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Abstract

transcription in the later stages of human life.

Dedifferentiation, Epigenetic drift

Background: Epigenetic drift progressively increases variation in DNA modification profiles of aging cells, but the
finale of such divergence remains elusive. In this study, we explored the dynamics of DNA modification and

Results: We find that brain tissues of older individuals (>75 years) become more similar to each other, both
epigenetically and transcriptionally, compared with younger individuals. Inter-individual epigenetic assimilation is
concurrent with increasing similarity between the cerebral cortex and the cerebellum, which points to potential
brain cell dedifferentiation. DNA modification analysis of twins affected with Alzheimer’s disease reveals a potential
for accelerated epigenetic assimilation in neurodegenerative disease. We also observe loss of boundaries and
merging of neighboring DNA modification and transcriptomic domains over time.

Conclusions: Age-dependent epigenetic divergence, paradoxically, changes to convergence in the later stages of
life. The newly described phenomena of epigenetic assimilation and tissue dedifferentiation may help us better
understand the molecular mechanisms of aging and the origins of diseases for which age is a risk factor.
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Background

Epigenetic factors regulate DNA sequences, organize
them within the nucleus, and contribute to phenotypic
variation of normal traits and disease susceptibility [1].
In comparison to the genetic code, epigenetic modifica-
tions exhibit a much higher degree of variability, which
applies to different individuals, different tissues within
an individual, and even the cells within a given tissue.
Epigenetic variation is present from the earliest stages of
development all the way to old age. Germ cells produced
by the same person exhibit a high degree of epigenetic
variability [2], some of which may survive post-zygotic
epigenomic reprogramming [3]. Throughout embryo-
genesis and development, cellular epigenomes undergo
major re-arrangements: from differentiation of pluripo-
tent stem cells, to lineage-restricted stem cells, and
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ultimately into somatic cells [4, 5]. For the most part,
epigenetic patterns are then “locked” and transmitted
through mitosis into subsequent daughter cells [6, 7].
Interestingly, epigenetic changes continue to accrue,
although much more gradually, as exogenous (i.e.,
environmental) [8, 9] and endogenous (i.e., stochastic)
[10, 11] factors influence the epigenomes of somatic
cells. One of the best understood modes of epigenetic
regulation is DNA methylation, which involves the
covalent addition of a methyl group to a cytosine,
preferentially to a CpG dinucleotide. This is a heritable
and reversible process with error rates of 10*~107° per
mitosis in cell cultures [12, 13], which is several orders of
magnitude higher than somatic DNA mutation rates [14].
Additionally, de novo DNA methylation has also been
estimated at 3-5 % per mitosis [15]. Together with
exogenous factors, this yields an imperfectly maintained
mechanism that accumulates epigenetic changes over
time, resulting in a process referred to as epigenetic
drift [16].
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Monozygotic (MZ) twins—two individuals perfectly
matched for age, sex, and genotype—offer a unique op-
portunity to evaluate epigenetic drift. Twin studies have
consistently identified epigenetic changes in individual
genes and whole genomes during development and
aging [17-20]. Increases in discordance can be as high
as 8-16 % per decade at selected loci, observed both
longitudinally and cross-sectionally [17]. Cells apply re-
straints to the stochastic nature of epigenetic drift,
which results in a significantly lower degree of epigenetic
variation at CpG islands compared with the surrounding
regions [19-21]. This is likely due to the fact that the
regulatory and coding parts of the genome are under
much more stringent control than intergenic and non-
coding DNA regions [22]. Similarly, epigenetic drift has
been observed more frequently in parts of the human
interactome that display lower connectivity and central-
ity [23]. From an evolutionary perspective, some degree
of epigenetic variability may be advantageous; such
fluctuations would vyield higher phenotypic variability
and increase fitness in changing environments [24, 25].

While age-dependent epigenetic variation can increase
significantly, changes in the group mean values of DNA
methylation can be subtle. For example, a study found
that older twins (>74 years) showed a significantly higher
standard deviation in their measure of global DNA
methylation compared with younger twins (<30 years
old, 1.5-fold; p =2.3 x107°), although absolute mean
difference was only 0.4 % (p =0.03) between the two
groups [17]. In another study, global analysis of
DNA methylation patterns found a gradual depletion
of modified cytosines in mammalian cells with age
[26]. While these findings have been validated in
other studies [27, 28], more subtleties have also
emerged. Age-dependent changes in DNA methyla-
tion appear to drift in both directions; methylation
tends to decrease in repetitive elements [17, 27] but
increase in CpG islands of many key developmental
genes [29-31].

There is experimental evidence suggesting that epi-
genetic fluctuations may stop diverging in very old
individuals. In twin studies, variation in global gen-
ome methylation increased gradually until 75 years of
age but showed a decreasing trend in the oldest twin
group (76-88 years) [17]. Likewise, methylation pat-
terns of distant CpGs (1-5 kb) become more similar
in older individuals (Figure S6 of [32]). In addition, it
was shown that boundaries of topologically associated
domains start degrading in senescent cells [33], which
is also consistent with a loss of epigenetic complexity.

