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Abstract

conducted a systematic study of RBPs in GBM.

and directly impact GBM development.

Background: Glioblastoma (GBM) is the most common and aggressive type of brain tumor. Currently, GBM has
an extremely poor outcome and there is no effective treatment. In this context, genomic and transcriptomic
analyses have become important tools to identify new avenues for therapies. RNA-binding proteins (RBPs) are
master regulators of co- and post-transcriptional events; however, their role in GBM remains poorly understood.
To further our knowledge of novel regulatory pathways that could contribute to gliomagenesis, we have

Results: By measuring expression levels of 1542 human RBPs in GBM samples and glioma stem cell samples, we
identified 58 consistently upregulated RBPs. Survival analysis revealed that increased expression of 21 RBPs was
also associated with a poor prognosis. To assess the functional impact of those RBPs, we modulated their
expression in GBM cell lines and performed viability, proliferation, and apoptosis assays. Combined results
revealed a prominent oncogenic candidate, SNRPB, which encodes core spliccosome machinery components.
To reveal the impact of SNRPB on splicing and gene expression, we performed its knockdown in a GBM cell line
followed by RNA sequencing. We found that the affected genes were involved in RNA processing, DNA repair,
and chromatin remodeling. Additionally, genes and pathways already associated with gliomagenesis, as well as
a set of general cancer genes, also presented with splicing and expression alterations.

Conclusions: Our study provides new insights into how RBPs, and specifically SNRPB, regulate gene expression
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Background

Glioblastoma (GBM) is the most common and lethal
tumor type of the central nervous system, with 16,000
new cases per year in the US alone [1]. GBM is highly het-
erogenic, invasive, and refractory to the current standard
of care, which is a combination of surgical resection, adju-
vant radiotherapy, and temozolomide [2]. Despite decades
of research, the overall outcome for patients with GBM
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remains extremely poor, with an average survival of ap-
proximately 15 months after diagnosis [1, 3-5].

To identify new targets for therapy, The Cancer Genome
Atlas (TCGA) consortium produced a comprehensive
somatic landscape of GBM through a set of genomic, epi-
genomic, transcriptomic, and proteomic analyses, combin-
ing molecular and clinical data for 543 patients [6, 7].
These analyses have improved our understanding of GBM
pathobiology, emphasizing that gliomagenesis is driven by
signaling networks with functional redundancy, which al-
lows adaptation in response to therapy. Because novel
therapeutic strategies based on these findings have not yet
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become a reality, it is necessary to investigate additional
pathways of gene deregulation in GBM. Equally important
is the study of glioma stem cells (GSCs), which are par-
ticularly relevant to tumor initiation and resistance to
treatment [8—10]. Unveiling individual genes and path-
ways that contribute to GSC survival and phenotype
maintenance might enable the design of novel therapeutic
strategies against GBM.

RNA-binding proteins (RBPs) are master regulators of
co- and post-transcriptional mechanisms, including
RNA processing (splicing, capping, and polyadenylation),
transport, decay, localization, and translation. They are
still a poorly characterized class of regulators, with hun-
dreds of new members only recently identified via novel
experimental high-throughput approaches [11-13]. The
most updated human RBP catalog includes 1542 genes
[14], which represents ~7.5 % of human coding genes
(GENCODE version 19 [15]). Mutations and alterations
in RBP expression levels, which have been observed in
many tumor tissues [16—18], are known to impact large
gene sets and to contribute to tumor initiation and
growth. In fact, numerous well-characterized RBPs such
as HuR, Musashil, Sam68, and elF4E have been impli-
cated in multiple tumor types [19-22]. In the context
of neural tissue, the number of tissue-specific RBPs and
alternative splicing isoforms is particularly high com-
pared with other tissues [14, 23-25]. Hence, RBPs play
key roles in this biological context and their alteration
is expected to be a major contributor to gliomagenesis.
Some important players include Musashil [26-28],
HuR [27], hnRNP proteins (H and A2/B1) [29-32], and
PTB [29, 33, 34].

In order to identify novel RBPs potentially implicated
in GBM development, we conducted a combination of
transcriptomic analyses followed by functional screen-
ings. We found 58 genes with oncogenic potential, de-
fined as those with high expression in GBM and GSC
samples relative to their normal counterparts. Twenty-one
of these genes are also associated with a poor prognosis
and were further selected for functional analyses. SNRPB,
which encodes core components of the spliceosome com-
plex SmB/B; showed the strongest impact on viability,
proliferation, and apoptosis. We determined that changes
in SNRPB expression levels have a large impact on expres-
sion and splicing regulation and preferentially affect alter-
native exons and introns. RNA processing, DNA repair,
and chromatin remodeling are among the biological pro-
cesses with the highest number of genes affected by
SNRPB at expression and splicing levels. Moreover, several
genes in pathways relevant to GBM initiation and devel-
opment, such as RTK, PI3K, RAS, MAPK, AKT, RB, and
p53, as well as a set of additional cancer genes, displayed
alterations in their splicing and expression profiles upon
SNRPB knockdown.
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Results

