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Abstract

A major challenge for distinguishing cancer-causing driver mutations from inconsequential passenger mutations is
the long-tail of infrequently mutated genes in cancer genomes. Here, we present and evaluate a method for
prioritizing cancer genes accounting not only for mutations in individual genes but also in their neighbors in
functional networks, MUFFINN (MUtations For Functional Impact on Network Neighbors). This pathway-centric
method shows high sensitivity compared with gene-centric analyses of mutation data. Notably, only a marginal
decrease in performance is observed when using 10 % of TCGA patient samples, suggesting the method may
potentiate cancer genome projects with small patient populations.
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Background
Cancer is a complex genetic disease caused by DNA
abnormalities [1]. For this reason, substantial genetic
and genomic efforts have been undertaken to identify
causal cancer genes. Advanced DNA sequencing tech-
nologies have accelerated the discovery of cancer
genes by cataloging the genetic aberrations in cancer-
ous cells [2, 3] and consortia such as The Cancer
Genome Atlas (TCGA) [4] and the International Can-
cer Genome Consortium (ICGC) [5] have undertaken
the systematic profiling of genomic alterations in
many cancer types.
A major challenge in cancer gene discovery via som-

atic mutation profiling is the driver and passenger prob-
lem [6]. A considerable number of somatic mutations
identified by sequencing are passenger mutations with
no impact on cancer progression. In contrast, a relatively
small number of driver mutations that confer a selective
growth advantage are expected in each sample [1, 7].
Distinguishing driver from passenger mutations is crit-
ical to reduce false positives in sequencing-driven cancer
gene discovery.

The most intuitive and commonly used approach for
distinguishing drivers from passengers are frequency-
based methods that quantify the significance of the mu-
tation frequency of each gene or region compared with a
background mutation rate (BMR), which varies substan-
tially across the genome and for different sequence con-
texts [8]. In frequency-based methods, genes that are
mutated at higher rates than expected are declared as
cancer driver genes. However, estimating an accurate
BMR, which is the key step of the frequency-based
methods, is not a trivial task. To take into account the
wide dynamic range of the BMR, more sophisticated
methods were suggested, such as MutSigCV [9], InVEx
[10], and MuSiC [11]. They use elaborate methods for
BMR estimation across patients, chromosomal locations,
and mutational spectra.
Other approaches for distinguishing drivers from

passengers consider the predicted functional impact
of mutations on a protein’s activity. SIFT (Sorting
Intolerant From Tolerant) [12] and PolyPhen-2 (Poly-
morphism Phenotyping v2) [13] are two commonly
used methods for assessing the functional impact of
protein variants, but they are not specialized for can-
cer gene prediction. Therefore, MutationAssessor [14]
and CHASM (Cancer-specific High-throughput Anno-
tation of Somatic Mutations) [15] were developed
specifically for the assessment of the functional
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impact of variants in cancer. Other methods include
TransFIC (TRANSformed Functional Impact for Cancer)
[16], which considers the basal tolerance to germline
single nucleotide variants, and CONDEL [17], which inte-
grates multiple methods.
Despite significant progress in reducing false positives

during the past several years, mutation-based cancer
gene prediction is still underpowered, suffering from low
sensitivity because of the phenomenon of the long-tail of
infrequently mutated genes. Whereas frequency-based
methods can identify driver genes amongst the genes
that are frequently mutated in patients, they are ineffect-
ive in identifying drivers amongst infrequently or rarely
mutated genes [18]. To obtain sufficient statistical power
to detect cancer driver genes with low mutation fre-
quency, a very large population of cancer patients would
have to be sequenced [19]. Similarly, because of both
high false positive and false negative rates, methods
assessing the functional impact of mutations also have a
limited capability to identify drivers amongst infre-
quently mutated genes [7].
An important observation from analyses of the land-

scape of cancer mutation genomes performed to date
has been the convergence of individual mutations into
cellular pathways [18]. Although somatic mutations in
different genes are observed in different patients, these
mutated genes tend to fall into a limited number of
recurrently mutated pathways and processes in any par-
ticular type of cancer. This supports the hypothesis that
cancer is a disease of pathway defects and has stimulated
the development of pathway- or network-centric ap-
proaches for analyzing cancer somatic mutation data.
For example, mutated genes in cancer genomes can be
prioritized by their network connections to other mu-
tated genes or known cancer genes [20]. DriverNet [21]
and OncoIMPACT [22] prioritize mutated genes based
on connections to dysregulated genes in cancer using
matched expression data. ReMIC [23], VarWalker [24],
and HotNet2 [25] identify cancer modules which com-
prise driver genes by diffusing mutation information
throughout a network. These methods, however, either
require extra information such as known cancer genes
and matched expression data or focus on the discovery
of cancer modules rather than prioritizing individual
genes as cancer drivers.
Here we present a cancer gene prioritization method

based on a pathway-centric analysis of mutation data,
MUFFINN (MUtations For Functional Impact on Net-
work Neighbors), that integrates mutational information
for individual genes and their neighbors in co-functional
networks. MUFFINN is highly predictive for known can-
cer genes, particularly for genes with low mutation oc-
currence among cancer patients, with the identification
of drivers amongst these genes having substantially

higher sensitivity than conventional methods based on
gene-centric analysis of mutation data. MUFFINN works
effectively with both pan-cancer and individual cancer
type samples. MUFFINN has only marginally reduced
predictive performance when using only 10 % of TCGA
patient samples, suggesting that it will be a valuable
method for small-scale cancer genome projects and in
the initial stages of larger projects. Using mutation fre-
quency data for 18 types of cancers from TCGA (as of Au-
gust 2014), we identified approximately 200 novel
candidates for cancer genes that were not successfully pri-
oritized by conventional gene-centric methods such as
MutSig2.0, MutSigCV, and MutationAssessor. We were
able to find supporting evidence for many of them being
bona fide drivers. Furthermore, we provide a companion
web-based prediction server (http://www.inetbio.org/
muffinn), which allows researchers to prioritize candi-
date cancer genes by submitting mutation occurrence
data.

