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Abstract

Background: Intratumoral heterogeneity hampers the success of marker-based anticancer treatment because
the targeted therapy may eliminate a specific subpopulation of tumor cells while leaving others unharmed.
Accordingly, a rational strategy minimizing survival of the drug-resistant subpopulation is essential to achieve
long-term therapeutic efficacy.

Results: Using single-cell RNA sequencing (RNA-seq), we examine the intratumoral heterogeneity of a pair
of primary renal cell carcinoma and its lung metastasis. Activation of drug target pathways demonstrates considerable
variability between the primary and metastatic sites, as well as among individual cancer cells within each site. Based
on the prediction of multiple drug target pathway activation, we derive a combinatorial regimen co-targeting two
mutually exclusive pathways for the metastatic cancer cells. This combinatorial strategy shows significant increase in
the treatment efficacy over monotherapy in the experimental validation using patient-derived xenograft platforms in
vitro and in vivo.

Conclusions: Our findings demonstrate the investigational application of single-cell RNA-seq in the design of
an anticancer regimen. The approach may overcome intratumoral heterogeneity which hampers the success
of precision medicine.
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Background
Clear cell renal cell carcinoma (ccRCC), the most
prevalent type of sporadic kidney cancer, is often asso-
ciated with malignant disease progression and poor
therapeutic outcomes [1]. A major underlying genetic
alteration in ccRCC is the von Hippel–Lindau (VHL)
tumor-suppressor gene, whose deregulation stimulates
an oncologic metabolic shift [2]. Signaling pathways
involved in this metabolic shift have been proposed
as potential therapeutic targets, including epidermal

growth factor receptor (EGFR) [3], vascular endothelial
growth factor (VEGFR) [4], or mammalian target of rapa-
mycin (mTOR) pathways [5]. Although targeting these
pathways significantly improved progression-free survival,
the outgrowth of drug-resistant clones reduced the clinical
efficacy and remains a clinical challenge that must be
overcome [1].
Approximately 30 % of patients with renal cell carcin-

oma (RCC) are diagnosed with metastases [6]. Metastatic
renal cell carcinoma (mRCC) evolves from primary RCC
(pRCC) and harbors multiple subpopulations with distinct
genomic [7, 8] and transcriptomic [9–11] features. Such
intratumoral heterogeneity (ITH) is augmented by spatio-
temporal tumor evolution [7, 8, 12]. The existence of
disparate admixtures of cancer cells across mRCC and
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pRCC typically leads to significant differences in their
sensitivity to therapies [13] and rare complete response
to targeted molecular agents [1]. Therefore, independ-
ent investigation of mRCC and pRCC tumor tissues is
essential to comprehend the intratumoral landscape
within a patient and ultimately to achieve sustainable
therapeutic benefit through a rational drug combin-
ation design. The magnitude of ITH in ccRCC has been
discerned in detail by recent approaches of sequencing
multiregional biopsied specimens [7, 8] or single cells
[14]. However, experimental applications of the ana-
lyzed ITH signature to effectively eradicate tumor cells
have not been extensively investigated.
Accurate identification of disease-causing sequence

variants and driving pathways is essential to minimize
drug resistance or tumor relapse with targeted therapeu-
tics [15]. Genomic mutations, however, may have limited
functional significance as druggable targets, according
to previous findings that drug responses can be widely
different even in genetically homogeneous cancer cell
lines [16, 17]. A systematic assessment from the Na-
tional Cancer Institute and the Dialogue on Reverse
Engineering Assessment and Methods (NCI-DREAM)
project has shown that gene expression profiling has
the best predictive power among independent profiling
platforms, with increasing power upon data integration
[18]. In the prediction of drug sensitivity in cancer cells,
transcriptome profiling can enhance our understanding
of how the cellular mechanism is functionally perturbed
in response to drug treatment [19]. Moreover, considering
that single targeting agents may eliminate a certain sub-
population of tumor cells while leaving others unharmed,
it is necessary to analyze the tumor transcriptome at high
resolution to detect drug-resistant clones that may be
concealed within ITH. Gene expression profiling at a
single-cell resolution may enable modeling of func-
tional heterogeneity and identification of subpopula-
tions with specific drug responsive signatures.
Here, we used single-cell RNA sequencing (scRNA-

seq) not only to elucidate transcriptional heterogeneity
during the metastatic progression, but also to design an
optimized combination of targeted agents against meta-
static RCC. On the basis of single-cell transcriptome
analysis, identification of cellular subpopulations with
distinct activation status of signaling pathways allowed
us to postulate a combinational therapeutic regimen with
an increased likelihood of covering all potentially target-
able cancer cells.

Results
Establishment of patient-derived xenografts from paired
pRCC and mRCC
The patient exhibited intrinsic refractoriness to sequential
conventional therapies, including pazopanib, everolimus,

and high-dose interleukin-2, resulting in rapid multiorgan
dissemination of cancer cells after pulmonary metaste-
ctomy (Fig. 1a). To verify the data-driven prediction
of putative therapeutic targets we used paired pRCC
and mRCC patient-derived xenografts (PDX) for RCC,
which enabled us to understand the ITH at the cellu-
lar level [20] with the benefits of recapitulating the
molecular, genetic, and histopathologic heterogeneity
of the parental tumors [21–23]. The parental tumors
and PDXs shared histopathologic characteristics, including
subtype-specific morphologic features and differentiation
status (Additional file 1: Figure S1A). The cancer cell frac-
tions were highly enriched in the PDX models (Additional
file 1: Figure S1B), as previously observed [24]. Although
there were discordant somatic single-nucleotide variants
(SSNVs) between parental tumors and PDX samples
(Additional file 1: Figure S1C) from whole-exome sequen-
cing (WES) analysis, genes that are frequently mutated in
ccRCCs [25] persisted in all tumor samples (Additional
file 1: Figure S1D). Copy number variations detected from
array comparative genomic hybridization (aCGH) analysis
in parental tumors were also preserved in PDX tumors
(Additional file 1: Figure S1E and F). Together, these data
indicate that human tumors from pRCC and mRCC were
propagated through xenograft engraftments with consist-
ent features of histopathology and genomic landscape.

Evolutionary genomic trajectories during tumor
progression and metastasis
In recognition of that genomic features were consistently
propagated with higher cancer cell fraction (~100 %)
through xenograft passaging (Additional file 1: Figure
S1), we investigated genomic architectures in the pRCC
and mRCC tumors from PDX samples to understand
the clonal evolution associated with the spatiotemporal
tumor progression. WES analysis of primary and paired
metastatic samples revealed that 23.5 % of SSNVs were
shared (Additional file 2: Figure S2A). In particular, a
VHL D121G mutation was found in both samples with
high allele frequencies (~1.0, Additional file 2: Figure
S2A and Additional file 3: Table S1), suggesting that it
might be a founder event in tumor evolution [7, 8]. Vari-
ant allele frequencies (VAF) of the shared SSNVs were
typically higher than those of SSNVs exclusively observed
in mRCC (38 %) or pRCC (38.6 %) (Additional file 2:
Figure S2A). Discordant SSNVs in mRCC and pRCC
might result from the gradual increase in point mutations
and clonal selection with tumor evolution, as previously
reported [7, 8]. In contrast, somatic copy number alter-
ations (SCNAs) in mRCC were similar to those in pRCC
(Additional file 2: Figure S2B), with 5q amplifications
detected only in pRCC (Additional file 2: Figure S2C).
Integrated analyses of WES and aCGH to infer evolution-
ary trajectories showed that major clones harboring driver
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mutations were shared at high cellular frequencies, whereas
minor subclones were enriched in mRCC (Additional file 4:
Figure S3A, B and Additional file 5: Table S2). Overall, the
RCC of our patient showed a complex non-linear branch-
ing clonal evolution (Additional file 4: Figure S3C) that
may become the basis of intratumoral diversity [7, 8, 12].
The genetic complexities might also result in molecular
and functional differences between pRCC and mRCC des-
pite their clonal origin, as previously reported [9–11].