Our study is dedicated to the analysis of this intri-
guing, but yet unexplored, phenomenon of putative
epigenetic convergence in aging cells and organisms.
Since the techniques used for epigenomic DNA studies
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did not differentiate methylated cytosines from the more
recently discovered hydroxymethylated, carboxylated,
and formylated cytosines, a general term, DNA modifi-
cation, will be used in this article. In this regard, we have
re-analyzed publically available DNA modification and
transcriptomic datasets with subjects across various ages.
We have also performed DNA modification profiling of
post-mortem brain tissues and a separate set of buccal
epithelium samples, from MZ and DZ twins discordant
for diagnosis or differing in age of onset of Alzheimer’s
disease, to investigate the impact of neurodegenerative
disease on epigenetic assimilation.

Results

The dynamics of DNA modification and transcription in
aging brain

We examined publically available datasets of DNA
modification and the transcriptomes in the cerebral
cortex and the cerebellum from the North American
Brain Expression Consortium: DNA Methylation and
the North American Brain Expression Consortium
and UK Human Brain Expression Database datasets
(Additional file 1: Table S1).

First, we looked for the presence of age-dependent
epigenetic drift using the bisulfite conversion-based
[lumina 27 K microarray dataset. We tested to see if
DNA modification variance increases with age by exam-
ining age-dependent heteroscedasticity, which refers to a
subset of samples exhibiting different degrees of variabil-
ity [34]. About 30 % of probes exhibited significant
changes in variance with age in both the cerebral cortex
and the cerebellum (2708 and 3064 of 10,630 normalized
CpG probes, respectively; Harrison—McCabe test, false
discovery rate (FDR) q<0.05). Approximately 90 % of
the heteroscedastic loci showed increasing variance with
age (2399 of 2708 probes in the cortex; 2822 of 3064
probes in the cerebellum), consistent with previous
studies of epigenetic drift showing diverging DNA
modification patterns with age.

Multiple pair-wise intraclass correlations (ICC) were
used as an estimate of age-dependent epigenetic assimi-
lation in the individuals older than 75 years, the age at
which the incidence of dementia increases significantly
[35]. We selected for probes that showed age-dependent
increase or decrease of DNA modification (FDR cor-
rected linear regression q < 0.05) within the top 10 % of
the most variable probes, as measured by the coefficient
of median absolute deviation, in the cerebral cortex and
cerebellum (345 and 291 of 10,630 normalized CpG
probes, respectively). The selected probes represented
independent genes (rather than being clustered around a
few selected genes), with an exception of a single
gene (BRAP), which was represented by two probes
in the cerebellum.
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The cortex showed significantly higher ICCs in the
older individuals (>75 years; N = 85) compared with the
permuted null distribution of ICCs that was generated
by randomly subsampling 85 individuals from all
samples (N =348) across all ages (mean ICC + standard
deviation (SD) 0.51 £0.24 and 0.42 + 0.02, respectively;
permuted p =7 x 107 (note that permutation usually in-
volves relabeling of samples; however, random sampling
of individuals equal to the sample size of the older
individuals is, in effect, the same as relabeling the age of
the samples and, therefore, we will refer to this method
as permutation henceforth) (Fig. 1la). Similarly, signifi-
cant differences were also detected in the cerebella of
the older individuals (>75 years; N=282) compared
with the permuted data derived from 324 individuals
(mean ICC+SD 0.37£0.29 and 0.30 £ 0.02, respect-
ively; permuted p =9 x10™% Fig. 1b). Consistent with
these findings, a large proportion of the probes
selected for the analysis showed significantly lower
variance in the older individuals compared with the
younger (<75 vyears) individuals in both the cortex
and the cerebellum (60.0 % and 52.9 % of the selected
probes, respectively, in comparison with 5 % expected by
chance; Additional file 2: Figure Sla, b).
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Fig. 1 ICC analysis of DNA madification and gene transcription within
the cerebral cortex and the cerebellum. The histograms represent the
densities of the permuted mean ICC coefficients from samples of all
ages and the red dashed lines show the mean ICC in the older
individuals (>75 years). a Mean ICC of DNA modification in the cerebral
cortex of older individuals (permuted p =7 x 107%). b Mean ICC of DNA
modification in the cerebellum of older individuals (permuted
p=9x10"%. ¢ Mean ICC of the transcriptome in the cerebral
cortex of older individuals (permuted p=5x1 ). d Mean ICC
of the transcriptome in the cerebellum of older individuals
(permuted p < 107°)
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Next, we used the brain transcriptomic dataset to de-
termine if the age dynamics are similar to the one ob-
served in the DNA modification analysis. We selected
the top 10 % of the most variable mRNAs within the
cerebral cortex and the cerebellum (4880 of 48,803 nor-
malized mRNA transcripts). Consistent with the epige-
nomic findings, we observed higher ICCs within the
cortex tissues of older individuals (>75 years; N = 94) in
comparison with the permuted data derived from 445
individuals (mean ICC +SD 0.68 +0.14 and 0.61 +0.01,
respectively; permuted p=5x107% Fig. 1c). Likewise,
the cerebellum samples showed higher ICCs within the
older group (>75 years; N =97) in comparison with the
permuted data derived from 454 individuals (mean
ICC+SD 0.65+0.16 and 0.56 +0.02, respectively;
permuted p < 107% Fig. 1d). Again, the probes selected
for the ICC analysis showed significantly lower vari-
ance in the older samples compared with the younger
cohort (<75 years) in both the cortex and the cerebel-
lum (405 % and 47.6 % of the selected probes,
respectively, in comparison with 5 % expected by
chance; Additional file 2: Figure Slc, d).