Results
Overview of MUFFINN
From the observed clustering of genes somatically mu-
tated in cancers into pathways [18], we hypothesized
that a gene is more likely to represent a true cancer
driver if it is functionally associated with other genes
mutated in cancer. Therefore, we devised a method that
considers the mutation information of both a given gene
and its neighbors in a functional network. Unlike con-
ventional cancer gene classifiers based only on the muta-
tion information of individual genes, our method,
MUFFINN, accounts for both the mutation frequency of
each gene as well as those of its network neighbors
(Fig. 1a). If a gene with low probability of being involved
in cancer due to its low mutation frequency has many
mutations among its network neighbors, MUFFINN will
reprioritize it as a highly probable candidate.
For network-based mutation data analysis, we may con-

sider mutations only in the direct neighbors of a gene or
those of the entire network. Two ways to take into ac-
count mutational information among direct neighbors are
to either consider mutations in the most frequently
mutated neighbor (direct neighbor max, DNmax; Fig. 1b)
or to consider mutations in all direct neighbors with
normalization by their degree connectivity (direct neigh-
bor sum, DNsum; Fig. 1c). We also hypothesized that
network-based prediction might also be improved by
taking into account indirect neighbors using diffusion al-
gorithms [26]. We therefore tested MUFFINN with vari-
ous network diffusion algorithms (Fig. 1d).

MUFFINN is highly predictive for known cancer genes
For the analysis of MUFFINN in cancer gene prediction,
we employed somatic mutation data for each cancer type
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from TCGA and two independently developed func-
tional gene networks, HumanNet [27] and STRING v10
[28]. Both networks consist of interactions between
genes predicted to share biological functions. To assess
the predictive power of classifiers for cancer genes, we
ideally need an accurate, comprehensive, and unbiased
gold-standard cancer gene set. Unfortunately, such a
cancer gene set is not available so we generated five dis-
tinct gold-standard cancer gene sets from various
sources of annotations: (i) 422 cancer genes from the
Cancer Genome Census database (CGC) [29] as of Oc-
tober 2012; (ii) a CGC subset of 118 cancer genes which
act in cancer via point mutations (CGCpointMut); (iii)
124 cancer genes based on the characteristic mutational
patterns for oncogenes and tumor suppressor genes (20/
20 rule) [1]; (iv) 288 high-confidence driver genes based
on a rule-based approach (HCD) [30]; and (v) 797 hu-
man orthologs of mouse cancer genes identified by
insertional mutagenesis (MouseMut) [31, 32]. Each gold-
standard cancer gene set has a different trade-off
between accuracy, comprehensiveness, and bias. For in-
stance, cancer genes annotated by CGC are regarded as

highly accurate at the expense of high bias toward
translocations in blood cancer, while the largest set of
797 cancer genes identified by mutagenesis in mice is
comprehensive yet not extensively validated. Although
each cancer gene set is biased towards particular fea-
tures or study methods, consistently high ranking of a
classifier across the five cancer gene sets would be
sufficient evidence of its predictive performance. To
evaluate the effectiveness of the pathway-centric ap-
proach, we compare the performance of MUFFINN
with the performance of three popular methods based
on gene-centric analyses of somatic mutation data:
MutSig2.0, MutSigCV [9], and MutationAssessor [14].
To assess the predictive performance for the gold-

standard cancer genes, ROC (receiver operating character-
istic) analysis was performed for each type of cancer. We
first tested MUFFINN by using mutation occurrence data
only in direct neighbors (NDmax and NDsum) and found
a generally higher predictive performance than gene-by-
gene analyses. For example. MUFFINN showed higher
performance in predicting cancer genes annotated by
CGC [29] and the 20/20 rule [1] using mutation data for

Fig. 1 Overview of MUFFINN. a While conventional methods based on mutation data prioritize genes with mutation frequency only, MUFFINN
prioritizes genes based on the mutation frequency of each gene as well as that of its neighbors in a functional network. Various network
algorithms incorporate mutational information of network neighbors: b mutation frequency of direct neighbor genes of maximum mutation
frequency; c mutation frequency of all direct neighbors with normalization by the number of their network neighbors; and d mutational
frequency of all genes of the entire network with diffused weight through the network
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breast cancer with either HumanNet or STRING v10
(Fig. 2a, b). The ROC analysis results can be summarized
into area under the ROC curve (AUC) scores. Thus, we
used the distribution of AUC scores across 18 cancer
types to summarize the general prediction performance
across different cancer types with different combinations
between network algorithms (DNmax and DNsum) and

functional networks (HumanNet and STRING v10). For
all five gold-standard cancer gene sets, MUFFINN consist-
ently outperforms all three gene-centric methods that do
not account for mutation frequency of network neighbors
(Fig. 2c, d; Additional file 1: Figure S1a–c).
For practical reasons, in cancer gene discovery only