Several RBPs are aberrantly expressed in GBM and GSCs
To identify RBPs potentially involved in GBM develop-
ment, we examined the expression profiles of all 1542
human catalogued RBP coding genes [14] in two differ-
ent contexts: GBM samples from TCGA versus normal
brain; and GSCs versus normal neural progenitor cells
(Fig. 1a). We obtained raw RNA sequencing (RNA-Seq)
data for 170 GBM samples from TCGA database (Add-
itional file 1: Table S1) and compared them with 14
normal brain samples: eight samples from two studies
available in the Sequence Read Archive (SRA), one
sample from the Human Body Map, and five samples
from TCGA (see ‘Methods’; Additional file 1: Table S1).
This approach allowed the identification of 223 upregu-
lated and 135 downregulated RBPs in tumors compared
to normal samples (Fig. 1b top panel; Additional file 1:
Table S2). Next, we looked at the expression of these
differentially expressed RBPs, classifying all samples
according to the four molecular GBM subtypes (clas-
sical, neural, proneural, and mesenchymal) to identify
particular associations (if any). Results indicated that
the overall expression profile was very similar among
subtypes, with no differentially expressed RBPs show-
ing drastic changes across subtypes (Additional file 2:
Figure S1).

GSCs constitute a unique subpopulation within the
tumor and display features similar to normal stem cells
[35]. Their association with tumor relapse is often linked
to their tumor-initiating capacity as well as radio- and
chemoresistance [35-38]. Therefore, identifying regula-
tors that maintain GSC phenotypes and/or contribute to
their survival is critical for designing novel therapeutic
strategies. We examined the microarray dataset of Mao
et al. [39] to identify differentially expressed RBPs in
GSCs in comparison to normal neural progenitor cells.
This analysis revealed a total of 275 upregulated and 85
downregulated RBPs in GSCs (Fig. 1b bottom panel;
Additional file 1: Table S3).

We focused next on the identification of “pro-onco-
genic RBPs.” We selected these RBPs because they tend
to be more attractive targets in therapeutic contexts [40]
and they are easier to handle in screening studies [41].
Results from both transcriptomic studies were merged:
58 genes were determined to be upregulated in both
GBM and GSC samples (Fig. 1c), which represents a
highly significant overlap (p-value =0.0006; hypergeo-
metric test). Those 58 genes were selected for further
analyses.

Upregulation of RBPs is associated with decreased
survival and is prevalent in higher grade gliomas

To determine whether our set of 58 pro-oncogenic RBPs
exhibits an association with poor prognosis in gliomas,
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we used clinical and expression data from the REM-
BRANDT database [42]. We built Kaplan-Meier survival
curves comparing samples with increased expression of
the selected RBPs to all other samples. Twenty-one out
of the 58 upregulated RBPs showed an association with
survival reduction when overexpressed (p-value < 0.05;
log-rank test; Additional file 2: Figure S2). Figure 2a pre-
sents a summary of the selected RBPs and their results
in survival analysis.

We also evaluated gene expression levels of these RBPs
using a large cohort of normal brain samples generated by
the Genotype-Tissue Expression (GTEx) Project [43]. By
comparing expression levels of the 21 RBPs in 222 normal
brain samples from GTEx with 170 GBM samples from

TCGA, we were able to confirm the overexpression of
our selected RBPs in GBM samples (Additional file 1:
Table S4).

Finally, to corroborate the relevance of these 21 se-
lected RBPs in an additional context, we evaluated their
expression levels in 167 GBM samples (grade IV glioma)
versus 218 lower grade glioma samples (grades II and III
astrocytomas and oligodendrogliomas) from TCGA. In
general, analyzed RBPs exhibited higher expression
levels in GBM samples than in lower grade glioma sam-
ples (p-value < 0.001; Wilcoxon rank-sum test; Fig. 2b;
Additional file 1: Table S5). The only exception was
RNASET?2, which presented no significant difference in
one comparison (p-value=0.1428 for GBMs versus
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Fig. 2 Candidates’ selection and characterization. a Circos plot shows 58 upregulated RNA-binding proteins (RBPs) in glioblastoma (GBM) samples
from The Cancer Genome Atlas (TCGA) and glioma stem cell (GSC) lines. Fold-changes and corrected p-values were extracted from the RNA-Seq
analysis (GBM TCGA). Twenty-one RBPs were also associated with survival reduction and were further investigated. b RBPs exhibited higher expression

levels in GBMs compared with lower grade gliomas

grade III astrocytomas; Wilcoxon rank-sum test; Fig. 2b;
Additional file 1: Table S5).

Analysis of regulatory elements potentially triggering
overexpression of RBPs in GBM

To try to identify mechanisms responsible for the up-
regulation of RBPs in tumor samples, we evaluated
whether the 21 selected RBPs are targeted by frequently
downregulated miRNAs in GBM (tumor suppressor
miRNAs). Using a list of tumor suppressor miRNAs
compiled by Hermansen and Kristensen [44], we found
that 18 of those miRNAs potentially target 15 out of

the 21 RBPs. We observed a significant enrichment for
miR-124, which presented the highest number of tar-
gets: six RBPs in total (p-value = 0.0099; hypergeometric
test; Additional file 2: Figure S3).