Finally, we examined cortex—cerebellum DNA modifi-
cation differences for possible diminished brain regional
specificity. To explore this, we selected 112 probes that
were commonly represented in both the cortex and the
cerebellum analyses and performed multiple pair-wise
ICC between the cerebral cortex and the cerebellum.
The older brains (>75 years; N =85 cortex and N =82
cerebellum samples) showed significantly higher cortex—
cerebellum similarity compared with the permuted data
from the cortex (subsampling N =85 of 348) and the
cerebellum (subsampling N =82 of 324) tissues (mean
ICC+SD 0.36+0.32 and 0.21+0.02, respectively;
permuted p <107% Fig. 2a). Similar analysis performed
on 2661 mRNA transcripts, using the same criteria as
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Fig. 2 Loss of tissue-specific DNA modification and gene transcription

patterns in the aging brain. The histograms represent the densities of

the permuted mean ICC coefficients between two different brain

regions (cerebral cortex and cerebellum) from samples of all ages:

a DNA modification (permuted p < 107 b transcriptome (permuted

p < 107°). The red dashed lines show the mean cortex—cerebellum ICCs

in the older individuals (>75 years)
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above, showed significantly higher cortex—cerebellum
similarity in the older brains (>75 years; N =94 from
cortex and N =97 from cerebellum) compared with the
permuted data derived from all samples consisting of
both tissue types (mean ICC+SD 0.61+0.16 and
0.53 + 0.01, respectively; permuted p < 10 Fig. 2b).

The dynamics of DNA modification in Alzheimer’s disease
Following the evidence that aging is associated with epi-
genetic brain assimilation and regional dedifferentiation,
we explored these phenomena in Alzheimer’s disease
(AD), a disease for which old age is the primary risk fac-
tor [36]. Briefly, we performed epigenome-wide DNA
modification profiling of brain samples collected from
two monozygotic (MZ) twin sets and two dizygotic (DZ)
twin sets (N =8 individuals in total) who were partici-
pants in the Duke Twins Study of Memory in Aging and
the National Academy of Sciences-National Research
Council (NAS-NRC) Registry of World War II veteran
male twins [37]. All co-twins exhibited differential age of
AD onset. The earlier age of onset (EAO) twins were
diagnosed with AD at 64.2 + 5.7 years (mean + SD) while
the later age of onset (LAO) co-twins were diagnosed at
70.5 £ 6.5 years (mean difference in age of onset + SD =
6.3 + 8.6 years; Additional file 1: Table S1). We investi-
gated three brain samples from each twin set: frontal
cortex samples from both twins and one cerebellum
sample from one of the twins. The cerebellum samples
were matched for disease onset (i.e., two were LAO
and two were EAO). DNA modification profiles were
interrogated using the Human CpG island 12.1 K mi-
croarrays [38].

Locus-by-locus analysis identified 82 differentially
modified loci in the cortex of EAO twins compared with
their LAO co-twins (weighted #-test, nominal p < 0.05;
Additional file 3: Table S2). In comparison, cerebral cortex
versus cerebellum revealed 702 significant loci (weighted
t-test, nominal p < 0.05), which is consistent with previous
findings of major epigenetic differences between the
cerebral cortex and the cerebellum [39].

For the AD cortex—cerebellum dedifferentiation ana-
lysis, we selected the top 5 % of the most differentially
modified loci between the EAO and the LAO cortex
(226 of 4523 unique loci represented on the 12.1 K
microarray). EAO AD patients’ cortex (N =4) modifica-
tion profiles were more similar to the cerebellum in
comparison with the null distribution permuted by
random subsampling from eight LAO and EAO cortex
samples (mean pair-wise ICC+SD 0.48 +0.08 and
0.42 £ 0.03, respectively; permuted p = 0.014; Additional
file 4: Figure S2a). Conversely, the bottom 5 % (i.e., the
least differentially modified loci), which we used as a
negative control, revealed no cortex—cerebellum dif-
ference between the EAO and the permuted data
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(ICC+SD 0.40+0.18 and 0.40+0.02, respectively;
permuted p = 0.51; Additional file 4: Figure S2b).

We validated these findings using unsupervised hier-
archical clustering and bootstrapping, which resulted in
the LAO twins clustering together into one clade 95 %
of the time, while cerebellum and EAO twins were
grouped into a separate clade (Fig. 3a). These findings
argue that the earlier onset and longer duration of AD
may have accelerated the age-dependent epigenetic
dedifferentiation of the brain into a more primal
cerebellum-like state. Due to the small number of AD
samples, we could not perform ICC analysis separately
on cerebral cortex or cerebellum.