the top-ranked candidate genes might enter into the

Fig. 2 Assessment of predictive power of MUFFINN for cancer genes. ROC analyses on prediction of cancer genes annotated by CGC (a) and the
20/20 rule (b) were performed for MUFFINN with various combinations of two network algorithms using direct neighbors (DNmax and DNsum)
and two networks (HumanNet and STRING v10) and conventional frequency-based methods, MutSig 2.0, MutsigCV, and MutationAssessor, with
mutation data derived from breast cancer type (BRCA). The same analysis was repeated for all 18 cancer type samples and the results are summarized
as the distribution of 18 AUC scores for cancer genes annotated by c CGC and d the 20/20 rule. Prediction powers for top candidates were assessed
by cumulative numbers of retrieved cancer genes annotated by e CGC and f the 20/20 rule within the top 100, 500, and 1000 with the same analysis
setting. Results from all the assessment tests indicate the generally improved performance of MUFFINN over the tested gene-centric cancer gene
classifiers. FPR false positive rate, TPR true positive rate
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follow-up experimental validation. Hence, the prediction
power for the top ranked candidates is likely a more
relevant metric for the real application of cancer gene
classifiers. We previously demonstrated that high per-
formance of a network-based gene prioritizer based on
all genes cannot guarantee successful prioritization for
the top ranked candidate genes for phenotypes including
human diseases [33]. Therefore, we also assessed the
predictive power for the top-ranked candidates based on
the average number of retrieved gold-standard cancer
genes across 18 cancer types for the top 100, 500, and
1000 candidates. We observed similar prediction power
among all MUFFINN classifiers and gene-centric classi-
fiers for the top 100 candidates. However, all MUFFINN
classifiers showed substantially higher predictive power
for the top 500 and 1000 candidates based on all five
gold-standard cancer gene sets (Fig. 2e, f; Additional
file 1: Figure S1d–f ). These results indicate that
MUFFINN not only achieved a specificity for top-tier
candidates as high as current state-of-the-art gene-
centric algorithms but also provides substantially
more opportunities for the discovery of novel cancer
genes by maintaining high sensitivity for extended
ranges of ranked candidates.
To test the robustness of MUFFINN to network cover-

age, we repeated the predictions using the top 75, 50,
and 25 % of network links. We observed no significant
loss in retrieval rate for all five gold-standard cancer
gene sets using the smaller networks (Additional file 1:
Figures S2 and S3).

Considering mutations in indirect neighbors does not
improve predictive performance
MUFFINN can also use mutations in indirect neighbors
by diffusing mutation occurrence information throughout
the network (Fig. 1d). Recently, diffusing information
through a network has proven useful in various network-
based gene prioritizations [26]. Therefore, we tested
MUFFINN with three popular network diffusion algo-
rithms for cancer gene predictions: (i) Gaussian
smoothing (GS); (ii) random walk with restart (RWR);
and (iii) iterative ranking (IR), which has been popu-
larized as the PageRank algorithm of internet search
engines. The three algorithms diffuse initial node in-
formation, here mutational occurrences, to all the
genes of the network. Consequently, not only direct
neighbors but also all the genes of the network can
affect the probability of a gene being a cancer driver
with different weights.
Interestingly, we did not observe any improvement in

predicting the cancer genes of all five gold-standard sets
using the mutation occurrence data of indirect neigh-
bors. Indeed, predictive power for all genes based on
AUC scores across 18 cancer types in general decreases

in MUFFINN with the network diffusion algorithms
(Fig. 3a, b; Additional file 1: Figure S4a–c). Predictive
performances for the top 100, 500, or 1000 candidates
were comparable, with the exception of GS, but did not
show significant improvement by using diffused muta-
tional data from indirect neighbors in the network
(Fig. 3c, d; Additional file 1: Figure S4d–f ). From these
results we conclude that network-based mutation ana-
lysis for cancer gene prediction needs mutation data of
direct neighbors only.
We observed comparable performance between two

alternative methods based on direct neighbors, DNmax
and DNsum, across 18 cancer types. The different effect-
iveness of the two methods among cancer types could
be attributed to differences in mutation distribution
among member genes of cancer pathways. If mutations
are evenly spread among members of cancer-related
pathways for the given cancer type, DNsum works more
effectively. Conversely, if mutations concentrate on a
few hubs of cancer-related pathways for the given cancer
type, adding more importance to the mutational infor-
mation of the hub, DNmax, could be more effective for
identifying additional cancer genes. We tested whether
integration of the two distinct network algorithms,
DNsum and DNmax, improves prediction power when
using either the higher probability or the joint probabil-
ity of the two classifiers. However, none of the integrated
classifiers showed a significant improvement (data not
shown). Therefore, we advise using both network algo-
rithms and choosing the better performing classifier for
given input data based on an evaluation using known
cancer genes amongst the top ranked candidates.

MUFFINN is predictive for cancer genes with only dozens
of sequenced samples
Pan-cancer data have been suggested to have merit over
data sets for individual cancer types in cancer gene dis-
covery because the larger number of samples increases
statistical power [34]. Although MUFFINN effectively
predicted cancer genes using mutation data derived from
individual types, we also tested to what extent the
collective power of pan-cancer data can improve predic-
tions. Interestingly, we observed only a marginal im-
provement in prioritizing cancer genes among all human
genes using pan-cancer data (Fig. 4a, b; Additional file 1:
Figure S5a–c). Notably, mutation data for some types
even outperformed the pan-cancer data in prediction of
known cancer genes within the top 100, 500, or 1000
candidates (Fig. 4c, d; Additional file 1: Figure S5d–f ).
Based on the low dependence on the abundance of

mutation data observed from the analysis with pan-
cancer data, we hypothesized that MUFFINN could be
an effective cancer gene classifier when data are available
for only dozens of sequenced samples. Therefore, we
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tested whether MUFFINN can predict cancer genes ef-
fectively with only 10 % of randomly selected samples
from the TCGA database, which falls into the range of
6–98 samples for each type of cancer (chromophobe
renal cell carcinoma (KICH) and breast cancer (BRCA)
included 66 and 987 patients, respectively, in the TCGA
database we used).
We assessed the predictive power for cancer genes

using 100 random samples comprising 10 % of the ori-
ginal cancer samples and the distribution of AUC scores.
Notably, we observed only a marginal decrease in pre-
diction power, particularly for the top ranked candidates
(Fig. 5; Additional file 1: Figure S6). These results illus-
trate how MUFFINN can overcome the long-tail
phenomenon of cancer mutation data in cancer gene
prediction. With only dozens of patients, infrequently
mutated genes in the long tail are not likely to be

identified as mutated genes. However, the frequently
mutated genes are located within cancer pathways and
propagate information via the network to other mem-
bers of the pathway for which no mutations had yet
been identified. Mutations in these genes will likely be
identified in the future as more patients are sequenced
and the sample size increases.