Single-cell RNA sequencing and quality assessment for
expression profiling
To model the functional heterogeneity and to identify
specific subpopulations that are phenotypically relevant
to drug responses, we used scRNA-seq to profile single
cells from the parental mRCC and PDX mRCC and
pRCC (Fig. 1b and see “Methods”). After filtering out
poor-quality cells, a total of 116 tumor cells from
the parental mRCC (n = 34), PDX-mRCC (n = 36), and
PDX-pRCC (n = 46) were used in subsequent analyses
(Additional file 6: Figure S4 and Additional file 7: Table
S3). When compared to the normal kidney cortex, single
cancer cells had much more variable gene expression as
shown by the high coefficient of variation for averaged
gene expression (Additional file 8: Figure S5A). None-
theless, housekeeping genes, including glyceraldehyde

3-phosphate dehydrogenase (GAPDH) and beta-actin
(ACTB), were stably expressed across single cells with
low variation within (Additional file 8: Figure S5A) and
across (Additional file 8: Figure S5B) cell populations,
suggesting functional significance of the gene expres-
sion heterogeneity.
Compared to the normal kidney cortex, parental and

PDX cancer cells demonstrated low stromal and high
ccRCC gene expression signatures (Additional file 9:
Figure S6). Interestingly, the global expression profiles of
patient-mRCC and PDX-mRCC single-cell samples were
more closely related than those of PDX-pRCC samples
(Fig. 1c and Additional file 10: Figure S7). Principal com-
ponent analysis (PCA) across all samples showed three
distinctive main clusters (Fig. 1d); in addition to a cluster
of normal kidney cortex, a cluster of parental mRCC
cells and PDX samples were separated from a cluster of
PDX-pRCC samples. As identified in unsupervised clus-
tering of global expression across samples (Fig. 1c), we
found the averaged expression of single cells correlated
well with that of their bulk cell population samples
(Additional file 10: Figure S7B). Furthermore, multiple
regression analysis on the transcriptomes of different
sized pools of single cells to those of bulk cell popula-
tion samples showed better representation of the bulk
cell population with increasing number of single cells

A

C

B

D

Fig. 1 Profiling transcriptome of paired pRCC and mRCC at single-cell resolution. a Brief description of clinical course in a patient with metastatic
RCC. b Schematic of scRNA-seq experiments from establishment of the patient-derived xenograft model to discovery of targetable subpopulations.
c Hierarchical clustering heatmap and dendrogram based on inter-correlation of centroid global expression profiles across kidney cortex normal, bulk
cells of each population, and single cells using Euclidean distance metric and average linkage. d Principal component analysis (PCA) of single-cell-
resolved gene expression profiles based on the first two principal components. Ellipses represent 95 % confidence around each group
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(Additional file 10: Figure S7C). Similarly, in the PCA
plot, bulk cell population samples almost matched single
cells (Fig. 1d). As the quality assessments and unsuper-
vised clustering analyses demonstrate the reliability of our
data, we further explored the single-cell transcriptomes.

Metastatic and aggressive molecular signatures in mRCC
transcriptomes
Consistent with the previous observation that PDX cells
reflect their parental tumors with rare contamination of
normal stromal cells [24], we verified discrete global
expression profiles of single RCC cells compared with
normal kidney expression profiles (Fig. 1c, d, Additional
file 9: Figure S6, and Additional file 10: Figure S7). The
stromal signature of parental bulk mRCC was higher
than in other tumor samples (Additional file 9: Figure
S6A), concordant with genomic analysis showing a smaller
tumor portion in parental mRCC than PDX samples
(Additional file 4: Figure S3B). By comparison, single cells
from the parental mRCC all showed low stromal signa-
tures (Additional file 9: Figure S6A) and stably higher
ccRCC signatures (Additional file 9: Figure S6B), suggest-
ing selective capture of tumor cells from the bulk cell
populations. This might be explained by the experimental
approach of using large size (17–25 μm) microfluidic
chips to capture single cells based on the histopathologic
properties of the RCC tumor cells (Fuhrman Grade-III,
average cell size ~20 μm) [26] to reduce the likelihood of
capturing stromal cells.
We then sought to identify distinct molecular signa-

tures between mRCC and pRCC tumors. In recognition
of the critical role of epithelial–mesenchymal transition

(EMT) in promoting metastasis [27, 28], we first exam-
ined the “EMT-induced” signature. In the virtual space
of the PCA plot (Fig. 1d), the EMT-induced signature
was enriched both in patient-mRCC and PDX-mRCC
samples compared to PDX-pRCC samples (Additional
file 11: Figure S8A) with statistical significance (Additional
file 11: Figure S8B). Compared to the parental pRCC
tumor, mRCC samples also showed elevated metastatic
signatures (Fig. 2a and b). Because metastatic tumors tend
to have worse prognostic properties and poor survival
outcomes [29], we evaluated the “tumor aggressiveness”
using prognostic markers that classify patients according
to their survival rates [25]. Similar to the EMT-induced
signature, we observed worse prognostic marker expres-
sion in mRCC cells, suggestive of tumor aggressiveness
(Fig. 2c, d). From biological enrichment analysis with
differentially expressed genes between pRCC cells and
mRCC cells, Gene Ontology terms supporting tumor
aggressiveness, such as “regulation of cell proliferation,”
“regulation of cell death,” or “regulation of response to
stress,” were also enriched in mRCC cells (Additional file
12: Figure S9). Collectively, these results demonstrate
distinct gene expression properties of mRCC cells, with
enhanced metastatic and aggressiveness signatures com-
pared to pRCC cells.

Prediction of activation of drug target pathways and
sensitivity to drug responses
Distinct gene expression profiles in pRCC and mRCC
tumor cells suggest divergent tumor cell behavior, in-
cluding altered drug responses. Using predefined gene
sets involved in drug target pathways, we estimated the

A B C D

Fig. 2 Evaluation of expression signatures associated with metastatic RCC across single cells. a–d Gene set activation analysis for the metastatic
signature (a and b) and clear cell RCC prognostic signature (c and d). a, c Positions of each dot and ellipse in Fig. 1d were fixed, and then each
dot was colored (main panel) and indicated as drop lines (top and right panels) according to the estimated status for the given signatures. Gene
Set Variation Analysis (GSVA) scores were normalized to normal kidney tissue expression profiles. b, d Boxplots show overall reciprocal differences
in the expression signatures across normal kidney cortex, bulk cells of each population, and single cells. Boxes show 25th to 75th percentile with
10th and 90th percentile whiskers. *P <0.05, **P <0.01, ***P <0.001, two-tailed Student’s t-test
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relative activation status of the drug sensitivity signa-
tures across PDX-mRCC and PDX-pRCC cells. Many
drug target pathways were differentially regulated in the
two PDX tumor cell groups (Fig. 3a and Additional file
13: Figure S10), suggesting differential drug sensitivity.
We subsequently screened the PDX-mRCC and PDX-
pRCC cells with a panel of targeted agents (Fig. 3b and
Additional file 14: Table S4). In repeated measures
analysis for drug sensitivity, we observed nearly identical
measurements in duplicate with a high statistical power

(Additional file 15: Figure S11). PDX-mRCC cells showed
significantly higher expression of genes in the EGFR, Src,
and BRAF/MEK pathways compared to PDX-pRCC cells,
suggesting these pathways as mRCC-specific druggable
targets. The PDX-mRCC cells showed ample responses to
agents targeting EGFR (gefitinib, erlotinib, and afatinib),
Src (dasatinib), and BRAF/MEK (selumetinib), substanti-
ating the prediction. On the other hand, gene expression
and activation scores in c-Met and PI3K/AKT pathways
were significantly higher in PDX-pRCC cells. Concordantly,

B

A

EC D

Fig. 3 Identification of targetable signaling pathways by transcriptome profiling and drug screening. a Quantitative estimation of the activation
status of targetable signaling pathways across single cells. Boxplots demonstrate overall reciprocal differences in expression signatures across
normal kidney cortex, bulk cells of each population, and single cells. b Measured drug response profiles of pRCC and mRCC cells, matched to the
targetable signaling pathways. Sensitivities of cells to various targeted drugs were determined based on the half-maximal inhibitory concentration
(IC50), and transformed to Z-scores. Afatinib and dasatinib were selected as the most effective drugs against mRCC cells (denoted as *) whereas
everolimus and pazopanib (denoted as †) showed no effects, which is consistent with clinical findings. c–e Drug sensitivity was predicted by the
ridge regression model using a training set of publicly available cancer cell line expression data with each of the measured IC50 data. Estimated
values were transformed to Z-scores across samples. c Significant correlation of predicted drug sensitivity with measured sensitivity in b.
d Comparison of the predicted drug sensitivity of afatinib and dasatinib between populations. e For the selected drugs afatinib and dasatinib,
there was a significant correlation between predicted drug sensitivity (Z-scores) and activation status (GSVA scores) of the relevant targeted
pathways. c, e Linear regression was applied to estimate Pearson’s correlation coefficient (r), with 95 % confidence as shown by thicker light
gray curves. The statistical significance of the regression was determined by one-way ANOVA test. a, d Boxes show 25th to 75th percentile with
10th and 90th percentile whiskers. *P <0.05, **P <0.01, ***P <0.001, two-tailed Student’s t-test
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PDX-pRCC cells were more sensitive to agents target-
ing c-Met (tivantinib, foretinib, and crizotinib) and
PI3K (BKM120) than PDX-mRCC cells.
To refine the predictive power of signaling pathway