The same analysis was applied to the aforementioned
82 most differentially modified AD-onset associated loci
(nominal p <0.05). EAO AD patients’ modification pat-
terns were more similar to the cerebellum in comparison
with the AD cortices that were selected at random
(mean ICC+SD 0.50£0.06 and 0.41 +0.04, respect-
ively; permuted p <107 Additional file 4: Figure S2c;
Additional file 5: Figure S3a). Again, unsupervised
hierarchical clustering and bootstrapping resulted in
the EAO twins and the cerebellum clustering together
into one clade 98 % of the time (Fig. 3b).

The changes observed in the AD brain samples, and
perhaps in the aging brains in general [40], could be re-
lated to disproportional loss of neurons compared with
neuroglia observed in AD [41]. To partially address this
issue, we investigated buccal epithelium samples of AD
twins. Both brain and buccal epithelium cells derive
from a common germinal epithelium (ectoderm), yet
buccal epithelial cells are far more homogenous in terms
of their cellular composition. We performed ICC-based
analyses of the buccal samples collected from 13 MZ

A B
©
0
wn
Se 5+
[5}
T i 2
= é ® 8
Yy A NI ey
N QQ
(oXe) < < <T
<<I3Y omoouoo *ngmmgom—'goo
- Q000 2z La o zof I
w

Fig. 3 Unsupervised hierarchical clustering of DNA modification in
the brains of EAO and LAO AD twins. a The red boxes indicate clades
with higher than 80 % bootstrapping probability. Clustering, using
the top 5 % of the most differentially modified loci, showed that
cerebellum (CB) and EAO cerebral cortex form a single clade 95 % of
the time while the cortex from the LAO co-twins are in a separate
clade 95 % of the time. b In the top 82 AD onset-associated loci, the
cerebral cortex of EAO twins and the cerebellum clustered into a
single clade 98 % of the time, while LAO co-twins separated into a
different clade 98 % of the time
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and DZ twin pairs from the Duke Twins Study of
Memory in Aging, who were discordant for AD at the
time of sample collection (mean duration of illness
for the affected twin at the time of collection + SD =
1.7 £ 1.6 years; for more details see Additional file 1:
Table S1). The top 5 % most differentially modified
loci between the AD twins and their co-twins showed
increased similarity amongst the AD twins (N =13)
from different pairs in comparison with the permuted
data, which were derived by randomly sampling from
26 affected and unaffected twins (mean ICC +SD
0.89 £ 0.05 versus 0.80+0.03, respectively; permuted
p=14x107% Additional file 4: Figure S2d). The bot-
tom 5 % (the least differentially modified loci as a
negative control) showed no difference between the
AD twins and their co-twins (mean ICC + SD 0.83 + 0.08
versus 0.83 +0.02, respectively; permuted p=0.43;
Additional file 4: Figure S2e). Using the 82 AD onset-
associated loci from the brain study, we found that
AD patients from unrelated twin pairs were ap-
proaching statistical significance in terms of similarity
to each other in comparison with a randomly selected
subset of samples (mean ICC +SD 0.87 +0.06 versus
0.83 £ 0.02, respectively; permuted p =0.07; Additional
file 4: Figure S2f; Additional file 5: Figure S3b). These
findings provide further evidence for age-associated
epigenetic assimilation and suggest that this may not
be limited to the brain but may also be present in other
tissues of ectodermic origin or perhaps organism-wide.

In summary, our findings suggest that aging may be
accompanied by loss of epigenetic uniqueness and tissue
dedifferentiation, which may be exacerbated in AD. This
implies that epigenetic drift, which leads to divergence
of epigenetic patterns across individuals, is not an indef-
inite process.

Gene Ontology enrichment in the aging brain and AD

To identify systematic aberrations of specific biological
processes, we performed Gene Ontology (GO) enrich-
ment analyses on all of the aging loci and the AD onset-
associated loci identified in the earlier analyses. In the
aging methylome, we found enrichment of terms such as
prostaglandin and prostanoid metabolic process, as well
as other lipid metabolic and biosynthesis processes, that
could be related to aging and AD (Additional file 6:
Table S3). Also enriched were neurodevelopment-related
terms, including regulation of neurogenesis and cell
projection organization. The transcriptome data showed
enrichment of terms related to immunity, such as posi-
tive regulation of immune system process and immune
response-regulating signaling pathway, which have also
been associated with the aging brain and AD, as well as
ontogenic terms like regulation of cell migration and
regulation of developmental process. Lastly, in the
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AD onset-associated loci, we found enrichment of
AD-relevant terms, such as regulation of caspase ac-
tivity and lipid metabolic process, amongst a number
of development related terms.

Evidence that DNA modification and transcriptomic
domains expand in the aging brain

Following the evidence that showed distant CpG methy-
lation may become more concordant with age [32], as
well as a loss of topologically associated domains while
gaining cross-boundary interactions in senescent cell
cultures [33], we investigated if domain boundaries
change in older human brains and buccal cells.