Accounting for mutational heterogeneity is not important
for MUFFINN
The major source of false positive cancer driver genes in
frequency-based analyses of somatic mutation data is
mutational heterogeneity due to mutation signature
biases, gene expression levels, and DNA replication
time/chromatin organization [8]. Normalization of ob-
served mutation frequencies by gene-specific back-
ground mutation rates incorporating expression level,

Fig. 3 MUFFINN performs best by using mutation information of direct neighbors only. Performance assessment was conducted similarly
to those of Fig. 2 for different network algorithms, including three diffusion algorithms on HumanNet: distributions of 18 AUC scores for
cancer genes annotated by a CGC and b the 20/20 rule, and cumulative numbers of retrieved cancer genes annotated by c CGC
and d the 20/20 rule within the top 100, 500, and 1000. MUFFINN shows higher predictive power for cancer genes by using mutation
information of direct neighbors only than by using all genes of HumanNet with various network diffusion algorithms
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replication time, and patient-specific mutation frequen-
cies, as implemented by the MutsigCV method, can
eliminate most of the spurious candidate driver genes
[9]. To test if correction of mutation frequencies by
those factors can also improve our network-based cancer
driver gene predictions, we compared MUFFINN predic-
tions for the five gold-standard cancer gene sets when
using raw mutation frequencies and MutsigCV scores.
Note that acute myeloid leukemia (LAML) was excluded
from this analysis because all genes in LAML have indis-
criminative MutsigCV scores due to the low mutation
rate in leukemia. We observed generally higher predic-
tion powers for all five gold-standard cancer gene sets
among 17 types when using raw mutation frequencies
than when using MutsigCV scores (Fig. 6a, b; Additional

file 1: Figure S7a–c), except for a slight improvement
using MutsigCV with NDmax for the top 100 candidates
(Fig. 6c, d; Additional file 1: Figure S7d–f ). Elimination
of candidate genes with high BMR seems effective in
network-based prediction based on a single gene of
maximum mutation occurrence among neighbors (i.e.,
DNmax). However, the normalizing effect of accounting
for mutational heterogeneity is much reduced for the
network-based prediction using mutations of all neigh-
boring genes. These results indicate that accounting for
mutational heterogeneity has, in some respects, a similar
effect as taking into account pathway-level mutational
burden. For gene-centric prediction algorithms, normal-
izing the mutation occurrence of each gene by transcrip-
tion level, replication timing, and other such factors that

Fig. 4 Comparison of MUFFINN predictive power with different cancer mutation data for samples from 18 types of cancer and pan-cancer
samples. Distribution of AUC of MUFFINN using direct neighbors on HumanNet for cancer genes annotated by a CGC and b the 20/20 rule with
pan-cancer samples and samples for 18 types of cancer. The AUC for the pan-cancer data is indicated by red triangles and those for the 18 types
of cancer are represented as box plots. The number of retrieved cancer genes annotated by c CGC and d the 20/20 rule in the top 100, 500, and
1000 candidates by MUFFINN with pan-cancer samples and samples for 18 types of cancer. BLCA urothelial bladder cancer, BRCA breast cancer,
COADREAD colon and rectal adenocarcinoma, GBM glioblastoma multiforme, HNSC head and neck squamous cell carcinoma, KICH chromophobe
renal cell carcinoma, KIRC clear cell kidney carcinoma, KIRP papillary kidney carcinoma, LAML acute myeloid leukemia, LGG lower grade glioma,
LUAD lung adenocarcinoma, LUSC lung squamous cell carcinoma, OV ovarian serous cystadenocarcinoma, PRAD prostate adenocarcinoma, SKCM
cutaneous melanoma, STAD stomach adenocarcinoma, THCA papillary thyroid carcinoma, UCEC uterine corpus endometrial carcinoma
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affect mutation prevalence successfully filters out many
false positives. MUFFINN, however, uses the information
of group-wise mutational burden, enabling it to be more
resistant to the influence of genes with intrinsically high
mutation rates.

MUFFINN predicts cancer genes not identifiable by
gene-centric mutation analysis
Next we tested whether MUFFINN, which conducts
pathway-centric analysis of mutation data, can predict
cancer genes that are not identifiable by a gene-by-
gene analysis of mutation data. To focus our valid-
ation on candidates only predicted by MUFFINN, we
collected genes ranked in each cancer type within the
top 1000 by MUFFINN with HumanNet but not by
all three gene-centric methods, MutSig2.0, MutSigCV,
and MutationAssessor, from 18 cancer types. We then
excluded annotated cancer genes by CGC or the 20/
20 rule from the collected candidates, resulting in

199 novel cancer genes. We then carried out a com-
prehensive literature review for the 199 candidate
genes and found some level of association with cancer
for 128 genes (~64 %), as summarized in Additional
file 1: Table S1.
We assigned the 199 candidate genes into one of five

classes. Figure 7 illustrates networks for representative
candidates and the top 20 network neighbors of each for
four classes, class 1 through 4, whose association with
cancer was supported by the literature survey. To inves-
tigate cancer-related pathways among the network
neighbors, we performed an enrichment analysis for
three pathway annotations, KEGG pathway [35], Reac-
tome pathway [36], and Gene Ontology (GO) biological
process [37], using Fisher’s exact test. Class 1 includes
11 genes that are already reported as cancer genes but
not annotated by CGC or the 20/20 rule dataset.
HDAC1, ranked 29th by MUFFINN yet below 6000th by
all three gene-centric methods in LAML samples, is a