activation for drug sensitivity, we built a ridge regression
model [30] using public gene expression profiles and
drug sensitivity data as a training set [31]. For the PDX-
mRCC and pRCC bulk cell population samples, we found
strong positive correlations between predicted and mea-
sured drug sensitivity (Fig. 3c). Drug sensitivity was also
estimated in all single cancer cells and in normal kidney
cortex as a control; these data suggested afatinib and
dasatinib sensitivity of pRCC cells (Fig. 3d), similar to the
predicted and measured drug sensitivity of bulk cell popu-
lations (Fig. 3b). The prediction of drug sensitivity by the
ridge regression model was in agreement with the estima-
tion of drug target pathway activation across single cells
(Fig. 3e and Additional file 16: Figure S12). Interestingly,
pazopanib and everolimus, which showed no clinical
benefit in this patient (Fig. 1a), had minor effects on the
viability of PDX-pRCC and PDX-mRCC cells (Fig. 3b
and Additional file 17: Figure S13) and signaling path-
way activation for their targets mTOR and VEGFR also
remained low (Fig. 3a and Additional file 13: Figure
S10). Although drug sensitivity of cancer cells was pre-
dicted to be higher than that of normal kidney cortex
for all of the anticancer agents, the difference in pazo-
panib sensitivity was small (Additional file 16: Figure
S12A). Overall, drug sensitivity predictions showed
significant correlations with corresponding signaling
pathway activation (Additional file 16: Figure S12B).
We estimated the activation status of signaling path-
ways and drug sensitivity and demonstrated concordance
between the predicted signatures and the measured data.
These results suggest that molecular targeted therapies
can be designed on the basis of prediction signatures
obtained from RNA-seq.

Heterogeneity in drug response signatures within a
tumor
Dysregulation of EGFR [32–34] and Src/FAK [35, 36]
pathways plays a critical role in the tumorigenesis and
metastatic progression of RCCs. The anticancer agents
afatinib [37] and dasatinib [38, 39], targeting EGFR and
Src signaling, respectively, have shown efficacy in the
treatment of metastatic RCC. In drug sensitivity predic-
tion and screens, PDX-mRCC cells showed the highest
sensitivity to afatinib and dasatinib among the various
drugs tested (Fig. 3b). At the single-cell level, PDX-mRCC
showed extensive heterogeneity in the activation status of
the EGFR and Src pathways (Fig. 3a and Additional file
13: Figure S10). This heterogeneous cellular pattern en-
abled us to classify cells according to the binary activation
status of EGFR and Src signaling pathways (Fig. 4a), which

was corroborated by the drug sensitivity prediction (Fig. 4b
and Additional file 18: Figure S14). Notably, the classified
cellular fractions were similar between the parental mRCC
and PDX-mRCC (Fig. 4c), suggesting that heterogeneity in
drug sensitivities for the PDX model reflects that of the
parental tumor.
The heterogeneous drug sensitivity prediction for in-

dividual tumor cells suggests the presence of tumor
subpopulations with distinct signaling pathway activa-
tion and drug sensitivity. Based on the prediction re-
sults, we identified four mRCC subpopulations with
corresponding signaling pathway activation for EGFR
and Src pathways (both active, only EGFR active, only
Src active, both inactive; Fig. 4). Only a fraction of cells
(23.5 % in parental mRCC; 27.8 % in PDX-mRCC) with
activated status for both in EGFR and Src signaling
pathways were predicted to be sensitive to both afatinib
and dasatinib. A population with inactivated status in
both signaling pathways (14.7 % in parental mRCC;
13.9 % in PDX-mRCC) is unlikely to respond to afatinib
or dasatinib. The largest proportion of cells (61.8 % in
parental mRCC; 58.3 % in PDX-mRCC) had signaling
pathway activation in either of the two pathways, sug-
gesting a mutually exclusive response to the corre-
sponding drugs. This classification suggests that co-
targeting of EGFR and Src with a combination of afati-
nib and dasatinib would be an efficient therapeutic
strategy without redundancy and with additive antitu-
mor effects (Fig. 4e).

Evaluation of the single-cell analysis-driven therapeutic
strategy
Having recognized the existence of distinct subpopula-
tions with differential drug sensitivities, we tested the ef-
ficacy of co-targeting EGFR and Src signaling pathways
in PDX-mRCC cells. On the basis of transcriptome pro-
filing and high-throughput drug screening (Fig. 3), we
first measured the growth inhibitory effects of afatinib
and dasatinib (Fig. 5a) in a two-dimensional (2D) culture
system. Notably, compared to single drug treatment, the
combination therapy more effectively suppressed the
viability of mRCC cells (Fig. 5a). The efficiency of the
combinatorial drug treatment was also examined in the
spheroid formation model, which is a well-characterized
three-dimensional (3D) culture and screening model
with the advantages of simplicity, reproducibility, and
similarity to physiological tissues compared with other
methods involving extracellular matrix scaffolds and
hydrogel systems [40, 41]. Consistent with the results
obtained from the 2D system, we observed a superior
effect of the combination therapy in the 3D system
(Fig. 5b). Co-treatment with afatinib and dasatinib
caused complete abrogation of EGFR and Src activity
and more efficient inhibition of downstream AKT and
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ERK phosphorylation in PDX-mRCC cells than that
achieved by monotherapy (Fig. 5c).
Finally, we tested the in vivo performance of the

combinatorial drug treatment using the subcutaneous
xenograft model of mRCC. As single agents, afatinib
(20 mg/kg) or dasatinib (15 mg/kg) had modest inhibi-
tory effects on tumor growth (afatinib, 55 %; dasatinib,
40 %; Fig. 5d). Despite the partial treatment effect, the
tumor cells continued to grow and none of the tumor
xenografts showed complete response. In combination,
afatinib and dasatinib showed a significantly enhanced
antitumor effect, inhibiting tumor growth by 78 %
(Fig. 5d). Single-agent and combination treatment pro-
tocols were well tolerated by the mice, with no weight
loss or other signs of acute or delayed toxicity (Fig. 5e).
The drug effects were confirmed at the molecular level
by complete inhibition of AKT (Fig. 5f ) and ERK
(Fig. 5g) phosphorylation. Together, co-targeting function-
ally distinct subpopulations in mRCC PDX cells that were
identified by single-cell transcriptome analyses signifi-
cantly improved treatment outcomes in both in vitro and
in vivo investigational models.

Discussion
The evolution of multiple tumor subclones during tumor
progression and metastasis generates intratumoral het-
erogeneity, which plays a role in intrinsic and acquired
treatment resistance to molecular targeted therapies. In
mRCC, durable complete responses are rarely achieved
with conventional targeted molecular agents [1]. Further-
more, primary tumors and their corresponding metastases
frequently show significant differences in therapeutic re-
sponses [13], suggesting that biopsies should be taken
upon metastatic relapse for molecular profiling analysis to
inform selection of salvage therapies. To date, most
molecular profiling has been performed in the primary
tumors of RCC patients and therefore failed to recap-
itulate the metastatic population. To overcome such
clinical challenges, therapeutic strategies that efficiently
target heterogeneous tumor subpopulations in mRCC
must be developed.
In this report, we introduce scRNA-seq as a prom-

ising strategy that allows high-resolution analyses of
the intratumoral landscape for tumor transcriptomes
[42] and optimization of targeted treatment regimens