To examine the change in domain boundaries, we
estimated correlations between the loci of interest and
its nearest neighbors as organized by their chromosomal
coordinates in all previously tested datasets. A co-regulated
domain was defined as three or more transcripts or DNA
modification loci with consecutive Pearson’s correlation co-
efficient of 0.3 (generally accepted cutoff for weak positive
correlation) or greater between nearest neighboring probes.

We found larger DNA modification domain sizes in
the cortex samples from older individuals (>75 years;
N =85) compared with the permuted data derived
from 348 individuals (all comparisons represent the
mean number of interacting loci per domain + SD:
3.29 £ 0.64 and 3.20 + 0.04, respectively; permuted p =
0.01; Fig. 4a; Additional file 7: Figure S4a; Additional
file 8: Table S4). Similarly, the transcriptional domain
sizes were larger in the older cortex samples
(>75 years; N =94) compared with the permuted data
derived from 445 individuals (3.41 +0.79 and 3.35+
0.03, respectively; permuted p =0.01; Fig. 4b; Additional
file 7: Figure S4c; Additional file 8: Table S4). Further evi-
dence for loss of domain structure was also detected in
the AD twin brain samples. The EAO AD cortex samples
(N =4) demonstrated larger domains than the permuted
data (3.87+£1.39 and 3.70+0.06 genes, respectively;
permuted p =0.015; Additional file 7: Figure S4e), while
the LAO AD cortex (N = 4) samples showed no difference
(3.70 £ 1.10 versus 3.70 + 0.06 genes; permuted p = 0.51).

We did not find a significant deviation in DNA modi-
fication domain size in the cerebellum between the older
(>75 years; N =82) compared with the permuted data
derived from 324 individuals (3.27 + 0.61 and 3.22 + 0.05,
respectively; permuted p = 0.13; Additional file 7: Figure
S4b). Likewise, the transcriptomic domains did not
show a significant difference between the older cere-
bellum (>75 years; N =97) compared with the per-
muted data derived from 454 individuals (3.37 +0.79
and 3.37 + 0.03, respectively; permuted p = 0.55; Additional
file 7: Figure S4d). Inconsistent with the prediction, buccal
samples of AD twins (N =13) had smaller domains com-
pared with the permuted data of 26 samples (3.54 + 0.91
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and 3.72 + 0.10, respectively; permuted p = 0.04; Additional
file 7: Figure S4f).

Discussion

The current study provides evidence for a new molecu-
lar phenomenon in aging cells and tissues. Despite the
limited sample size and the sparse coverage of the DNA
modification microarray platforms used in this study, we
show that the uniqueness and specificity of DNA modifi-
cation and gene expression, on both the tissue and the
individual level, diminish with old age. Reduced inter-
tissue variation in older brains points to a potential loss
of molecular fidelity, or dedifferentiation, of brain re-
gions and this effect appears more pronounced in AD
patients. Inter-individual epigenetic assimilation was also
detected in buccal samples from individuals affected
with AD compared with their unaffected co-twins. We
also observed loss of boundaries and merging of neigh-
boring DNA modification and transcriptomic domains
in the cerebral cortex over time. It is likely that inter-
individual epigenetic assimilation and intra-individual
tissue dedifferentiation are two facets of the same
phenomenon, mediated by aging-related deterioration

of chromatin structure that compromises nuclear
organization and cellular identity.

The transition from epigenetic divergence to conver-
gence may be partially explained by the bimodality of
DNA modification in the human genome. Most CpGs
are heavily modified [42] and an imperfect replication of
DNA modification patterns during mitosis would lead to
gradual loss of modified cytosines over time. CpG
islands, on the other hand, are generally unmodified [43]
and epigenetic drift within the islands is likely to
accumulate modified cytosines, both drifting towards the
middle. Such DNA modification changes are unlikely to
occur in isolation and may also involve chromatin
changes. Consistent with Chandra et al. [33], we
detected increased domain size in the brains of older
individuals. The buccal samples, however, did not show
an increase in domain size. Although the cause of the
discrepancy is unclear, this could be related to the short
duration of illness by AD twins at the time of sample
collection or tissue-specific characteristics (i.e., rapidly
dividing buccal cells versus mitotically arrested neurons
and tissue-specific differences in DNA modification drift
with age [44]).
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Given that epigenetic assimilation was consistently
detected in the cerebral cortex, which contains a sub-
stantial proportion of neurons [45], loss of DNA modifi-
cation fidelity during replication is unlikely to be the
sole mechanism behind epigenetic drift. Studies have
shown that 5-hydroxymethylcytosine accounts for up to
40 % of modified cytosines in the brain [46, 47]. Active
demethylation via ten-eleven translocation (TET) en-
zymes and thymine DNA glycosylase (TDG) were shown
to play a critical role in epigenetic reprogramming of
cells [48—50]. Therefore, aberrations in the active DNA
demethylation and remethylation pathways may contrib-
ute to epigenetic drift and other age-dependent epigen-
etic changes in the brain.