Fig. 5 MUFFINN effectively predicts cancer genes with only 10 % of TCGA samples. Comparison of MUFFINN predictions for cancer genes
annotated by a CGC and b the 20/20 rule between using all cancer samples and using only 10 % of the cancer samples. AUC scores for 18
cancer types when using all samples and when using 10 % of samples are represented as box plots. Performance comparisons were also
conducted based on the number of retrieved cancer genes annotated by c CGC and d the 20/20 rule in the top 100, 500, and 1000 candidates.
Notice that the scores for the 10 % of samples are all based on the average of 100 random samples. In general, MUFFINN shows only a marginal
decrease in performance when using 10 % of samples compared with all samples
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deacetylase, a chromatin modifying enzyme, and has
been reported to be involved in myeloid leukemia cell
proliferation [38]. Agreeing with the known functions,
pathway annotations such as “epigenetic regulation of
gene expression” (Reactome pathway, P = 2.87e-13), and
“chronic myeloid leukemia” (KEGG pathway, P = 1.61e-
08) are enriched among HDAC1 network neighbors
(Fig. 7a). HDAC1 neighbor genes are also enriched for
“activation of HOX genes during differentiation” (Reactome
pathway, P = 3.70e-08), which is known to be involved in
oncogenesis [39]. PLK1 is also known as an oncoprotein in
leukemia [40] and ranked by MUFFINN (42nd) yet not by
three gene-centric methods (below 9000th) in LAML
samples. FLT4 (18th by MUFFINN yet below 4000th by
all three gene-centric methods in LAML samples), ATR
(28th by MUFFINN yet below 10,000th by all three
gene-centric methods in BRCA samples) and MAP2K2
(fifth by MUFFINN yet below 11,000th by all three
gene-centric methods in papillary thyroid carcinoma
(THCA) samples) were recently added to the updated
CGC gene list.

Class 2 includes 14 genes known to increase cancer
susceptibility through germline variants. For example,
HIF1A (16th by MUFFINN yet below 8000th by all three
gene-centric methods in BRCA samples) polymorphism
contributes to the risk of gastrointestinal cancer [41]
and modulates the response to chemotherapy after sur-
gery in patients with colorectal cancer [42]. Germline
nucleotide variants in OBSCN (fifth by MUFFINN yet
below 6000th by the gene-centric methods in papillary
kidney carcinoma (KIRP) samples) were found in highly
aggressive tumors such as glioblastoma, melanoma, and
pancreatic carcinoma [43] and involved in cancer pre-
dispositions. Likewise, germline variants in APEX1
(14th by MUFFINN yet below 13,000th by the gene-centric
methods in head and neck squamous cell carcinoma
(HNSC) samples) is known to increase the risk of breast
cancer development by contributing apurinic/apyrimidinic
(AP) site accumulation in DNA [44]. Indeed, the genes
functionally associated with APEX1 are enriched for a rele-
vant pathway, “transcription-coupled nucleotide excision
repair” (GO biological process, P = 7.45e-05; Fig. 7b).

Fig. 6 MUFFINN is not significantly improved by using MutsigCV scores. MUFFINN was performed with raw mutation frequencies or MutsigCV
scores, which are normalized by BMR and mutational heterogeneity. HumanNet was used as the network model. Comparison of predictions for
cancer genes annotated by a CGC and b the 20/20 rule. AUC scores for 17 cancer types (LAML was excluded in the analysis due to the
indiscriminative MutsigCV scores due to the low mutation rate in leukemia) are represented as box plots. Performance comparisons were also
conducted based on the number of retrieved cancer genes annotated by c CGC and d the 20/20 rule in the top 100, 500, and 1000 candidates
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Essential roles for mammalian AP endonuclease in telo-
mere maintenance have been reported [45], which sup-
ports the association of APEX1 with cancer development.
We also found enrichment of APEX1 neighbors for “PI3K-
Akt signaling pathway” (KEGG pathway, P = 5.01e-04) and
“regulation of gene expression by hypoxia-inducible factor”
(Reactome pathway, P = 5.49e-05), both of which are
well known cancer therapeutic target signaling path-
ways [46, 47].
Class 3 includes 14 genes known to be involved in

cancer by copy number variation (CNV) or structural
variation (SV). For example, deletion of PTP4A3 (49th
by MUFFINN yet below 10,000th by the gene-centric

methods in KIRP samples) reduces the tumor-initiation
ability in cancer [48] and PPAPDC1B (45th by MUF-
FINN yet below 16,000th by the gene-centric methods
in colon and rectal adenocarcinoma (COADREAD)
samples) is suggested to be a common driver in the
8p11-12 amplicon in breast, pancreatic, and lung can-
cer [49]. FN1 (15th by MUFFINN yet below 8000th
by the gene-centric methods in clear cell kidney car-
cinoma (KIRC) samples) is a novel fusion partner of
ALK in myofibroblastic tumors [50]. FN1 encodes fi-
bronectin 1, an extracellular matrix component, and
the network neighbors of FN1 were found to be
enriched for “extracellular matrix disassembly” (GO