We also evaluated whether the 21 RBPs presented
mutations and/or copy-number alterations (CNA) in
GBM samples from TCGA. We analyzed 273 GBM sam-
ples with exome sequencing and CNA data available in
cBioPortal [45, 46]. Only 10 % of the samples displayed
alterations in at least one of our selected RBPs. CNA,
missense mutations, and/or truncating mutations were
present in 17 out of 21 evaluated RBPs, not different from
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randomly selected RBPs sets (p-value > 0.1; simulation with
100,000 sets of 21 randomly selected RBPs; Additional file
2: Figure S4).

RBPs impact cellular viability, proliferation, and apoptosis
in GBM

The 21 selected RBPs were then evaluated in a functional
screening. Transient knockdowns were performed with
siRNAs (median knockdown efficiency ~90 %; Additional
file 1: Table S6) in U251 and U343 GBM cells and their
impact on viability (MTS assay), proliferation (IncuCyte),
and apoptosis (Caspase-3/7 assay) were evaluated. Results
of these three assays are summarized in Table 1 and repre-
sented in Additional file 2: Figures S5-S7. Out of the 21
investigated RBPs, 15 showed significant effect in at least
one assay in one or both cell lines.

SNRPB as a potential new oncogenic candidate in GBM

Overall, SNRPB, which encodes core spliceosome com-
ponents SmB/B; exhibited the most consistent results
in the functional screening: knockdown of this gene de-
creased viability (Fig. 3a), increased apoptosis (Fig. 3b),

Table 1 Summary of functional assays results
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and decreased proliferation (Fig. 3¢) in both U251 and
U343 cell lines.

We conducted additional experiments to determine the
impact of SNRPB on the growth of GSC cultures. Lines
326 and 83 were described in a previous study [39]. We
knocked down the expression of SNRPB in these two GSC
lines grown as conditionally reprogrammed cells (CRCs).
CRCs have been shown to better recapitulate the charac-
teristics of original tumor cells [47]. In both cell lines,
SNRPB knockdown led to inhibition of cell growth and to
cell detachment (Fig. 3d). Additionally, because GBMs are
known to be highly undifferentiated tumors [48], we
checked SNRPB expression in mouse neural stem cells ver-
sus differentiated neural cells and determined that SNRPB
expression was higher in undifferentiated cells (Fig. 3e).

SNRPB knockdown impacts the expression and processing
of RNA splicing machinery components

To assess the contribution of SNRPB to GBM develop-
ment, we performed its knockdown (Additional file 2:
Figure S8) followed by RNA-Seq analysis in U251 cells.
We then mapped changes in transcriptomic profiles and
splicing events compared to control samples.

# Ensemble ID Gene Viability (MTS) Proliferation (IncuCyte) Apoptosis (Caspase-3/7)
symbol U251 U343 U251 U343 U251 U343

1 ENSG00000106305 AlMP2 v v - - - -
2 ENSG00000183684 ALYREF - - - - v -
3 ENSG00000179218 CALR - - - - - -
4 ENSG00000174371 EXO1 - - - - - -
5 ENSG00000172183 1SG20 - - v - - -
6 ENSG00000162385 MAGOH - - - - v -
7 ENSG00000111196 MAGOHB - - - - v -
8 ENSG00000128626 MRPS12 - - - - - -
9 ENSG00000090263 MRPS33 - v - v v -
10 ENSG00000132603 NIP7 v - v v - -
" ENSG00000132661 NXT1 - v v - v -
12 ENSGO00000111331 OAS3 - - - - -
13 ENSG00000171960 PPIH - - - - -
14 ENSG00000153250 RBMST v v v v - -
15 ENSG00000104889 RNASEH2A v v v v v -
16 ENSG00000026297 RNASET2 - - - - -
17 ENSG00000175792 RUVBL1 v - v - v -
18 ENSG00000125835 SNRPB v v v v v v
19 ENSG00000143977 SNRPG - - v - v -
20 ENSG00000060138 YBX3 - - - - v -
21 ENSG00000088930 XRN2 - v v - - -

v =significant difference compared to control (p-value < 0.05)
- =no significant difference compared to control (p-value > 0.05)
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At the expression level, we found 7118 differentially
expressed genes (log, fold change > |1| and Benjamini-
Hochberg corrected p-value <0.05) upon SNRPB
knockdown (3171 upregulated and 3947 downregu-
lated genes; Additional file 1: Table S7). Among the
upregulated genes, we observed strong enrichment for
biological processes related to RNA processing and
metabolism, splicing, and several cellular processes

like differentiation, development, proliferation, migra-
tion, and signal transduction (Additional file 2: Figure
S9A; Additional file 1: Table S8). Downregulated genes
were enriched for processes related to DNA repair,
DNA metabolism and replication (Additional file 2:
Figure S9B; Additional file 1: Table S8).

At the splicing level, we found that 18,105 splicing
events were altered upon SNRPB knockdown (difference
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in percentage spliced in (APSI)>|0.1| and FDR-
adjusted p-value < 0.05), affecting a total of 5692 genes.
Events were classified in five categories: exon skipping
(SE), mutually exclusive exons (MXE), alternative 5" splice
site (A5SS), alternative 3" splice site (A3SS), or intron re-
tention (RI). A summary showing results classified by
event type is presented in Additional file 1: Table S9.