Our DNA modification and transcriptomic studies
suggest that AD may be related to accelerated aging of
the brain. In fact, several studies have already shown that
plaques and tangles, marked features of AD, also form in
the normal aging brain but to a lesser extent [51]. It has
also been suggested that neurodegenerative diseases may
be caused by the loss of cellular maintenance over time
[52, 53], which is consistent with the compromised chro-
matin domain integrity observed in this study. In
addition to enrichment of disease-associated GO terms
in the AD samples, the aging brain also showed enrich-
ment of terms closely linked to AD, such as immune
response and lipid metabolic pathways (e.g., prostaglan-
dins; reviewed in [54]), which further corroborates the
connection between the two. We also observed enrich-
ment of terms related to developmental processes in all
samples, suggesting a possible link between tissue de-
differentiation and ontogeny. However, the weight of our
AD findings, especially in the brain study, is severely
limited by its small sample size and our preliminary
findings should be further explored in larger datasets.

The precise molecular origin and biological implica-
tions of age-dependent epigenetic assimilation and
dedifferentiation warrant further exploration. While the
increase in domain size, mediated by the compromised
integrity of domain boundaries, provides an elegant
explanation of the phenomenon, other alternatives have
to be considered. For instance, ascertainment bias may
simulate epigenetic assimilation. As excessive epigenetic
drift may predispose an individual to a fatal disease, such
as cancer, inter-individual similarity amongst the older
individuals could be due to the survivorship of less-
deviant individuals. Another explanation for molecular
assimilation in the brain can be age-dependent changes
in the proportion of glial cells to neurons. For instance,
senescent microglia can manifest an overactive immune
response that results in neurotoxicity in the aging brain,
causing changes in neuron to glia ratios, where glia
could become the dominant cell type sampled in older
brains (reviewed in [40]). Furthermore, if epigenetically
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diverse cells die faster than epigenetically more similar
cells, this could result in evidence for false similarity.

Currently, the best solution available to address the
cellular heterogeneity problem is either by flow sorting
the cells to neurons/glia prior to the experiment or to
use a computation algorithm built using sorted cells to
estimate the contribution from the two cellular fractions
[55]. However, DNA modification and transcriptomic
patterns vary significantly even within neurons [56] and
likely the same applies to glial cells. Therefore, separ-
ation of only neurons and glia, either experimentally or
computationally, may be insufficient to effectively differ-
entiate brain cellular effects from the genuine epigenetic
ones. In addition, the prediction made by the computa-
tional algorithm also depends on the quality of the data
(i.e, quality of tissue biopsy, microarray batch effect,
etc.), which adds another layer of complexity. Neverthe-
less, evidence for assimilation in buccal cells suggests
that our findings are not purely due to changes in cell
composition; though the confounding effects of cellular
composition should be explored in greater detail.

It has been proposed that stochastic epigenetic drift
may increase fitness in changing environments [24]. On
the other hand, epigenetic deviations may also cause or
predispose to a disease. Therefore, epigenetic drift in
aging may be closely tied to the concept of antagonistic
pleiotropy [57]; that is, a trait which increases fitness but
can become detrimental later in life [58]. In this connec-
tion, assimilation and dedifferentiation could be simply
viewed as an extension of this process. This could imply
that our observations are the result of a predestined
state of cells in the later stages of life that initially served
a physiological or an evolutionary function.

Conclusions

Our study shows that drift-mediated increase in inter-
individual variability may be finite. This phenomenon is
concurrent with an intra-individual, age-dependent
increase in similarity between the cortex and the
cerebellum. Similarly, though limited in sample size,
investigations using twin samples discordant for AD
corroborated instances of epigenetic assimilation and
dedifferentiation. However, these observations must be
approached with vigilance given the potential for ascer-
tainment bias and confounding cellular composition
changes that can occur with old age. Since such con-
founders are difficult to control in humans, dedicated
animal experiments investigating the late stages of life
are warranted to confirm our findings. Lastly, it is
pertinent to uncover the differences and similarities be-
tween developmental differentiation and age-dependent
dedifferentiation. This question is particularly important
for the concept of epigenetic rejuvenation [59]. It postu-
lates that if age-related epigenetic changes could be
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disentangled from developmental programming, reversal
of cellular senescence without altering cellular identity
may be possible. Under this model, it is assumed that
epigenetic factors determining the cell and tissue
specificity remain unchanged during aging. Our find-
ings, however, suggest that aging does affect cell-
specific epigenomes; therefore, cellular rejuvenation
may require re-establishing cellular identity.

Methods

Samples

We obtained post-mortem brain frontal cortex tissues
from two pairs of MZ twins and two pairs of DZ twins
with a diagnosis of AD, as well as cerebellum tissues
from one of each pair. The twins with earlier age of
onset were classified as earlier-onset (EAO) AD while
their co-twin, with later age of onset, was classified with
later-onset (LAO) AD. The mean age at onset and age at
collection for EAO twins were 64.2 5.7 years (mean +
SD) and 77.0 + 8.4 years, respectively, and 70.5 + 6.5 years
and 75.2 + 8.6 years, respectively, for the LAO co-twins.
We also obtained buccal samples from 13 MZ or DZ
twin pairs who are discordant for AD at the time of
sample collection (mean age at onset=77.8 + 2.1 years;
mean age at collection=79.2+1.9 years). All twins
were participants in the Duke Twins Study of Memory
in Aging.