Fig. 7 Networks of candidate cancer genes predicted by MUFFINN and their direct neighbors on HumanNet. Networks are visualized using
Cytoscape for a HDAC1, b APEX1, c FN1, and d PPM1A. Edge thickness represents edge weight (likelihood of two genes being involved in the
same pathway) by HumanNet and node color scale represents the mutational frequency of each gene, where higher mutation frequency is
indicated as more reddish color. Genes with no mutation occurrence at all are indicated as an empty node. The subjected candidate genes, their
neighboring candidate genes, and other genes are represented as hexagonal, rectangular, and circular nodes, respectively. Genes for each
enriched pathway are grouped by a curved box
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biological process, P = 2.78e-15; Fig. 1c). The extracel-
lular matrix has been recently reported to modulate
the hallmarks of cancers [51]. In addition, FN1 net-
work neighbors are enriched for a well-known cancer
signaling pathway, the PI3K-Akt signaling pathway
(KEGG pathway, P = 1.81e-14) [46].
Class 4, to which we assigned a total of 89 genes, is

associated with cancer via expression regulation. For ex-
ample, ACTN1 (33rd by MUFFINN yet below 8000th by
the gene-centric methods in uterine corpus endometrial
carcinoma (UCEC) samples) is known to have a tumor-
specific splice variant in many types of cancer [52]. DCC
(32nd by MUFFINN yet below 7000th by the gene-
centric methods in HNSC samples), a putative candidate
tumor suppressor, is inactivated by promoter hyperme-
thylation in head and neck cancer [53] and loss of
PPM1A (23rd by MUFFINN yet below 5000th by the
gene-centric methods in stomach adenocarcinoma (STAD)
samples) expression enhances invasion and epithelial-to-
mesenchymal transition in bladder cancer [54]. Interest-
ingly, genes functionally associated with PPM1A turned
out to be enriched for “axon guidance” (GO biological
process, P = 4.62e-07; Fig. 7d) and PPM1 has been reported
as a regulator for axon termination and synapse formation
in Caenorhabditis elegans [55]. Because many axon guid-
ance molecules are also involved in regulation of cell mi-
gration and apoptosis [56], the enrichment of axon
guidance genes among network neighbors may be inform-
ative for the association of PPM1A with cancer. We also
found other cancer-associated signaling pathways enriched,
such as “signaling by PTK6” [57] (Reactome pathway,
P = 5.26e-05) and “ErbB signaling pathway” [58] (KEGG
pathway, P = 1.26e-04) among PPM1A neighbors. ING1
(30th by MUFFINN yet 11,000th by the gene-centric
methods in BRCA samples) was recently reported as a val-
idated target of microRNA let-7b, which suppresses gas-
tric cancer malignancy [59], and its down-regulation in
breast cancer promotes metastasis [60]. Interestingly,
many of the recent studies suggested a relationship be-
tween cancer and a candidate, DROSHA (61st by MUF-
FINN yet below 18,000th by the gene-centric methods in
BRCA samples), which is involved in microRNA process-
ing, through prognostic values [61], expression changes in
breast cancer [62], and genetic variations [63].
As described above, MUFFINN predicted many cancer

genes that have been missed by annotators or are infre-
quently mutated and yet have been previously implicated
as cancer genes by germline variation, CNV, SV, or ex-
pression regulation. Cancer risk is affected in many ways
other than just somatic mutations of coding sequences.
Interestingly, TTN was top ranked by MUFFINN be-
cause its network neighbors also have many somatic mu-
tations. TTN has been excluded from candidates in
many predictions by frequency-based methods because

its particularly high mutation frequency could be attrib-
uted to its large gene size. However, a recent study dem-
onstrated that some network modules which confer
significance in cancer subtyping are enriched for long
genes such as TTN, which suggests that long genes
should not necessarily be ignored by default in cancer
gene studies [64].
Class 5 includes 71 candidate genes for which we were

not able to find any additional evidence for association
with cancer in published studies to date. These candi-
dates are completely novel and need to be subject to fur-
ther investigation for their association with human
cancer in the future.

Comparison between MUFFINN and HotNet2
Recently, HotNet2, a state-of-the-art software for identi-
fying cancer driver genes by diffusing mutational burden
through protein–protein interaction networks, has been
applied to TCGA pan-cancer data and identified 144
candidates for cancer genes [25]. Although both methods
are based on analyzing the network distribution of cancer
somatic mutations, MUFFINN has several technical
advantages over HotNet2: (i) MUFFINN prediction can
be conducted via a web server (http://www.inetbio.org/
muffinn/); (ii) MUFFINN runs much faster because an
iterative network search is not necessary for the best
performing DNsum and DNmax algorithms; (iii)
MUFFINN provides probability scores for all candidate
genes. To compare the performance of the two
network-based cancer gene prediction methods, we re-
ran MUFFINN on the TCGA pan-cancer somatic mu-
tation data used for HotNet2 prediction (17,209
mutations from 3110 samples). Since HotNet2 did not
provide prediction scores, we simply compared the
number of retrieved gold-standard cancer genes for the
144 candidates predicted by HotNet2 and for the top
144 candidates predicted by MUFFINN. For MUFFINN,
we performed predictions using different combinations
between two networks (HumanNet and STRING) and
two direct-neighbor algorithms (DNmax and DNsum). Al-
though MUFFINN is much simpler and faster than Hot-
Net2, we observed comparable retrieval rates for all five
gold-standard cancer gene sets for the two network-based
methods. Indeed, the highest performance was generally
achieved by MUFFINN with DNsum, which was followed
by HotNet2 and MUFFINN with DNmax (Additional
file 1: Figure S8). These results also further confirm
that pathway-centric approaches are superior to gene-
centric methods in cancer gene prediction based on
somatic mutation data. Notably, the two pathway-
centric approaches, MUFFINN and HotNet2, show
minimal overlap in their predictions, although they
show a similar number of validated cancer genes in
the gold-standard data (Additional file 1: Figure S9).
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These results suggest complementarity between the
two pathway-centric cancer gene prediction methods
and that it might be worth using both methods to
maximize the discovery rate.