Similar to what was observed in the transcriptomic
analysis, we determined that genes affected at the
splicing level by SNRPB knockdown are preferentially
associated with biological processes such as RNA pro-
cessing and metabolism, splicing, DNA metabolism,
and DNA repair (Fig. 4; Additional file 1: Table S10).
Additional cancer relevant processes like chromatin
remodeling were also identified (Fig. 4; Additional file
1: Table S10). In the particular case of RNA process-
ing and splicing, we determined that core members
of the small nuclear ribonucleic proteins (snRNPs),
Ul, U2, U4/U6, and U5, were greatly affected by
SNRPB knockdown, especially at the splicing level: al-
most 60 % of them exhibited splicing alterations,
which represents a strong enrichment when this gene
set is compared to all multi-exon genes presenting at
least one read on exon-exon junctions (p-value=
5.521199e-13; hypergeometric test; Fig. 5). These re-
sults suggest that SNRPB coordinates the splicing of
spliceosome components.
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SNRPB knockdown impacts expression and processing of
cancer genes and pathways already associated with
gliomagenesis

We also evaluated a set of 368 well-established cancer
genes, manually curated from three different large-scale
studies [49-51]. Out of 368 genes, 94 presented differen-
tial expression (57 upregulated and 37 downregulated). At
the splicing level, ~50 % of the cancer genes presented at
least one alteration. Enrichment for alterations at expres-
sion and splicing levels in this gene set were observed
when compared to all expressed genes analyzed and all
multi-exon genes presenting at least one read on exon-
exon junctions, respectively (expression: p-value =
0.04123; splicing: p-value = 6.45815e-52; hypergeometric
test; Fig. 6a, b).

We then specifically checked for alterations in genes in-
volved in critical GBM pathways defined by TCGA: RTK,
PI3K, RAS, MAPK, AKT, RB, and p53 [6, 7]. All pathways
were affected by SNRPB knockdown. At the expression
level, 8 out of 33 evaluated genes were differentially
expressed: four of them were upregulated (HRAS, MET,
NF1, and TP53) and four downregulated upon knockdown
(AKTI, AKT2, FGFR3, PDGFRA). No enrichment was ob-
served when this category of genes was compared to all
expressed genes exhibiting differential expression (p-value
=0.4250002; hypergeometric test). At the splicing level, 18
out of those 33 genes presented at least one differentially
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regulated splicing event (Additional file 2: Figure S10),
showing strong enrichment for splicing alterations in this
specific gene set when compared to all multi-exon genes
having at least one read on exon-exon junctions (p-value
=5.409015e-07; hypergeometric test).

Characteristics of exons/introns affected by SNRPB
knockdown

SE and RI were two of the categories with the highest
number of differentially regulated events and therefore
were further investigated.

Knockdown of SNRPB reduced the inclusion levels of
several exons (12,030 events with exons more included in
control samples versus 462 events with exons more
included in knockdown; Additional file 1: Table S8). Exons
with higher exclusion levels upon knockdown were
shorter than the ones with higher exclusion levels in
control (median knockdown =106 nucleotides, median
control = 148 nucleotides; p-value < 2.2e-16; Wilcoxon-
rank sum test; Additional file 2: Figure S11 left panel).
With respect to GC content, exons whose inclusion in
mature transcripts decreased upon SNRPB knockdown
exhibited a lower percentage of GC when compared to
the ones showing the opposite behavior (median knock-
down =47.25 %; median control =50.57 %; p-value =
5.936e-07; Wilcoxon rank-sum test; Additional file 2:
Figure S12 left panel). We also examined the strength
of 3" and 5" splice sites (3'ss and 5'ss) associated with
exons affected by SNRPB knockdown using the Max-
EntScan approach [52]. Exons with higher exclusion
levels upon knockdown were associated with stronger 3'ss

and 5'ss compared to control (3'ss p-value < 2.2e-16; 5'ss
p-value = 2.092e-14; Wilcoxon rank-sum test; Additional
file 2: Figure S13 top panel).

Regarding introns, we observed that SNRPB knockdown
favored the retention of introns in mature transcripts (835
intron retention events in knockdown compared to 116 in
control samples; Additional file 1: Table S8). Introns
showing increased retention in mature transcripts upon
SNRPB knockdown were determined to be shorter than
the ones preferentially retained in control samples (median
knockdown =483 nucleotides; median control = 1144
nucleotides; p-value < 2.2e-16; Wilcoxon rank-sum test;
Additional file 2: Figure S11 right panel). Considering
the GC content, introns more retained upon SNRPB
knockdown presented a higher percentage of GC com-
pared to the ones more retained in control (median
knockdown = 59.07 %; median control = 43.96 %; p-value
<2.2e-16; Wilcoxon rank-sum test; Additional file 2:
Figure S12 right panel). No significant difference was ob-
served in the strength of 5°ss 3 'ss associated with differen-
tially regulated introns (3'ss p-value = 0.4464; 5'ss p-value
= 0.9095; Wilcoxon rank-sum test; Additional file 2: Figure
S13 bottom panel).