The North American Brain Expression Consortium and
UK Human Brain Expression Database (Gene Expression
Omnibus (GEO) accession GSE36192) consisted of 911
cerebral cortex and cerebellum samples from age 0.42 to
102 with mean age (mean + SD) of 48.8 + 25.6 years. The
North American Brain Expression Consortium: DNA
Methylation (GEO accession GSE36194) had 724 cerebral
cortex and cerebellum samples between ages 0.42 and
102, with mean age of 48.4 + 27.7 years. More detailed
information on the samples can be found in Additional
file 1: Table S1.

Microarray experiment

Genomic DNA from twin brain cortex, cerebellum, and
buccal samples was extracted using standard proteinase
K digestion followed by phenol chloroform purification.
Microarray experiments were performed using a com-
mon reference design, where the unmethylated fraction
of genomic DNA for each individual is end-labeled with
Cy3 dye and subjected to hybridization at 42 °C for 16 h
against a common reference pool DNA labeled with Cy5
dye [60]. The labeled DNA was hybridized onto the
human CpG Island 12.1 K microarray [38], consisting of
12,192 clones representing CG-rich elements across the
genome. All microarray experiments were performed in
two technical replicates. Microarrays were scanned on
an Axon 4000b scanner using Genepix 6.0 software.
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Public gene expression/methylation microarray

We utilized a large gene expression microarray dataset
(N =911) from the North American Brain Expression
Consortium and UK Human Brain Expression Database
(GEO accession GSE36192; http://www.ncbinlm.nih.gov/
geo/query/acc.cgi?acc=GSE36192) and DNA modification
dataset (N =724) from the North American Brain
Expression Consortium: DNA Methylation (GEO acces-
sion GSE36194; http://www.ncbinlm.nih.gov/geo/query/
acc.cgi?acc=GSE36194). Cortex and cerebellum samples
were normalized separately using robust quantile
normalization and background corrected using Robust
Multiarray Average (RMA) background correction, using
the “preprocessCore” package for R [61]. Hierarchical
clustering was performed using all normalized expression
values and outliers (samples indicated as an outgroup in
the dendrogram) were removed from all analyses.
The methylation probes were further processed to
check for probes containing single-nucleotide poly-
morphisms (SNPs) with a minor allele frequency of
5 % that lie within 5 bp of the target CpG site. We
found that only 0.66 % of probes used in the analysis
met these criteria (SNP data from the Infinium HD
Methylation SNP List at the vendor’s website). Fi-
nally, the probes were trimmed to include the top
10 % of most variable loci within each tissue, as
measured by coefficient of median absolute devi-
ation, or the top 10 % of the most differentially
modified regions between the brain cortex and the
cerebellum.

Alzheimer’s disease microarray

The microarrays were normalized using loess and R
quantile normalization and background corrected using
normexp background correction in the “limma” package
in R [61-63]. Redundant microarray probes, as well as
probes containing repetitive sequences or probes that
cannot be mapped to a genomic coordinate, were re-
moved from all analyses; the total number of probes ana-
lyzed was 4523 (of 12,192) after trimming. Locus-by-locus
DNA modification changes between groups were com-
pared using limma F-test or weighted t-test (for two
groups) and subjected to correction for multiple testing by
the Benjamini—Hochberg FDR.

For the trimming of the AD dataset for the most vari-
able loci, we included the top 5 % of the most variable
loci, as measured by coefficient of median absolute
deviation, to account for reduced power due to smaller
sample size in comparison with the public datasets.

Intra-class correlation analyses and permutation

Intra-class correlation (ICC) was performed using the
“IRR” package in R [61]. More specifically, we used a
one-way model with row effects, where the nxm
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matrix has n probes and m subjects (ie., m=2 for Additional files
pairwise ICC). The ICC coefficient (R) was estimated
by: R = MSpes = MSyithin . where MSpe: is the mean Additional file 1: Table S1. Sample information. (PDF 40 kb)

MSper +  (m=1)MS,yisnin - " . R
betw biects, MS is th Additional file 2: Figure S1. Examples of data distribution for DNA
square between subjects, within 18 (€ mean square modification and transcriptome data in older (>75 years) and younger

within subjects, and m is the number of subjects. We (>75 years) individuals. Violin plots showing representative densities of
calculated the fraction of total variation of the n x m DNA modification (beta values) and probe signal intensities in

. . . transcriptome data for older and younger individuals for a given probe.
data points that is due to between rows. Unsuperv1sed One-tailed F-test was used to identify cases where older individuals had
hierarchical clustering/approximately unbiased boot- lower variance than the young (ie, F-test p < 0.05). a An example of a

strapping [64] was performed using the “pVCluSt" [65] DNA modification probe where the older individuals had significantly