Discussion
During the past few years, algorithmic research to im-
prove cancer driver gene discovery has mostly focused
on improving prediction specificity by using back-
ground mutation frequency-based models to discard
false-positive predictions. However, the long-tail of the
mutation frequency distribution means that frequency-
based methods suffer from low sensitivity—many true
positive drivers are likely discarded because their low
mutation frequency cannot be distinguished from the
background expectation. MUFFINN aims to improve
prediction sensitivity by retrieving cancer genes with
low mutation frequencies via their network associa-
tions with other cancer genes with high mutation fre-
quencies. Although the ROC analysis results indicate
higher sensitivity and specificity over state-of-the-art
frequency-based methods, such as MutSigCV, MUF-
FINN still retrieves some likely false positive cancer
genes such as TTN, which, because of their large size,
accumulate many mutations. A future challenge will,
therefore, be to combine the complementary features
of background frequency-based and network/function-
based methods to further improve the sensitivity and
specificity of cancer driver gene prediction.
Correcting for gene-specific background mutation

frequency has proven useful in eliminating spurious
candidate driver genes during gene-centric analysis
of mutation frequency data [9]. In our network-
centric analysis, however, such normalization of mu-
tation frequency did not significantly improve pre-
dictions for known cancer genes, particularly when
using the mutational occurrence of all neighbors
(DNsum). One possible explanation is that mutation
frequency is more heterogeneous among cancer
genes than amongst cancer pathways. In fact, high
mutual exclusivity of mutated genes of a gene set
across patients has been utilized to identify novel
cancer pathways [65].
Frequently mutated cancer genes can be detected by

sequencing only dozens of cancer samples. In contrast,
detection of rare driver mutations may require thou-
sands of patients. Hence, the cost-effectiveness of cancer
genome projects generally rapidly decreases as the num-
ber of sequenced samples grows. A promising feature of
MUFFINN is high predictive power for cancer genes
using only dozens of patient samples. For the practical
application of MUFFINN for sequencing-based cancer
gene discovery, we implemented a user-friendly web
interface (http://www.inetbio.org/muffinn/) to conduct

pathway-centric analyses of mutation data by simply
submitting mutation frequencies for individual genes.
Despite the successful predictions of MUFFINN, there

may be room for improvements. The current algorithm
uses only nonsynonymous mutations and short indels
identified from whole exome sequencing. Since we an-
ticipate an explosion of mutation data for non-coding
regions, we may need to incorporate other types of mu-
tations for both coding and non-coding regions into fu-
ture developments of MUFFINN. For example, it has
recently been reported that synonymous mutations [66]
contribute to cancer risk and future algorithms need to
account for such less well-characterized cancer-related
mutations. Prediction power would, of course, also be
enhanced by improving the functional networks.

Conclusions
Here, we present a novel method for cancer gene
discovery, MUFFINN, which takes into account som-
atic mutations in both genes and their neighbors in
functional networks. We demonstrate that this pathway-
centric strategy of prioritization complements conven-
tional gene-centric mutational data analysis. Algorithm
development for mutation-based cancer gene prediction
has successfully dealt with false positive candidates with
high background mutation frequency [24]. However, can-
cer gene discovery based solely on exome mutation fre-
quency is intrinsically limited to genes with frequent
mutations in coding regions. Interestingly, many known
cancer genes predicted by MUFFINN with no significant
evidence of somatic exonic mutations among TCGA sam-
ples are supported by their involvement in other types of
genetic alterations, such as germline genetic variation,
chromosomal rearrangement, and altered gene expression
regulation. Ongoing efforts for the expansion of cancer
genomics to whole genome sequencing and continued
transcriptome and epigenome profiling will help to test
whether some of these genes are targeted by regulatory ra-
ther than coding genetic variation. As demonstrated in
this study, however, pathway-centric analysis of exome se-
quencing data and experimental follow-up may effectively
fill the gap between the current status of existing data re-
sources and the ultimate goal of completely cataloguing
cancer genes in particular cancers and also in particular
individuals.

Methods
Cancer somatic mutation data and prediction score by
frequency-based methods
We used 18 types of cancer from TCGA: urothelial bladder
cancer (BLCA), breast cancer (BRCA), colon and rectal
adenocarcinoma (COADREAD), glioblastoma multiforme
(GBM), head and neck squamous cell carcinoma (HNSC),
chromophobe renal cell carcinoma (KICH), clear cell
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kidney carcinoma (KIRC), papillary kidney carcinoma
(KIRP), acute myeloid leukemia (LAML), lower grade gli-
oma (LGG), lung adenocarcinoma (LUAD), lung squamous
cell carcinoma (LUSC), ovarian serous cystadenocarcinoma
(OV), prostate adenocarcinoma (PRAD), cutaneous melan-
oma (SKCM), stomach adenocarcinoma (STAD), papillary
thyroid carcinoma (THCA), and uterine corpus endomet-
rial carcinoma (UCEC).
Mutational occurrence data and the prediction scores

by MutSig 2.0, MutSigCV, and MutationAssessor were
downloaded from GDAC (http://gdac.broadinstitute.org/
runs/analyses_2014_04_16/). We downloaded TCGA
data via Data Matrix (https://tcga-data.nci.nih.gov/tcga/
dataAccessMatrix.htm) on May 2014, and the lists of
TCGA barcodes which were used for analysis are avail-
able in the MUFFINN web application (http://www.inet-
bio.org/muffinn/).

