozen lung tissue samples remained frozen while
approximately 30 mg was subsampled for DNA extraction
into pre-chilled 2.0 ml microcentrifuge tubes. Lysates for
DNA extraction were generated by incubating 30 mg of
tissue in 1 ml of 0.2 mg/ml Proteinase K (Ambion) in
DNA lysis buffer (10 mM Tris-Cl (pH 8.0), 0.1 M EDTA
(pH 8.0), and 0.5 % (w/v) SDS) for 24 h at 56 °C with
shaking at 850 rpm in Thermomixer R (Eppendorf).
DNA was extracted from the generated lysate using the
QIAamp DNA Blood Maxi Kit (Qiagen) according to
the manufacturer’s recommendation. The V3-V4 regions
of the 16S rRNA gene were amplified and sequenced on
an Illumina MiSeq instrument using the 300 paired-end
protocol at the Institute of Genome Sciences, Genomic
Resource Center, University of Maryland School of
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Medicine as described previously [35]. We included two
positive controls (one fecal and one vaginal sample) to
examine the performance of the sequence run, 20 negative
controls to examine the potential contamination by DNA
extraction and PCR reagents, and four negative controls
to exclude contamination during the PCR amplification
process. We showed that our results are not affected by
potential contamination.

Sequence reads were processed to remove low quality
reads, specifically reads with average quality less than 20
over a 30-bp window based on the Phred algorithm.
These were trimmed before the first base of the window
and re-evaluated for length. Also removed were paired
reads that had at least one of the reads with length less
than 75 % of its original length, reads with less than 60 %
similarity to Greengenes reference version 13_8 [36], and
chimera reads (identified using UCHIME [37]). The re-
maining reads were clustered into OTUs at 97 % identity
using the command pick_open_reference_otus.py in the
software package Quantitative Insights into Microbial
Ecology (QIIME 1.8.0) [38]. The default parameters were
used except method of usearch61 and percent_subsample
of 0.1. OTUs with only one read or in only one sample
were excluded.

Taxonomic alpha diversity was estimated as the number
of 97 % identical OTUs (Observed_species), Shannon’s
Index (using information of the relative abundance of ob-
served species) [39] and phylogenetic diversity whole tree
(PD_whole_tree, using information on both the relative
abundance and phylogenetic tree of observed species) [40]
by averaging over 20 rarefied tables (1000 reads/sample).
Taxonomic beta diversity was measured as unweighted
(presence/absence of observed species) and weighted
UniFrac distance (also using information on the relative
abundance of observed species) based on the OTU
table [41]. Relative abundance of taxa was calculated
from unrarefied OTU table.

We downloaded the V3-V5 16S rRNA gene sequence
data from the Human Microbiome Project (HMP, phase 1;
http://hmpdacc.org/) and processed for comparison [14].
The HMP data include 138-1623 samples with at least
1000 sequence reads per sample from each studied site
(including oral cavity, nasal cavity, skin, stool, and vagina).
Euclidean distance and Bray—Curtis distance were calcu-
lated based on phylum-level relative abundance for com-
parison between lung tissue and other body sites.

Functional prediction from 16S rRNA gene sequence data
PICRUSt 1.0.0 was used to predict the function of the
microbiota from the 16S rRNA gene sequence taxo-
nomic data for both the HMP dataset and this study
using the KEGG database as reference [42, 43]. PICRUSt
requires the use of Greengenes reference version 13_5
[36]. Therefore, we reprocessed the sequence data in
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QIIME as previously but using Greengenes reference
version gg_13_5 [36].

Euclidean distance and Bray—Curtis distance were cal-
culated using the rarified KEGG orthologs (KO) table
(430,000 predicted reads per sample) for comparison
among lung samples and the KEGG module table for
comparison with other body sites. Relative abundance
of modules/pathways was calculated from unrarefied
KO table.

Statistical methods
All statistical analyses were performed in the R software
(R Foundation for Statistical Computing, Vienna, Austria;
http://www.R-project.org/). In boxplots, the black central
lines represent the median and box edges the first and
third quartiles. Wilcoxon rank-sum and Kruskal-Weallis
tests were used for differences between categories, and
Spearman correlation test was used for association of con-
tinuous variables. For the variables that showed significant
associations with microbiome features, we used multiple
linear regression models with microbiota measurements
as the dependent variable to test the association while
adjusting for other covariates (residential area, history of
bronchitis, and tumor stage). For comparisons between
non-malignant and tumor samples, the Wilcoxon signed-
rank test was used for paired samples. For comparisons
that included both paired and unpaired samples, indi-
viduals were stratified into three categories, those with
tumor tissue only, those with non-malignant tissue only,
and those with both types of tissue. A bootstrap was per-
formed by resampling individuals with replacement within
these strata to estimate the variances of mean differences.
Jackknife analyses likewise removed individuals one at a
time from these strata to account for correlations among
means. Only the taxa (phylum, class, order, family, or
genus) with relative abundance greater than 0.001 in at
least 10 % of the samples were included in the analysis.
Unless otherwise indicated, P values were Bonferroni-
adjusted for multiple comparisons (R command P.adjust).
MANOVA in R (Adonis method in R Package Vegan
[44]) was used to examine the association between beta
diversity and individual epidemiological and clinical vari-
ables, adjusting for the variables showing significant asso-
ciations with microbiota (including subjects’ residential
area, history of bronchitis, and tumor stage). For some
comparisons of beta-diversity, the jackknife procedure
was used to compute variances that allowed for correla-
tions within and between subjects.

Additional files

Additional file 1: Supplementary Tables S1 through S9. (DOC 303 kb)
Additional file 2: Supplementary Figures S1 through S5. (PDF 630 kb)
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