ED

A

B

C

Fig. 4 Dissection of single-cell subpopulations according to distinctive activation status of EGFR and Src pathways. a, b Single cells were manually
ordered by categorization into four groups according to their activation status as shown in e. a Heatmaps showing the relative (upper) and binary
(lower) activation status for EGFR and Src pathways in mRCC cells from parental and PDX tumors. b Predicted drug sensitivity of afatinib and
dasatinib matched to a. c Comparison of the fraction of categorized single cells between parental and PDX tumors. d Differences in the estimated
pathways with predicted drug sensitivity among the four classified groups. Boxes show 25th to 75th percentile with 10th and 90th percentile
whiskers. *P <0.05, **P <0.01, ***P <0.001, two-tailed Student’s t-test. e Strategic combination therapy using afatinib and dasatinib to target the
EGFR and Src signaling pathways, respectively
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against metastatic RCC. In our model case, we found
that mRCC diverged from pRCC both at genomic and
transcriptomic levels, manifesting distinctive genetic aber-
rations and drug target pathway activation. We combined
comprehensive single-cell analyses with high-throughput
drug screening in the PDX model and, based on these
data, suggested a combinatorial treatment regimen target-
ing both EGFR and Src as the most efficient therapeutic
option. In recognition of that drug responses are diverse
in the pathologically identical tumors and even in the
genetically homogeneous cancer cells [16, 17], profiling
tumor transcriptome at the single-cell resolution can
enable us to dissect inherent complex heterogeneous cell
populations and to discern which cell would be different
in drug responses affecting the ultimate outcomes that are

covered under stochastic averaged signals in the bulk cell
measurement. This strategy can be applied to other inves-
tigational models and eventually to patients with refrac-
tory cancer. Since higher engraftment rates are associated
with more clinically aggressive tumors such as metastatic
or treatment-refractory cases [43], surgically removed
metastases or biopsy metastasis samples might extend the
application of PDXs to advanced RCCs in terms of tech-
nical feasibility and unmet clinical needs.
Clonal genetic events in the metastases can be demon-

strated for restricted subclones of the primary tumor,
suggesting that only rare cells within the primary tumor
have the ability to metastasize [44]. The parallel progression
model proposes independent evolution of early dissemi-
nates in distant sites, eventually leading to significant

D E

H

I

GF

A B C

Fig. 5 Effective combinatorial strategy targeting heterogeneous subclones in mRCC. a, b Combined effects of afatinib and dasatinib on viability
of mRCC cells were analyzed 6 days after treatment under 2D non-adherent culture conditions a or 3D ECM scaffold culture system b. c Effects of
afatinib and dasatinib combination therapy on EGFR and Src downstream pathways were validated by immunoblotting. Cells were incubated with
0.5 μM afatinib and/or dasatinib for 1 h. GAPDH = loading control. Cells that were mock-treated with 0.5 μM DMSO served as negative controls.
Error bar = SEM (n = 3 for each group). **P <0.01, ***P <0.001. d–i Superior antitumor efficacy of combinations of afatinib and dasatinib in mRCC
subcutaneous xenografts. d Mice bearing mRCC tumors (=5 mice/group) were p.o. dosed with afatinib (each at 20 mg/kg) or i.p. administered
dasatinib (each at 15 mg/kg), either alone or in combination, on a daily dosing regimen for up to 15 days. Growth curves based on tumor volumes
are shown as the mean ± SEM for each time point. *P <0.05, **P <0.01. e Changes in body weight of mice treated with afatinib and/or dasatinib. Body
weight was measured on the indicated days. Data show mean ± SEM. Tumor tissues from each group were harvested on day 15 and subjected to
immunoblot analysis with the indicated antibodies to detect p-EGFR, p-Src, and p-AKT (f; GAPDH = loading control), or immunostained with anti-p-ERK
antibody g. Proliferation and apoptotic rates in each group were determined by Ki-67 immunostaining h and TUNEL assay i. Results are presented as
mean values ± SEM. *P <0.05, ***P <0.001. Scale bars = 100 μm
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divergence between the primary and metastatic tumors
[45]. However, it remains largely unknown whether
mRCCs also have initial ITH or whether the develop-
ment of mRCCs is due to early dissemination or late
diagnosis. Integrative analyses of PDXs derived from
pRCC and distant metastasis to the lung from a single
patient allowed us to infer which clonal and subclonal
alterations contributed to tumor progression and spread
to the metastatic lesion. The genetic differences between
the pRCC and mRCC suggest highly complex non-linear
branching clonal evolution as the basis for molecular
and functional diversity, consistent with previous stud-
ies [7, 8]. Moreover, key pathways that are targeted by
clinically available drugs showed distinct expression
patterns between pRCC and mRCC. Most driver aber-
rations and actionable driver mutations that have thera-
peutic implications were located on the branches,
suggesting that distinct intratumoral subclones had ac-
quired different functional characteristics [8]. The het-
erogeneity of metastatic cancer may underlie its poor
responsiveness to therapy and explain why biomarkers
of prognosis or therapy responsiveness measured exclu-
sively from primary tumors give a restricted view of the
biological properties of metastatic cancer [46].
Acquired resistance to therapy and disease progression

can be due in part to intrinsic heterogeneity, including
genetic, epigenetic, and biological properties of cancer
cells that contribute to oncogenic activity. Thus, instead
of single-agent therapy a rational approach that targets
multiple subpopulations of tumor cells with a combin-
ation of non-cross-resistant drugs characterized by differ-
ent mechanisms of action and non-overlapping profiles of
toxicity will be necessary for long-lasting inhibition of
highly heterogeneous mRCC [7, 8]. Knowledge of mo-
lecular alterations and features of tumors and the iden-
tification of mechanisms of tumor resistance provide
the opportunity to test novel rationally designed drug
combinations. Recent technological advances in single-
cell sequencing have facilitated the paradigm shift in
our understanding of the cancer ecosystem from the
averaged signal of a complex tumor mass to the sum of
distinctive signals in individual cells [42]. Unique cellu-
lar behaviors reflecting oncogenic signatures have been
extensively scrutinized by profiling transcriptomes from
individual cells in various types of cancers [24, 47–49].
In the light of the precedent approaches for deconvol-
ving heterogeneous cell populations and identifying
specific cell types that are generally masked in bulk cell
profiling, we could understand better the biologically
relevant composition of cancer cells and their functional
modulation within the tumor. Importantly, in this study
such dissected intratumoral landscape enabled us to elicit
the most effective drug combination of putting all the
potentially targetable cancer cells together to be killed.

Conclusion
Using scRNA-seq, we could examine the heterogeneous
drug target pathway activations at the single-cell level
in a refractory mRCC patient. Distinct features of intra-
tumoral expression variability across mRCC single cells
that were masked in the bulk measurement prompted
us to test the co-targeting strategy for the most vulner-
able two signaling pathways with increased likelihood
of complete response. Indeed, we observed significantly
better treatment effects of the targeted combination
therapy on mRCC-derived xenograft platforms in vitro
and in vivo than monotherapies. Our findings described
here will have a profound impact on translational re-
search to overcome ITH-derived resistance and avoid
ineffectual or unnecessary treatments. Although we
could not analyze clinical response to our combination
strategy because of rapid deterioration of the patient,
we stress the utility and validity of single-cell transcrip-
tome profiling in patients with refractory cancer for the
design of personalized therapeutic strategies. In summary,
the realization of the advantages in dissecting heteroge-
neous drug target pathway activations by scRNA-seq ana-
lysis will have significant clinical utility for the design of
tailored combination therapy against highly heterogeneous
tumors.

Methods
Ethics
This study was carried out in accordance with the princi-
ples of the Declaration of Helsinki, and was approved by
The Samsung Medical Center (Seoul, Korea) Institutional
Review Board (IRB) (no. 2010-04-004). Participants in this
study gave written informed consent for the research and
publication of the results. Animal experiments were con-
ducted in accordance with the Institute for Laboratory
Animal Research Guide for the Care and Use of Labora-
tory Animals and the following protocols were approved
by the IRB at the Samsung Medical Center (Seoul, Korea)
(No. 20131217002). Animal care and handling was con-
ducted in accordance with the National Institute of Health
Guide for the Care and Use of Laboratory Animals (NIH
publication no.80-23, revised 1978).

Sample selection and clinical characteristics of the patient
PDXs were established using surgically resected matched
pRCC (pT1Nx; Fuhrman Grade 3) and paired lung
metastasis from a 43-year-old man with ccRCC who
experienced solitary lung metastasis 1 year after radical
nephrectomy (IRB number 2010-04-004). He showed
signs of rapid tumor dissemination to the bone, lung,
pleura, and brain despite multiple salvage regimens, in-
cluding pazopanib, everolimus, and high-dose interleu-
kin (IL)-2, and finally died 16 months after complete
metastatectomy as a result of rapid tumor progression.
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Serial 5-μm sections from each formalin-fixed paraffin-
embedded block were processed for hematoxylin and
eosin (H&E) staining and examined by a specialized
pathologist.