We also determined the effect of SNRPB knockdown
on “constitutive” versus “alternative” exons and introns.
Constitutive exons and introns were defined as those
presenting with a PSI value =1 and PSI=0 in the con-
trol samples, respectively, whereas alternative exons
and introns were defined as those with a PSI value<1
(for exons) and PSI value >0 (for introns) in control
samples. In total, 5.6 % of the constitutive exons were af-
fected by SNRPB knockdown, while 20.1 % of alternative
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Fig. 6 SNRPB impact on cancer genes and on alternative/constitutive exons/introns. a Sashimi plots highlighting two splicing events differentially
regulated in siSNRPB compared with siCtrl: an exon skipping event in K-RAS (top panel) and an intron retention in H-RAS (bottom panel). b A total
of 368 cancer genes were evaluated. Only genes presenting differential expression (upregulated or downregulated) or at least one splicing alteration
[exon skipping (SE), mutually exclusive exons (MXE), alternative 5’ splice site (A5SS), alternative 3' splice site (A3SS), or intron retention (R/)] are
shown. ¢ Alternative exons and introns are more affected by SNRPB knockdown than constitutive exons and introns

exons showed changes (p-value < 2.2e-16; proportion test; In summary, exons with higher exclusion levels upon
Fig. 6¢ top panel). Regarding introns, 12.5 % of the consti- ~ SNRPB knockdown were shorter, and had lower GC con-
tutive ones were affected, while 26.4 % of the alternative  tent, and stronger 3'ss and 5'ss, whereas introns with
introns presented alterations (p-value < 2.2e-16; propor-  higher retention levels upon knockdown were shorter, and
tion test; Fig. 6¢ bottom panel). exhibited higher GC content and no difference in 3'ss and
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5'ss strength compared to the ones more retained in con-
trol samples.

Discussion

Major changes in the expression of RBP coding genes
are a noteworthy phenomena in multiple tumor tissues
[16-18]. Here, we have corroborated this scenario in
GBM. By comparing tumor samples (GBM samples
from TCGA and GSC lines) to normal samples, we
identified a set of 21 upregulated RBPs that also exhib-
ited an impact on patient survival. We also found the
expression levels of those RBPs was higher in GBMs
than in lower grade gliomas, suggesting their potential
impact on tumor progression and aggressiveness. To
explore mechanisms that could contribute to the up-
regulation of those RBPs, we analyzed non-synonymous
mutations, CNAs, and targeting by tumor suppressor
miRNAs. We observed a modest contribution of muta-
tions and CNAs. Because GBM does not exhibit a high
mutational load compared to other tumor types [53],
and has only 71 genes that are frequently mutated [7],
the low number of samples harboring mutations in a
small set of RBPs was expected. Regarding the tumor
suppressor miRNAs, we found 18 of them targeting 15
out of 21 RBPs. Notably, miR-124 alone targets six
RBPs. miR-124 is an important player in GBMs and
impacts proliferation [54], tumor growth [55, 56], mi-
gration, and invasion [57].

The impact of RBP alterations in cancer is still poorly
appreciated. One of the main reasons is that most avail-
able datasets include only mRNA expression levels, pre-
venting any type of analysis to measure changes in
splicing, mRNA decay, and translation. However, this
scenario is improving, especially with the advent of
functional genomics methods, like ribosomal profiling
and more sensitive proteomics platforms. In addition,
the transcriptomics field is moving away from micro-
array towards RNA-Seq, which provides an opportunity
to investigate global changes in splicing [58]. Recent in-
vestigations of alternative splicing across multiple can-
cer types have revealed splicing as an important source
of transcriptional diversity in many cancers and allowed
the identification of a common set of cancer-specific
splicing events, which can potentially be used as novel
biomarkers with application in molecular diagnosis and
prognosis [59-61].

We identified an interesting subset of aberrantly
expressed RBPs implicated in splicing, pointing to an
additional layer of alterations that could contribute to
GBM development. Involvement of splicing proteins in
cancer and other disorders is capturing the interest of
the scientific community. One of the most studied
cases is SF3BI1, which is mutated in ~20 % of patients
with myelodysplastic syndromes (MDS). Other splicing
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regulators, including PRPF40B, SRSF2, SF3A1, U2AFI,
and ZRSR2, also display a high mutation frequency in
MDS [62]. Studies of hematological malignancies
showed similar results. For instance, SF3BI, SRSFI,
U2AF65, and CELF4 are often mutated in chronic
lymphocytic leukemia [63]. Subsequent reports revealed
that alterations in splicing factors occur in solid tu-
mors, including neuroblastomas, pancreatic ductal
adenocarcinoma, lung cancer, melanoma, colon cancer,
and estrogen receptor-positive breast tumors [64, 65].
In GBM, the splicing factors PTB, hnRNP H and A2/B1,
and WTAP have been shown to regulate several biological
processes relevant to cancer development [29-34, 66].
Moreover, numerous examples of cancer-relevant genes
affected at the splicing level (e.g. ANXA7, GLII, MAX,
KLF6) have been reported in GBM [30, 31, 34, 67-70]. Be-
sides contributing to tumorigenesis via splicing regulation,
splicing factors can have additional routes of action. For
instance, genomic instability, a common feature in cancer,
can be induced by RNA processing defects [71].