. . lower variance than the younger individuals. b An example of a DNA
package in R [61]. LaStIY’ a permutation test was modification probe where older individuals did not show significantly
performed by randomly sampling (100,000-1,000,000 smaller variance compared with the younger individuals. ¢ An example
times) N samples (where N = the same number of of a transcript with smaller variance in older compared with younger
individuals as the number of individuals older than individuals. d An example of a transcript with non-significant

o difference of variance. (PDF 410 kb)
75 years) from a pOOl of all individuals to calculate Additional file 3: Table S2. List of significant loci (p < 0.05) in the

the mean ICC or domain size and generate the null cerebral cortex of twins different for AD age of onset. (PDF 73 kb)
distribution to which the actual mean ICC or domain size Additional file 4: Figure S2. Permuted null distribution of mean ICC in
was compared against. Gene Ontology (GO) enrichment AD twin samples. ICC densities of the permuted null from all samples

compared with the mean ICC in the indicated subset sample of interest
(red dashed line). a EAO cortex versus cerebellum using the top 5 % of
differentially modified loci (permuted p =0.014). b EAO cortex versus
cerebellum using the bottom 5 % of differentially modified loci (permuted
DNA modification and transcriptomic domain size p=051). ¢ EAO cortex versus cerebellum using the nominally significant
(p < 0.05) DNA modification loci (permuted p < 10°). d AD affected versus

was performed using GO-Elite [66].

analysis
Y o . . X X . unaffected co-twin buccal samples using the top 5 % of differentially
DNA modification and transcriptomic domain size modified loci (permuted p =14 x 107). e AD affected versus unaffected
analysis was performed by using pair-wise Pearson’s co-twin buccal samples using the bottom 5 % of differentially modified loci
correlation between the target region and its nearest (pgrmuted p=Q,43). f‘AD .affected Versus unaﬁectec‘i.co—‘twm byccal samples
. . . . using the nominally significant (p < 0.05) DNA modification loci from the
neighbors as defined by their chromosomal coordi- cortex (permuted p = 0.07). (PDF 441 kb)
nates. More specifically, the correlation coefficient Additional file 5: Figure S3. ICC of DNA modification for the 82
was calculated by comparing a list of values for a disease-specific differentially modified loci (p < 0.05). The Z-scores are
given probe (ie., probe %x with N data points, where norm.a\.ﬁzed ICC coeffi;ients, where positive Z—s;ores represent ICC
. g . . X coefficients that are higher than the mean, while negative Z-scores
N is the number of individuals in a group) to its show the opposite. Cumulative Z-scores for normalized ICC coeffi-
nearest neighboring probe from the same group of in- cients represent the following: 0 % includes none, 50 % includes half,
dividuals. A domain was defined as regions with a and 100 % includes all Z-scores. a Approximately 90 % of Z-scores
. . .. are positive in the comparison of the EAO AD cortex samples versus
consecutive correlation coefficient of 0.3 (generally cerebellum (CB) but only ~25 % of Z-scores are positive in the LAO
accepted cutoff for weak positive correlation) or versus cerebellum, indicating a more advanced state of dedifferentiation for
greater, involving more than three loci within each EAO AD cortices. LAO versus EAO slhow an even d|str|but\on..b Buccal cell
analysis showed that ~75 % AD twins, but only ~50 % of their healthy
chromosome. Sex chromosomes were excluded from co-twins, had higher than average similarity as measured by Z-scores of ICC.
the analysis. (PDF 123 kb)
Additional file 6: Table S3. Gene Ontology (GO) enrichment analysis of
the age and AD onset-associated probes. (XLS 54 kb)
Availability of supporting data Additional file 7: Figure S4. Permuted null distribution of mean domain
The datasets supporting the results of this article length. The histogram represents the densities of the permuted null
(Alzheimer’s disease dataset) are available in the GEO re- dIStHbU‘tIOﬂ frgm.all samples and the red Fjashed l/ﬁe is the mean domain
K K . R length in the indicated subset sample of interest (i.e, older individuals
pository (accession GSE61242; http:// WWW'anLnlmﬂlthV/ (>75 years), EAO cortex, or AD buccal cells). a Mean DNA modification
geo/query/acc,cgi?acczGSE61242), domain length of older individual in the cerebral cortex (permuted p=0.01).

b Mean DNA modification domain length of older individual in the
cerebellum (permuted p = 0.13). ¢ Mean domain length of older individual

. transcriptome in the cerebral cortex (permuted p =0.01). d Mean domain
Ethics statement length of older individual transcriptome in the cerebellum (permuted
All procedures were approved bY the Centre for p=0.51). e Mean domain length of the EAO cerebral cortex (permuted
Addiction and Mental Health Research Ethics Board p=0015). f Mean domain length of the AD-affected twin buccal samples
(175/2009) and the Duke Institutional Review Board (pi‘mured lp :IO‘O4)‘ (P;F 131 kb) | .

Additional file 8: Table S4. Raw correlation matrix of DNA

(Pr009011940, Pro00009028, ansl Pr000011934). 15\11 modification and transcriptome data for young, middle aged, and old
experiments were performed in accordance with individuals used for Fig. 4. (PDF 111 kb)
relevant guidelines, regulations, and the Declaration
of Helsinki. Informed consent was obtained from all Competing interests

participants or their legal representatives. The authors declare that they have no competing interests.
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