Establishment of orthotopic PDXs
Athymic nude mice were obtained from Orient Bio
(Seoul, Korea). Fresh tumor tissue was obtained from
pRCC tissue of the patient by surgical excision under
sterile conditions and matched fresh tumor tissue was
taken from the mRCC. Each biopsied parental tumor
mass was chopped into fragments, and was frozen or
placed in formalin and embedded in paraffin for later
analyses. A blood pellet was used for extraction of germ-
line DNA. Fresh tumor tissue was stored on ice in
Hank’s Balanced Salt Solution (Gibco, Grand Island, NY,
USA) supplemented with penicillin/streptomycin (Gibco)
for transport. For transplantation, 6- to 8-week-old NOD
scid gamma mice were anesthetized with 100 mg/kg
ketamine and 10 mg/kg xylazine. Primary tumor and
paired lung metastasis samples minced into approximately
1-mm3 fragments in high-concentration Matrigel TM
Basement Membrane Matrix (BD Biosciences, Franklin
Lakes, NJ, USA) were directly implanted into the subrenal
capsule (n = 4–5 for each tumor sample). For subrenal
capsule implantation, xenograft tumor engraftment was
defined as a palpable mass of >1 mm in diameter with
pathologic confirmation. When the resulting tumors grew,
each tumor (F1 generation) was resected as the primary
tumor, divided, and passaged into five mice (F2 gener-
ation). The PDX tumors were harvested and divided into
three samples for generation of second in vivo passage
xenograft tumors, DNA/RNA extraction, and histo-
pathologic examination. The origin of each xenograft
was validated by short tandem repeat DNA fingerprint-
ing. The process was repeated to produce subsequent
generations via subcutaneous implantation in BALB/c
nude mice to expand xenograft numbers.

Whole-exome sequencing
We extracted genomic DNA from patient-derived tumor
samples using the QIAamp DNA Minikit (Qiagen, Hilden,
Germany) and from matched blood using the QIAamp
DNA Blood kit (Qiagen). Purified DNA was sheared to an
average size of 150 bp in a Covaris Adaptive Focused
Acoustics™ (AFA) sonication device (S2, Covaris, Inc.,
Woburn, MA, USA) and indexed with unique barcode
tags using PCR. Prepared libraries were assessed for
quality and quantity using a Qubit 2.0 Fluorometer
(Life Technologies, Carlsbad, CA, USA), 2100 Bioanaly-
zer (Agilent Inc., Palo Alto, CA, USA), and Mx3005P
qPCR (Agilent Technologies, Inc). Exomes were tar-
geted using the SureSelect XT Human All Exon V5 kit
(Agilent). Samples were multiplexed and flow-cell

clusters were created using the TruSeq Rapid Cluster
kit and TruSeq Rapid SBS kit (Illumina, San Diego, CA,
USA). Captured exomes were sequenced using the
Illumina HiSeq 2500 platform, and paired-end 100-bp
sequence data were generated. Sequencing reads that
only mapped to the mouse genome reference (mm10)
were filtered out.

Array comparative genomic hybridization
Purified DNA from patient-derived tumor samples was
labeled with Cy5-dUTP following the Agilent Oligo-
nucleotide Array-Based CGH for Genomic DNA Analysis
protocol (Ver-7.3, Agilent). Cy5-labeled DNA was quanti-
fied together with reference DNA samples labeled with
Cy3-dUTP to determine the DNA concentration using an
ND-1000 Spectrophotometer (NanoDrop, Wilmington,
DE, USA). Labeled test and reference samples were then
hybridized to SurePrint G3 Human CGH 4 × 180 K Mi-
croarrays (Agilent) according to the manufacturer’s stand-
ard protocol. The dual-colored fluorescence signals were
scanned using the Agilent Microarray Scanner and trans-
lated to log10 ratios using Feature Extraction software
(Ver-11.0.1.1, Agilent).

Identification of single-nucleotide variants and copy
number variants
Using the WES data, generated reads were aligned to
the human genome reference hg19 using the Burrows-
Wheeler Aligner [50] after removing duplicate reads,
followed by implementation of the data-processing
modules using the Genome Analysis Toolkit [51]. Som-
atic SNVs were identified by Bayesian statistical analysis
of bases and their qualities in the given tumor and
paired normal BAM files at the genomic locus using
the MuTect algorithm [52]. Called variants were reviewed
manually using the Integrative Genomic Viewer [53],
and considered only within chromosomes 1–22 and
X. Mutations were annotated using the SnpEff [54]
package.
Based on the CGH data, extracted signals were nor-

malized to log2 ratios using the limma package [55]. To
detect significant breakpoints across thousands of probe-
derived signals, we applied the circular binary segmenta-
tion (CBS) algorithm using the DNAcopy package [56].
After smoothing the data to detect outliers within
autosomal chromosomes, aberrant segments were de-
termined applying the significance level of 1.0E-04 to
accept change-points based on a maximum t-statistic.
We classified the segmented results into copy losses
when the log2 ratios were lower than −0.25 and copy
gains when these were greater than 0.25. Considering
sample-specific tumor purity and ploidy, somatic copy
number alterations (SCNA) were adjusted by implement-
ing the ABSOLUTE algorithm [57]. To compare the
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SCNA patterns across samples, segment values were aver-
aged with 1-kb binning along the chromosomes.

Clustering of genomic clones
To determine the subclonal structure between primary
RCC and paired lung metastasis, we adopted the
PyClone algorithm [58] that computes the cellular
prevalence of mutations and clusters these mutations
based on a hierarchical Bayes statistical model. Muta-
tional information, including somatic SNVs called from
the deep exomes and absolute copy-number changes
corresponding to SNV regions, was prepared for use
with PyClone. The cellular prevalence for each mutation
was estimated using a beta-binomial model by setting
the number of Markov chain Monte Carlo (MCMC) it-
erations to 100,000, with a burn-in of 50,000. The num-
ber of clusters was inferred based on the average linkage
hierarchical clustering in the post-burn-in trace by opti-
mizing the maximization of posterior expected adjusted
Rand index criterion.

Single-cell RNA sequencing and processing
scRNA-seq and data processing were carried out as
previously described [24]. Briefly, cells isolated from
human mRCC, PDX-mRCC, and paired PDX-pRCC
tumors were subjected to single-cell capture and
cDNA amplification using the C1™ Single-Cell Auto
Prep System (Fluidigm, South San Francisco, CA,
USA) with the SMARTer kit (Clontech, Mountain
View, CA, USA). RNA-seq reads for single cells and
bulk samples were generated using the HiSeq 2500 in
the 100-bp paired-end mode and reads that only
mapped to the mouse genome reference (mm10) were
subsequently removed. Filtered reads were aligned to
the human genome reference hg19 with the sample
specific-splice junction using the 2-pass mode of
STAR (Ver-2.4.0d) [59]. Transcripts per million
(TPM) was quantified using RSEM (Ver-1.2.18) [60].
To filter out poor quality cells, we applied the critea
of >1 M reads per cell, >60 % uniquely mapped rate,
>35 % exonic region coverage rate, and >5000 de-
tected genes. We considered TPM values greater than
1 to be reliable and only focused on genes that were
detected in more than 10 % of a group between
pRCC and paired lung metastasis. To identify differen-
tial and common expression signatures between pRCC
and paired lung metastasis single cells compared to
normal signals, we used expression profiles of normal
kidney cortex from the GTEx portal (http://www.gtex-
portal.org/home/; transcript read counts V3) by con-
verting to TPM values. Finally, we normalized sample-
to-sample variation by applying a mean centroid.

Estimation of activity for expression signatures and drug
sensitivities
To understand the relative activation status for a path-
way or signature across samples, we implemented the
GSVA algorithm [61] in RNA-seq data. GSVA scores
were estimated for given gene sets from the following
sources: stromal signature, extracted from the ESTIMATE
package [62]; ccRCC signature, taken from Jones et al.
[63]; EMT-induced signature, taken from Taube et al. [64];
metastatic signature, taken from Jones et al. [63]; prog-
nostic signature, taken from The Cancer Genome Atlas
Research Network for ccRCC [25]; EGFR signaling,
(Reactome, signaling by constitutively active EGFR); Src
signaling, extracted from Gatza M.L. et al. [65]; mTOR
signaling (Reactome, mTOR signaling); VEGFR signal-
ing (PID, signaling events mediated by VEGFR1 and
VEGFR2); RAF signaling, (Reactome, RAF activation);
MEK signaling, (Reactome, MEK activation); c-Met sig-
naling, (PID, signaling events mediated by c-Met); SCF-
KIT signaling, (Reactome, signaling by SCF-KIT); PI3K/
AKT signaling (Reactome, PI3K/AKT signaling in can-
cer); FGFR signaling (Reactome, signaling by FGFR);
PDGFR signaling (PID, PDGF receptor signaling net-
work). To evaluate whether an estimated gene set sig-
nature is significantly activated, we transformed the
observed GSVA scores to binary scores. Gene sets with
the same size as each original panel of genes were
randomly generated with permutation (×1000) and
computed for their GSVA scores. Assignment of the
original GSVA scores as “activated” was determined
with the cutoff values of averaged scores in the ran-
domly selected gene sets.
In addition to estimation of activity status for signaling