SNRPB, which encodes core members of the spliceo-
some machinery, SmB/B; was the main focus of our study.
Its knockdown decreased viability, increased apoptosis,
and decreased proliferation in both U251 and U343 cell
lines. One would expect that alterations in core splicing
proteins, such as the ones encoded by SNRPB, could cause
major disruptions in RNA processing, affecting the entire
transcriptome in a global and homogeneous manner.
However, a different scenario has been observed, with spli-
cing regulators impacting distinct sets of events when
their expression levels are altered. For instance, in a recent
study, 270 core splicing proteins and other RNA-related
factors were systematically knocked down and the impact
on splicing of 38 genes associated with proliferation and
apoptosis was investigated [72]. It was observed that each
splicing factor regulated a specific set of events, and fac-
tors involved in the same splicing step tended to affect the
same group of events. Results were corroborated by RNA-
Seq studies in which specific changes in splicing, mainly
in alternative exons, were observed upon knockdown of
core splicing proteins, including SNRPB [73-75].

In addition to its essential role in splicing, mutations
in SNRPB are known to cause cerebro-costo-mandibular
syndrome [76-78]. Furthermore, a screening for genes
required for cell division revealed SNRPB along with
other splicing factors [79]. However, SNRPB is relatively
poorly characterized in terms of contributions to
tumorigenesis. Its expression is altered in non-small cell
lung cancer along with other genes involved in RNA me-
tabolism and is correlated with a poor prognosis [80]. In
a mouse allograft model of prostate cancer (NE-10),
SNRPB was identified as a candidate metastasis suppres-
sor gene [81]. Quantitative expression analysis confirmed
decreased expression of SNRPB in the metastasizing
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compared to non-metastasizing tumors [81]. These data
along with ours suggest that SNRPB can have different
roles in tumorigenesis depending on context.

Alternative splicing events can result in transcript
isoforms with reading frame disruption, lower stability,
and improper localization in comparison to constitutive
isoforms. Our RNA-Seq analysis determined some trends
in terms of splicing events upon SNRPB knockdown. Al-
ternative exons and introns were more affected than the
constitutive ones, suggesting SNRPB functions to help the
recognition of exons and introns containing weaker regu-
latory elements, such as alternative exons.

Gene ontology enrichment analysis of gene expression
and splicing data revealed that SNRPB influences a large
number of biological processes with relevance to cancer,
such as RNA processing and DNA repair. Alterations in
a large number of RNA processing/splicing genes places
SNRPB as a central regulator and suggests that several
of the splicing alterations we observed upon SNRPB
knockdown might be in fact a secondary effect. Radio-
resistance, which is largely influenced by genes in the
DNA repair pathway, is a major problem in cancer treat-
ment and it is particularly relevant to GBM. Splicing
alterations have been described for a large number of
DNA repair genes, including several that we determined
to be influenced by SNRPB levels (BRAC1, BARDI, MSH?2,
RADS50, CHEK1I) [82-86]. Additionally, we observed that
knockdown of SNRPB altered multiple genes associated
with critical genes/pathways relevant to GBM development
(RTK, PI3K, MAPK, RAS, AKT, RB, and p53) and other
cancer genes.

Conclusion

Despite the need for a more detailed analysis to deter-
mine how alterations identified here affect protein func-
tion in specific ways to contribute to tumor initiation
and growth, we conclude that our data suggest diverse
routes by which SNRPB influences GBM development.

Methods

Gene expression analysis of GBM RNA-Seq data from
TCGA

RNA-Seq raw reads from 170 samples of GBM from
TCGA [87] were downloaded from Cancer Genomics
Hub (CGHub [88]; Additional file 1: Table S1). Normal
brain samples were downloaded from the SRA [89] data-
base [SRA: SRP028705 and ERP003613], Human Body
Map [SRA: ERR030882], and TCGA (Additional file 1:
Table S1). Reads were mapped against the human gen-
ome (version hgl9/GRCh37 — UCSC Genome Browser
[90]) using GSNAP [91] (version 2014-05-15). Mapped
reads with quality (Q) =20 (Phred scale) were selected
using SAMtools [92]. Read counts per gene were defined
using HTSeq [93] and GENCODE (version 19 [15]) as the
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reference transcriptome. Differential expression analysis
was performed using DESeq2 [94] comparing tumor sam-
ples to normal samples. All genes differentially expressed
between tumor and normal samples (Benjamini-Hochberg
corrected p-value < 0.05 and log, fold change > |1|) were
selected. The catalog containing 1542 human RBPs from
Gerstberger et al. [14] was used as a reference to identify
all differentially expressed RBPs.

Gene expression analysis of GSCs microarray data
Microarray data (Affymetrix platform: Human U219) of
10 glioma stem cell lines and one normal neural pro-
genitor cell line, in triplicate, were obtained from Mao
et al. [39]. Data were normalized using Robust Multichip
Average (RMA; Affy package [95]). Differentially expressed
RBPs between normal and GSC samples (Benjamini-
Hochberg corrected p-value < 0.05) were identified using
the LIMMA package [96].