Gold-standard cancer gene sets
Because an unbiased gold-standard set of cancer genes is
currently unavailable, we generated five complementary
cancer gene sets derived from various sources. First, 422
cancer genes were downloaded in October 2012 from
the Cancer Genome Census (CGC) database, which in-
cludes the genes for which mutations have been causally
implicated in cancer [29]. While CGC is widely used as
a gold-standard cancer gene set, it is heavily biased to-
wards cancer genes derived from chromosomal trans-
location (>70 % of CGC genes). Since we benchmark
cancer gene classifiers based on information of sequence
alterations rather than structural rearrangement, we gen-
erated a second gold-standard comprising 118 cancer
genes altered by point mutations, CGCpointMut. Other
classes of mutations, such as translocation, large amplifi-
cations, and deletions, were excluded from CGCpoint-
Mut. The third gold-standard set was composed of 124
cancer genes based on the patterns of mutations that
oncogenes are recurrently mutated at the positions while
tumor suppressor genes are mutated through protein
truncating alterations [1]. In particular, >20 % of the mu-
tations in the gene need to be at recurrent positions to
be classified as oncogenes and >20 % of the mutations
need to be inactivated to be classified as tumor suppres-
sor genes (20/20). The forth gold-standard set was 288
high-confidence driver genes implicated by a rule-based
method (HCD) [30]. Briefly, HCD includes genes with
signals of positive selection in at least two methods out
of four: MuSiC [11], OncodriveFM [67], Oncodrive-
CLUST [68], and ActiveDriver [69]. Genes which present
signals of positive selection in only one method can also
be included as long as additional supportive evidence is
available. The fifth gold-standard set contains 797 genes
identified by insertional mutagenesis in mice (MouseMut)
[31, 32]. To identify new drivers of pancreatic and

intestinal cancer, a mutagenic screen using Sleeping
Beauty (SB) was performed and the resulting candidate
cancer genes were mapped to human orthologs.
Note that we only consider 18,499 protein coding

genes as MUFFINN utilizes networks such as Human-
Net and STRING v10 that use protein-coding genes.

Scoring scheme of MUFFINN
We formulated two different ways to use mutation infor-
mation of direct neighbors in the network: using muta-
tional information of only one direct neighbor with the
largest number of mutations or using those of all direct
neighbors. Let M(i) be the number of non-synonymous
mutations of a gene (node) i across the set of individuals
and W(i, j) be the normalized edge weights between
gene i and gene j. Then, the raw scores of gene i by
MUFFINN are defined as follows.
DNmax: max of the direct neighbor mutational

occurrences:

f DNmax ið Þ ¼ M ið Þ þ max
j

M jð Þ �W i; jð Þ

DNsum: sum of the direct neighbor mutational
occurrences:

f DNsum ið Þ ¼ M ið Þ þ
X
j

M jð Þ
Deg jð Þ

� �
; j : neighbors of node i

where Deg(j) is the number of network neighbors of
gene i. We found that accounting for edge weights in-
creases the prediction performance when using DNmax
but decreases the performance when using DNsum. The
calculated scores using the above equations are then
transformed into probability scores based on logistic
regression.
For taking into account mutations in indirect network

neighbors, we used three distinct network diffusion algo-
rithms, Gaussian smoothing (GS), random walk with re-
start (RWR), and iterative ranking (IR).
In the GS algorithm, labels are propagated by Gaussian

probability density functions with the aim of finding op-
timal solutions to minimize two differences: (i) between
the initial and final scores of a labeled node; (ii) between
the label score of a node and each of its neighbors [33].

f ¼ argminf α⋅
X

i
f ið Þ−f0 ið Þ� �2 þ 1−αð Þ

�
X

i

X
j
W ij f ið Þ−f jð Þð Þ;

node j are neighbors of node ið Þ

While a binary score, 0 or 1, is generally used as the
initial score in GS, we modified f0 to take into account
the mutation occurrence score. We ran network diffu-
sion based on the Gaussian smoothing algorithm using
geneMANIA [70] software.
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In the RWR algorithm, the (1 − α) portion of the node
scores at time t are iteratively propagated to neighbors
based on the adjacency matrix U of which columns are
normalized [26].

f tþ1 ¼ α⋅f 0 þ 1−αð Þ⋅Uf t;

ðU is column normalized adjacency matrixÞ
The IR algorithm is similar to RWR while a condi-

tional probability matrix among nodes is used instead of
column-normalized matrix U.

f tþ1 ¼ α⋅f 0 þ 1−αð Þ⋅
X

j
p ijjð Þf t;

ð pðijjð Þ is the conditional probability of arriving nodes i from j:Þ

For RWR and IR, we used NetWalk and NetRank,
respectively, available in the GUILD software [71]. All
software for network diffusion was run with default par-
ameter settings.
For MUFFINN analysis with normalized mutation fre-

quency by BMR, the negative logarithm with base 10 of
MutsigCV scores was used as the initial node scores in-
stead of the mutational occurrences.

Selection of MUFFINN-specific candidate genes for
validation
Several criteria were applied for candidate gene selec-
tion. First, the number of neighbors with mutations
should be more than one. This criterion can avoid false
positives caused by a few hub genes which have high
mutation occurrences, affecting many connected neigh-
bors. Second, the genes should be ranked within the top
1000 by MUFFINN (either by DNmax or DNsum of the
neighbor mutational occurrences) with high probability
(>0.5), yet ranked below 1000 with poor P-values (>0.5)
for gene-centric methods (Mutsig2.0, MutsigCV, or
MutationAssessor). At the same time, we focused on the
genes whose ranks differed greatly (>1000) between
MUFFINN and gene-centric methods. Lastly, we ex-
cluded known cancer genes based on 422 cancer genes
by CGC [29] and 124 cancer genes by the mutational
patterns of the 20/20 rule [1], the two most well-known
and most confident cancer gene sets. This filtration en-
sured that the only novel candidates were included in
our candidate gene set for validation using literature
review.

Additional file

Additional file 1: Supplementary online information including
supplementary Figures S1–S9 and supplementary Table S1. (PDF 4546 kb)
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