pathways, relevant targeting drug sensitivities were also
predicted from expression profiles. Following a previous
approach [30], cancer cell line expression data with
measured drug response data from the Cancer Genome
Project (CGP) [31] were used as a training set. After
adjusting two independent sets of our expression data
with the training set of solid tumor cell lines using
ComBat [66], a ridge regression model was fitted for the
training set with the given drugs that were simultan-
eously identified in our study. The lowest varying 20 %
of genes were filtered out to focus on biological variabil-
ity over technical variability. To evaluate the prediction
sensitivity, leave-one-out-cross-validation (LOOCV) was
applied with the total dataset. From this computation for
a total of 10 drugs (BIBW2992 [Afatinib], Dasatinib,
Gefitinib, Erlotinib, Temsirolimus, Pazopanib, Sunitinib,
Sorafenib, AZD6244 [Selumetinib], and PF-02341066
[Crizotinib]), our data were tested to predict drug sensi-
tivity and the distribution of estimates was transformed
to Z-scores by dividing the averaged drug sensitivity
estimates by the standard deviation for the difference.
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To determine the prediction accuracy of drug sensitivity
estimates with measured drug sensitivity from high-
throughput drug screening, nanomolar scaled IC50 values
were also transformed to Z-scores.

Functional network analysis
To identify discrete biological networks respectively
enriched in pRCC and mRCC cells, differentially expressed
genes (DEGs) were first defined with a criteria of the
Benjamini–Hochberg corrected FDR <0.01 and fold
changes of at least twofold. DEGs were separately ap-
plied to Gene Ontology (GO) category analysis using
the ClueGO [67] plug-in within the Cytoscape framework
[68]. The statistical significance for the over-represented
pathways in the GO Biological Process category was esti-
mated using Benjamini–Hochberg correction for multiple
testing-controlled P values. Significantly enriched terms
were functionally grouped based on kappa scores >0.3.

Primary in vitro short-term culture
Xenograft tumor specimens were dissociated into single
cells according to previously published protocols [69]. Dis-
sociated PDX cells were cultured in neurobasal media-A
supplemented with N2 (×1/2, Life Technologies, Carlsbad,
CA, USA), B27 (×1/2, Gibco), basic fibroblast growth
factor (20 ng/mL; R&D Systems, Minneapolis, MN, USA),
epidermal growth factor (EGF, 20 ng/mL; R&D Systems),
neuregulin 1 (10 ng/mL; R&D Systems), and insulin-like
growth factor 1 (100 ng/mL; R&D Systems) and contain-
ing 10 % conditioned medium (CM) from human mesen-
chymal stem cells (MSCs). To generate the CM, MSCs
were grown to 70 % confluency in plates with 10 % FBS
L-DMEM and allowed to adhere overnight at 37 °C and
5 % CO2. The following day, the medium was replaced
with serum-free culture medium and the cells were
cultured for 2 days. The used medium was collected
as MSC-CM, centrifuged to remove cell debris, and
passed through a 0.45-μm filter. CM aliquots were
frozen at −80 °C until use.

In vitro drug sensitivity assay
Primary RCC PDX cells cultured under serum-free
sphere culture conditions were seeded in 384-well plates
at 500 cells per well. Two hours after plating, the cells
were treated with a drug library in threefold and 10-
point serial dilution series (n = 3 for each condition).
After incubation at 37 °C in a 5 % CO2 humidified incu-
bator for 6 days, cell viability was analyzed using an
adenosine triphosphate monitoring system based on fire-
fly luciferase (ATPliteTM 1step, PerkinElmer, Waltham,
MA, USA). The drug library was composed of 20 tar-
geted agents that were included in the clinical guidelines
or in current clinical trials (gefitinib, erlotinib, lapatinib,
afatinib, tivantinib, foretinib, crizotinib, selumetinib,

temsirolimus, everolimus, cabozantinib, vandetanib, suniti-
nib, sorafenib, dovitinib, vemurafenib, BKM 120, pazopanib,
nintedanib, and DAPT; all purchased from Selleckchem,
Houston, TX, USA). The drugs were stored and diluted
according to the manufacturer’s instructions. Test con-
centrations for each drug were empirically derived to
produce a clinically relevant spectrum of drug activity.
Half-maximal (50 %) inhibitory concentration values
(IC50) were calculated as an average of triplicate experi-
ments using the S+ Chip Analyzer (Samsung Electro-
Mechanics Company, Ltd., Gyeonggi, Korea) [70].
For signal transduction assays under treatment with

the targeted agents, primary cultured PDX cells were
maintained overnight in serum-free sphere culture con-
ditions without growth factors, incubated for 1 h with
each inhibitor, and pulsed with original culture medium
supplemented for 15 min. For immunoblotting, cells
were lysed in RIPA lysis buffer supplemented with 1×
phosphatase inhibitors (PhosStop; Roche Diagnostics,
Basel, Switzerland) and a 1× protease inhibitor cocktail
(Complete Mini; Roche Diagnostics). After centrifuga-
tion at 10,000 × g for 5 min, the supernatant was har-
vested and protein concentration was determined using
a bicinchoninic acid protein assay kit (Thermo Scientific,
Waltham, MA, USA). Equal amounts of protein were
subjected to SDS-PAGE and transferred to polyvinylidene
difluoride membranes (Whatman plc, Little Chalfont,
UK). Membranes were blocked in 5 % skim milk or bovine
serum albumin for 1 h at room temperature, incubated
with the indicated primary antibodies overnight, and then
with the appropriate secondary antibodies. Antibodies
against p-EGFR (Tyr1068), p-Src (Tyr527), p-ERK, p-AKT
(Ser473) (all purchased from Cell Signaling Technology,
Danvers, MA, USA), and GAPDH (Santa Cruz Biotech-
nology, Santa Cruz, CA, USA) were used.

Preparation of microfluidic drug screening device
The microfluidic drug screening device was made of
polydimethylsiloxane (PDMS, Sylgard 184; Dow Corn-
ing, Corning, NY, USA) using a conventional softlitho-
graphy process with 200 micron high SU-8 patterned
silicon wafer (MicroChem, Westborough, MA, USA).
The fabricated device was sterilized and bonded onto a
cover glass to enclose the microchannels by oxygen
plasma treatment (Femto Science, Somerset, NJ, USA).
The device was then heated in an oven at 80 °C for 24 h
to allow the surface to recover its hydrophobicity. The
restored hydrophobicity of the microfluidic channel sur-
face helps the injected extracellular matrix (ECM) form
a stable interface with the side channels. In repeated
measures analysis for drug sensitivity, the identical experi-
mental condition was applied to the second measurement
in PDX-mRCC cells.
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Three-dimensional cell culture and drug treatment
Collagen type 1 (3 mg/mL, rat tail; Corning) was used
as an ECM scaffold to embed the cells. The collagen
solution was prepared at pH 7 and a concentration of
2 mg/mL. This solution was diluted in a mixture of 10×
phosphate-buffered saline (PBS; Gibco) and sterilized
deionized water. The pH was adjusted using 0.5 N NaOH.
Dissociated cells were suspended in the collagen solution
at a density of 0.5 × 106 cells/mL. The suspension was
injected into a center channel of the device and allowed to
gel by incubation at 37 °C and 5 % CO2 for 30 min. Details
of the device preparation and gel filling procedure have
been described previously [41]. To avoid cell attach-
ment to the microfluidic channel surface, the device
was inverted every 5 min. After gel formation, the side
channels were filled with medium containing each drug
candidate. The medium in the channel was refreshed
every 24 h.

Live/dead assay
Cell viability was quantified at 4 and 7 days of culture
using the Live/Dead Viability Assay Kit (Molecular
Probes, Invitrogen, Carlsbad, CA, USA) containing calcein
AM and ethidium homodimer to identify live (green) and
dead (red) cells, respectively. Cells in the microfluidic de-
vice were incubated at 37 °C with 5 % CO2 for 30 min,
and then the staining solution was replaced with PBS. The
cells were counted using ImageJ software (Image Process-
ing and Analysis in Java, NIH, Bethesda, MD, USA). Cell
viability was calculated as the number of live cells divided
by the total cell number. Normalized cell viability was
determined by dividing cell viability by the viability of cells
cultured in pure medium condition.