Survival analysis

The REMBRANDT dataset (REpository for Molecular
BRAiIn Neoplasia DaTa [42]) was used to evaluate
whether increased expression of the selected RBPs was
associated with a poorer prognosis in brain neoplasia.
Samples with increased expression of selected RBPs
(log, fold change > 1) were compared to all other sam-
ples. Kaplan-Meier survival curves were built and then
compared using a log-rank test. Differences resulting in
a p-value < 0.05 were considered significant.

Comparison of normal brain samples from GTEx with
GBM samples from TCGA

Read counts per gene of 222 samples from normal brain
(cortex and frontal cortex) were downloaded from the
GTEx portal [43]. Those samples were compared to 170
GBM samples from TCGA. Read counts per gene of
GBM samples were generated as described previously.
Differential expression analysis was performed using
DESeq2 [94], comparing tumor to normal samples, and
the expression levels of 21 RBPs were analyzed. RBPs pre-
senting Benjamini-Hochberg corrected p-values < 0.05
were considered to be differentially expressed.

RBPs expression in lower and higher grade gliomas

Level 3 normalized expression data from 167 grade IV
gliomas (GBMs) and 218 lower grade gliomas (LGG: 31
grade II astrocytomas, 73 grade II oligodendrogliomas,
68 grade III astrocytomas, and 46 grade III oligodendro-
gliomas) were downloaded from TCGA [87]. Expression
levels of 21 RBPs in LGG were compared with GBM
samples using Wilcoxon rank-sum test.
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Mutation and CNA analysis

All 273 GBM samples with exome sequencing and CNA
data available in cBioPortal [45, 46] were evaluated (dataset:
Glioblastoma Multiforme — TCGA, Provisional). The gene
set containing 21 selected RBPs was analyzed and all sam-
ples containing at least one alteration in one or more of
these RBPs were identified and presented. A simulation
with 100,000 random sets of 21 out of 1542 RBPs was
performed to determine if our selected set presented en-
richment for CNA and mutations. Mutation and CNA data
for all RBPs were retrieved from cBioPortal using the
CDGS-R package [97].

Tumor suppressor miRNAs targeting RBPs

A list containing frequently downregulated miRNAs in
GBM (tumor suppressor miRNAs) was downloaded
from Hermansen and Kristensen [44]. We then used the
miRTarBase database [98] to select all genes targeted by
those tumor suppressor miRNAs. Next, we identified
which of those miRNAs target at least one of the 21
selected RBPs. Enrichment was calculated using a hyper-
geometric test.

Functional annotation

Functional annotation analyses (Gene Ontology and
KEGG pathways) were performed using DAVID [99],
using Homo sapiens genes as background. Terms with
Benjamini-Hochberg corrected p-values < 0.05 were de-
termined as enriched. Redundant GO terms were sum-
marized using REViGO [100]. Networks of GO terms
were built using Cytoscape [101].

Cell growth and transfection

U251 and U343 GBM cells (from American Type Culture
Collection, Manassas, VA, USA) were grown in Dulbecco’s
Modified Eagle medium with 10 % fetal bovine serum.
Cells were synchronized through serum starvation for
48 hours. siRNAs (ON-TARGETplus SMARTpool;
Dharmacon) for 21 RBPs and one siRNA control were
transfected using Lipofectamine RNAiMax reagent
(Invitrogen) according to the manufacturer’s instruc-
tions. All following experiments were performed in
triplicate.

We established serum-free 3D cultures from two in-
dividual GSC lines (326 and 83) previously obtained by
Dr Ichiro Nakano [39] during his time at The Ohio
State University. Information regarding the Human
Protocol and patient consent are described in the
original publication [39]. Cells were trypsinized using
TrypLE (Invitrogen) and plated in a collagen-coated T-25
flask with 10,000 irradiated (3000 rad) human mesenchy-
mal stem cells (Lonza) in a conditionally reprogrammed
FY medium [3:1 (v/v) F-12 Nutrient Mixture (Ham)/
Dulbecco’s Modified Eagle medium (Invitrogen), 5 %
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fetal bovine serum, 0.4 pg/mL hydrocortisone (Sigma-
Aldrich), 5 pg/mL insulin (Sigma-Aldrich), 8.4 ng/mL
cholera toxin (Sigma-Aldrich), and 10 ng/mL epidermal
growth factor (Invitrogen)] with the addition of 5 pmol/L
Y-27632 (Enzo Life Sciences) [47]. Cells were grown in a
humidified incubator at 37 °C with 5 % carbon dioxide for
several passages to ensure the stability of cultures. For
knockdown experiments, 200,000 GSC cells were plated
in a collagen-coated six-well plate along with 2000 irra-
diated human mesenchymal stem cells in conditionally
reprogrammed cell media containing FY medium. The
next day, 25 nM of either scrambled or SNRPB siRNA
suspended in RNAIMAX was added to the wells. Subse-
quently, each well was washed twice with phosphate-
buffered saline and 500 pL of OPTIMEM was added.
After 5-6 hours, 2 mL of conditionally reprogrammed
media was incorporated into each well. After 72 hours,
the floating cell fraction was collected and mixed with
trypsinized attached cells from each well. Cell counting
was performed using a Countess automated cell coun-
ter (Life Technologies) according to the manufacturer’s
protocol. Transfections were performed in triplicate
and each experiment was done at least two times. Total
RNA was isolated by pooling three wells from each
experiment and using an RNeasy kit (Qiagen) according
to the manufacturer’s instructions. The percentage nor-
malized cell index for SNRPB-specific siRNA was calcu-
lated by normalizing the cell index with control siRNA.
The standard deviation was calculated for each experi-
ment and then averaged to obtain cumulative standard
deviation.