In vivo drug efficacy
BALB/c nude mice (female, 6–8 weeks old; Orient Bio)
were used for drug efficacy studies. Animal experiments
were conducted in accordance with the Institute for
Laboratory Animal Research Guide for the Care and
Use of Laboratory Animals and the following protocols
were approved by the IRB at Samsung Medical Center
(Seoul, Korea). Briefly, 2 × 105 dissociated PDX-mRCC
cells mixed 1:1 with Matrigel (BD Biosciences) were
inoculated subcutaneously into the right flank of each
mouse. Tumor diameters were measured with calipers
twice a week and tumor volume in mm3 was calculated
using the following formula: tumor volume = (l × w2)/2,
where l is the longest diameter of the tumor and w is
the shortest diameter of the tumor. Mice bearing estab-
lished tumors (100–150 mm3) were randomly allocated
to four groups (5 in each group): vehicle, afatinib at
20 mg/kg (p.o.), dasatinib 15 mg/kg (i.p.), or afatinib/
dasatinib combination on a daily dosing regimen for up
to 15 days. Mice in the four groups exhibited similar

average tumor volumes and body weight. Throughout
the study, the mice were weighed and tumor burden
was monitored every 3 days. Mean tumor volumes were
calculated, and growth curves were established as a
function of time. The error bars indicate the value of
the standard error of the mean (SEM). Tumors from
each group were collected at the end of the experiment
for further analysis.

Immunohistochemical and TUNEL staining
Tumors were embedded in paraffin, sectioned at 5 μm,
and stained with H&E. Paraffin-embedded tissue sections
were deparaffinized and rehydrated. For immunochemical
staining, heat-induced epitope retrieval was performed
using a target retrieval solution (Dako, Glostrup, Denmark)
for 5 min in a microwave. Slides were treated with 3 %
hydrogen peroxide for 10 min to inactivate endogenous
peroxidase and then blocked for 20 min at room
temperature (RT) in blocking solution (5 % normal horse
serum, 1 % normal goat serum, 0.1 % Triton-X 100 in 1×
PBS). After blocking, the slides were incubated with pri-
mary antibodies, including mouse monoclonal antibody
against p-ERK (Cell Signaling Technology) and human
Ki-67 (BD Pharmingen). After washing, the slides were
incubated with secondary antibodies for 1 h at RT, and
counterstained with hematoxylin (Sigma-Aldrich, St.
Louis, MO, USA). Apoptotic cells were identified by
histologic analysis of DNA fragmentation in paraffin
sections of the xenograft tumors. We performed ter-
minal deoxynucleotide transferase-mediated dUTP nick
end labeling (TUNEL) staining on the tumor sections
using the DeadEnd™ Colorimetric TUNEL System (Pro-
mega, Madison, WI, USA). The proliferative or apop-
totic index was calculated as a ratio of Ki-67-positive or
TUNEL-positive cell number to total cell number in
high-power (×400) fields.

Statistical analysis
All values are expressed as the mean ± SEM. Compar-
isons between two groups were analyzed by Student’s
t-test. One-way analysis of variance was applied for
comparisons between more than two groups and to
determine the statistical significance for the fitting
model in the linear regression of two components. All
P values were two-sided, and P <0.05 was considered
statistically significant. For discovery of differentially
expressed genes (DEGs) between pRCC and mRCC
cells, we applied the Benjamini–Hochberg correction
for multiple-testing. Statistically significant DEGs were
regarded using the cutoff of FDR <0.01 and fold-
change ≥2. Multiple regression analysis was applied to
evaluate the transcriptomic heterogeneity across single
cells, and to estimate the explanatory power of ran-
domly selected single cells (with the given number by
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permutation × 1000) attributed to the expression pro-
file of the bulk measurement by calculating the ad-
justed R-square. All data analyses were performed using
SPSS statistical software, version 19.0 (SPSS, Inc., Chicago,
IL, USA).

Data access
RNA sequence and aCGH data have been deposited in
the National Center for Biotechnology Information (NCBI)
Gene Expression Omnibus (GEO) under accession number
GSE73122. Whole-exome sequence data can be accessed
at the NCBI Sequence Read Archive (SRA) with accession
number SRP063388.

Additional files

Additional file 1: Figure S1. Histologic and genetic similarity between
parental tumor and PDX model. A Morphologic similarity between
parental tumors and matched xenografts by hematoxylin and eosin
(H&E) staining and bright-field observation for tumor tissues and PDX
cells, respectively. B Tumor purity and ploidy of the PDX and parental
tumors were computationally estimated using the ABSOLUTE algorithm.
C Somatic single-nucleotide variants (SSNVs) of the PDX and parental
tumors are compared in a Venn diagram. The number of SSNVs shared
by all four tumors is colored yellow. D Changes in cellular prevalence of
SSNVs are presented. SSNVs that were shared by all four tumors (n = 59)
are highlighted by yellow outlined circles and thick lines. Non-silent SSNVs
common in ccRCC (Additional file 2: Figure S2C) are denoted. E Somatic
copy number alterations (SCNAs) along the autosomal chromosomes
of the PDX and parental tumors were adjusted with estimated tumor
purity and ploidy and presented as heatmaps. The order of tumors was
determined by average linkage clustering in Euclidean distance similarity
metrics. Common SCNAs of ccRCCs are identified in Additional file 2:
Figure S2B. F Pearson correlation coefficients (r) of copy number profiles
between samples are presented. (PDF 2.57 mb)

Additional file 2: Figure S2. Comparative genetic profiles of paired
pRCC and mRCC. A Left, variant allele frequencies (VAF) of somatic
single-nucleotide variants (SSNVs) in pRCC and mRCC are presented as a
dot plot. Gray, orange, and blue represent shared, pRCC-exclusive, and
mRCC-exclusive SSNVs, respectively. Center, numbers of exclusive and
shared SSNVs are shown in a Venn diagram. Right, boxplots demonstrating
VAF distributions of exclusive and shared SSNVs of pRCC and mRCC.
Boxes show 25th to 75th percentile with 10th and 90th percentile
whiskers. Two-tailed Student’s t-test was applied to determine statistical
significance of differences in VAF distribution. For a full list, see Additional
file 3: Table S1. B Array comparative genomic hybridization (aCGH) copy
number profiles of pRCC and mRCC. Break points of CGH probes were
detected using the circular binary segmentation (CBS) algorithm. Regions
of differential copy number between pRCC (orange) and mRCC (blue) are
shadowed with arrows along the chromosomes. CBS-derived copy gains
(red) and losses (blue) were defined using a log2 ratio cutoff of positive
0.25 and negative 0.25, respectively. C Somatic copy number alterations
(SCNAs) and SSNVs of pRCC and mRCC were compared at the common
SCNA and SSNV sites of clear cell RCC (ccRCC). Filtering criteria for
SSNVs and SCNAs are indicated. Only non-silent SSNVs are annotated.
(PDF 484 kb)

Additional file 3: Table S1. Somatic mutations identified in tumor
samples from whole-exome sequencing. Single-nucleotide variants (SNVs)
were annotated by implementing SnpEff. Whole-exome sequencing data
of paired patient blood was used to identify somatic variants in parental
tumors and matched xenografts of pRCCs and mRCCs, which are shown
in separate sheets. (XLSX 218 kb)

Additional file 4: Figure S3. Clonal evolution of RCC during metastatic
spread to lung. Gaussian kernel density estimates were applied in a post-

burn-in of Markov Chain Monte Carlo (MCMC) traces in the PyClone
algorithm. A Total SSNVs are annotated using the official gene symbol
with chromosomal position and non-silent mutations are highlighted
in bold. Arrows indicate underlying driver mutations in Additional file 2:
Figure S2C. B Mean cellular prevalence of each SSNV (for full list, see
Additional file 5: Table S2). Dominant subclones harboring SSNVs with
higher cellular prevalence are ordered starting from the left. C Inferred
phylogenetic evolutionary pattern between pRCC and mRCC. Branch and
trunk lengths are proportional to the number of SSNVs. SSNVs and SCNAs
that were significantly observed in ccRCC TCGA data (Additional file 2:
Figure S2C) are denoted. (PDF 393 kb)

Additional file 5: Table S2. Estimated subclonal frequencies of
propagated somatic mutations in the evolutionary trajectory. Annotated
information corresponding to somatic single-nucleotide variants (SSNVs)
was taken from Additional file 3: Table S1. Mean cellular frequencies from
a post-burn-in of 50,000 chains of MCMC analysis in PyClone are shown
with subclonal information. (XLSX 15.3 kb)