Cell viability assay

After transfection, U251 and U343 cells were grown in
96-well cell culture plates. Cell viability was assessed by
CellTiter 96 AQueous One Solution (Promega) reagent
after 72 hours of incubation. Absorbance at 490 nm
was quantified using the SpectraMax M5 microplate
reader (Molecular Devices). Data were analyzed using
Student’s t-test and presented as the relative mean +
standard error.

Proliferation assay

After transfection, U251 and U343 cells were grown in
96-well cell culture plates. The confluence percentage
was monitored for 96 hours using a high-definition au-
tomated imaging system (IncuCyte; Essen BioScience).
Data were evaluated using ANOVA and presented as
mean * standard error.

Caspase-3/7 apoptosis assay

U251 and U343 cells were grown in 96-well plates after
transfection. After 72 hours of incubation, apoptosis
levels were assessed using the Caspase-Glo 3/7 assay
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kit (Promega), according to the manufacturer’s proto-
col. Luminescence was measured using the SpectraMax
M5 microplate reader (Molecular Devices). Data were
analyzed using Student’s t-test and presented as mean
of relative light units + standard error.

Gene expression analysis of RNA-Seq data from neural
stem cells

RNA-Seq data from mouse neural stem cells and differ-
entiated cells after 4 days [GEO: GSE67135] was used to
analyze expression levels of SNRPB in both conditions.
The HomoloGene database [102] was used to identify
SNRPB orthologs between human and mouse. SNRPB
gene expression in undifferentiated cells was compared
to its expression in differentiated neural cells.

Knockdown quantification by real-time PCR

Total RNA was extracted using TRIzol reagent (Invitro-
gen) according to manufacturer’s instructions. Reverse
transcription of messenger RNAs was performed using a
high-capacity ¢cDNA reverse transcription kit (Applied
Biosystems) with random priming. For mRNA analysis,
quantitative PCR was performed using the primers listed
in Additional file 1: Table S6 and Power SYBR Green
PCR Master Mix (Applied Biosystems). Real-time PCRs
were performed on the ViiA™ 7 Real-Time PCR System
(Applied Biosystems). Data were acquired using the ViiA
7 RUO software (Applied Biosystems) and analyzed
using the 27T method with GAPDH as an endogenous
control.

Knockdown quantification by western blot

Cells were resuspended and sonicated in Laemmli sam-
ple buffer, separated on a 13.5 % sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE) gel, and
transferred to polyvinylidene fluoride (PVDF) membranes.
After transfer, membranes were blocked in Tris-buffered
saline with Tween 20 and 5 % milk. Membranes were
probed with rabbit anti-a-SNRPB (GeneTex; dilution
1:500) and mouse anti-a-tubulin antibody (Sigma; dilution,
1:2000). Horseradish peroxidase (HRP)-conjugated goat
anti-rabbit antibody (Santa Cruz Biotechnology) or HRP-
conjugated goat anti-mouse antibody (Zymed Laboratories,
Carlsbad, CA, USA) were used as secondary antibodies.
Electrochemiluminescence was used to detect the selected
proteins using Immobilon Western chemiluminescent sub-
strate (Millipore, Billerica, MA, USA).

RNA preparation and sequencing

U251 cells were transiently transfected with control or
SNRPB siRNAs using Lipofectamine RNAIMAX
(Invitrogen). The experiment was performed in tripli-
cate. Knockdown levels of SNRPB were ~90 %, as
measured by quantitative reverse transcription-PCR
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(qQRT-PCR). Total RNA was extracted using the TRIzol
reagent (Life Technologies) and further purified with
RNeasy (Qiagen), according to manufacturer’s instructions.
Samples were prepared for RNA-Seq according to Illumina
instructions and sequenced in a HiSeq-2000 machine by
UTHSCSA Genomic Facility.

Alternative splicing analysis

To identify splicing alterations produced by SNRPB knock-
down, raw RNA-Seq reads of control and knockdown
experiments were mapped against the human reference
genome (hgl9/GRCh37) and a reference transcriptome
(GENCODE version 19 [15]) using GSNAP [91] (version
2014-05-15). Next, only reliable alignments (Q >20;
Phred-scale) were selected using SAMtools [92]. Multivari-
ate Analysis of Transcript Splicing (MATS [103, 104]) was
used to search for splicing differences between SNRPB-
knockdown and control samples. Only those isoforms dif-
ferentially represented between conditions (FDR-adjusted
p-value < 0.05 and APSI > |0.1]) were selected. Splicing var-
iants were classified as SE, MXE, RI, alternative donor site
(A5SS), or alternative acceptor site (A3SS). 3'ss and 5'ss
strengths of the differentially spliced exons and introns
were calculated using the MaxEntScan approach [52].

Statistical analysis and figures

All statistical analyses were executed using R [105].
Figures were built using R [105], Cytoscape [101], Circos
Plot [106], Sashimi plot [107], and Inkscape [108].
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