Additional file 6: Figure S4. Performance assessment of single-cell
RNA-seq data. Histograms of A singlecell frequencies in the number of
generated RNA-seq reads per cell, B uniquely mapped reads, C exonic
regional coverage rate, and D detected number of genes per cell. Dashed
red lines indicate the mean of the x-axis values. Using filtering criteria of
>1 M reads per cell, >60 % uniquely mapped rate, >35 % exonic region
coverage rate, and >5000 detected genes, two single cells were not
included in subsequent analysis (for details, see Additional file 7:
Table S3). (PDF 345 kb)

Additional file 7: Table S3. Sequencing statistics for bulk cells and
single-cell RNA-seq. Mapping information (to the hg19 genome reference)
was obtained from log files after running STAR. RNA-SeQC was applied to
generate a series of quality control metrics. (XLSX 21.4 kb)

Additional file 8: Figure S5. Evaluation of the averaged expression
levels of genes with their variations across single-cell populations.
A, B Filtered genes expressed as log2 ratio of transcripts per million
(TPM) + 1 were averaged and their standard deviations calculated
across respective subgroups of single cells or the normal kidney
cortex A, and across mixed subgroups B. The coefficient of variation
(CV) is denoted and shown as the slope in the dotted gray line.
Selected housekeeping genes are highlighted in red with their gene
symbols. (PDF 1.45 mb)

Additional file 9: Figure S6. Expression signatures of tumor cells
compared to the normal kidney cortex. A, B Gene expressions of normal
kidney cortexes were downloaded from the GTEx portal (n = 8, Ver.3). To
identify outlier values in normal distribution, Z-scores were estimated and
are shown in radial and QQ-plots for gene sets of the stromal A and
ccRCC B signatures. (PDF 135 kb)

Additional file 10: Figure S7. Transcriptomic similarity between
primary tumor and PDX model. A, B Scatter plots show reciprocal
similarities of global gene expression between bulk samples A, and
between averaged single cells and bulk samples B. Black dotted line is
the x = y line with correlation coefficients (Pearson and Spearman r) for
linear fit. The x-y axes represent log2 ratio of TPM + 1. C Explanatory
power (adjusted R-square) of gene expression of single cells to those of
bulk cell population was estimated by multiple regression analysis with
a randomly selected given number of cells with permutation (×1000).
Boxes show 25th to 75th percentile with 10th and 90th percentile
whiskers. Median values within the boxes are represented as
diamond symbols and connected in lines between boxes. Dotted
vertical lines indicate the explanatory power with the total single
cells. (PDF 548 kb)

Additional file 11: Figure S8. Gene set activation analysis for the
epithelial epithelial-mesenchymal transition (EMT)-induced signature.
A Positions of each dot and ellipse in Fig. 1d were fixed, and then each
dot was colored (main panel) and indicated as drop lines (top and right
panels) according to the estimated activation status in the EMT-induced
signature. B Boxplots show overall reciprocal differences in the expression
signatures across normal kidney cortex, bulk cells of each population,
and single cells. Boxes show 25th to 75th percentile with 10th and 90th
percentile whiskers. ***P <0.001, two-tailed Student’s t-test. (PDF 124 kb)

Kim et al. Genome Biology  (2016) 17:80 Page 14 of 17

dx.doi.org/10.1186/s13059-016-0945-9
dx.doi.org/10.1186/s13059-016-0945-9
dx.doi.org/10.1186/s13059-016-0945-9
dx.doi.org/10.1186/s13059-016-0945-9
dx.doi.org/10.1186/s13059-016-0945-9
dx.doi.org/10.1186/s13059-016-0945-9
dx.doi.org/10.1186/s13059-016-0945-9
dx.doi.org/10.1186/s13059-016-0945-9
dx.doi.org/10.1186/s13059-016-0945-9
dx.doi.org/10.1186/s13059-016-0945-9
dx.doi.org/10.1186/s13059-016-0945-9


Additional file 12: Figure S9. Functionally grouped networks based on
analysis of differentially expressed genes between pRCC and mRCC cells.
A A volcano plot of gene expression (log2 ratio of TPM + 1) contrasting
pRCC cells (n = 46) versus mRCC cells (n = 36). The vertical dotted line
indicates the cutoff of the false discovery rate (FDR <0.01), which was
adjusted using the Benjamini–Hochberg correction for multiple-testing.
The horizontal dotted lines indicate the cutoff for a significant fold
change (≥twofold). Colors indicate significantly upregulated genes in
pRCC cells (red) or in mRCC cells (blue). B Visualization of enriched
biological networks with upregulated genes in pRCC cells (top) or in
mRCC cells (bottom) by ClueGO analysis with annotation of Gene
Ontology. Term enrichment significance is determined using two-sided
hypergeometric test with the Benjamini–Hochberg correction, and
represented by node size. Genes that are shared between two gene
ontology terms generate link lines. The most prominent gene ontology
term for each functional group is highlighted in a larger font size with
the text color identical to the relevant group. (PDF 1.63 mb)

Additional file 13: Figure S10. Activity of druggable pathways of pRCC
and mRCC cells in the PCA plot. The plots show heterogeneous activated
status of targetable signaling pathways at single-cell resolution (in the
scatter plot with colored dots) compared to bulk cells. Positions of each
dot and ellipses were derived from the PCA analysis in Fig. 1d. Colors
of dots (main panel) and drop lines (top and right panels) represent the
relative activation status of targetable signaling pathways. Gene Set
Variation Analysis (GSVA) scores were normalized to normal kidney tissue
expression profiles (shown in the upper heatmap). (PDF 316 kb)

Additional file 14: Table S4. Results of drug screening for pRCC and
mRCC tumors. Summarized list of drugs used in the screening and
calculated nanomolar values of IC50. For repeated measures analysis,
mRCC cells were tested twice. (PDF 94.2 kb)

Additional file 15: Figure S11. Repeated measurement of high-
throughput drug screening. The variance in the repeated measures
analysis for drug sensitivity was evaluated in PDX-mRCC cells with the
identical panel of drugs. The linear regression line (black) fitted on
measured IC50 in duplicate is represented with 95 % confidence intervals
(gray) over a theoretical regression line (white diagonal). The strength of
the linear regression and its statistical significance was determined by
Pearson’s correlation coefficient (r) and one-way ANOVA test, respectively.
(PDF 279 kb)

Additional file 16: Figure S12. Prediction of drug sensitivity across
single-cell populations. A Drug sensitivity was predicted by the ridge
regression model using a training set of publicly available cancer cell
line expression data with measured IC50 data for each drug. Estimated
values were transformed to Z-scores across samples. Boxes show 25th
to 75th percentile with 10th and 90th percentile whiskers. Differences
between groups were determined by two-tailed Student’s t-test. *P <0.05,
**P <0.01, ***P <0.001. B Correlation of drug sensitivity with the relevant
signaling pathways to be targeted. Uniform axis ranges were applied to
all plots: x-axis of GSVA scores, −0.5 to 0.5; y-axis of Z-scores, −3 to 2.
Linear regression was applied to estimate Pearson’s correlation coefficient
(r), with 95 % confidence as shown in thicker light gray curves. The
statistical significance of the regression was determined by one-way
ANOVA test. (PDF 1.33 mb)

Additional file 17: Figure S13. Recapitulation of poor response to
pazopanib and everolimus in the patient through in vitro drug efficacy
testing in 3D ECM scaffold system. In contrast to susceptibility to afatinib
or dasatinib at a dose concentration of 0.5 μM (Fig. 3d), we did not
detect significant anticancer activity of pazopanib or everolimus, even at
higher dose concentrations. Results are presented as mean values ± SEM.
(PDF 61.1 kb)

Additional file 18: Figure S14. Correlation of drug sensitivity with the
targeted pathways in classified subpopulations. The classified single-cell
subpopulations shown in Fig. 4 were evaluated for correlation between
drug sensitivity and the relevant signaling pathways to be targeted.
Uniform axis ranges were applied to all plots: x-axis of GSVA scores,
−0.5 to 0.5; y-axis of Z-scores, −3 to 2. Linear regression was applied to
estimate Pearson’s correlation coefficient (r), with 95 % confidence as
shown in thicker light gray curves. The statistical significance of the

regression was determined by one-way ANOVA test. Although the
absolute correlation coefficient (r) was mostly high across all comparisons,
some showed an insignificant correlation due to the small size of samples
involved in the statistical test, compared to the overall significant
correlation in unclassified single-cell populations (Fig. 3). (PDF 878 kb)
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