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Abstract

Next-generation sequencing has generated a need for a broadly applicable method to remove unwanted high-
abundance species prior to sequencing. We introduce DASH (Depletion of Abundant Sequences by Hybridization).
Sequencing libraries are 'DASHed" with recombinant Cas9 protein complexed with a library of guide RNAs targeting
unwanted species for cleavage, thus preventing them from consuming sequencing space. We demonstrate a more
than 99 % reduction of mitochondrial rRNA in Hela cells, and enrichment of pathogen sequences in patient
samples. We also demonstrate an application of DASH in cancer. This simple method can be adapted for any
sample type and increases sequencing yield without additional cost.
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Background

The challenge of extracting faint signals from abundant
noise in molecular diagnostics is a recurring theme
across a broad range of applications. In the case of RNA
sequencing (RNA-Seq) experiments specifically, there
may be several orders of magnitude difference between
the most abundant species and the least. This is espe-
cially true for metagenomic analyses of clinical samples
like cerebrospinal fluid (CSF), whose source material is
inherently limited [1], making enrichment or depletion
strategies impractical or impossible to employ prior to li-
brary construction. The presence of unwanted high-
abundance species, such as transcripts for the 12S and
16S mitochondrial ribosomal RNAs (rRNAs), effectively
increases the cost and decreases the sensitivity of
counting-based methodologies.
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The same issue affects other molecular clinical diag-
nostics. In cancer profiling, the fraction of the mutant
tumor-derived species may be vastly outnumbered by
wild-type species due to the abundance of immune cells
or the interspersed nature of some tumors throughout
normal tissue. This problem is profoundly exaggerated
in the case of cell-free DNA/RNA diagnostics, whether
from malignant [2, 3], transplant [4], or fetal sources [5,
6], and relies on brute force counting by either sequen-
cing or digital PCR (dPCR) [7] to yield a detectable sig-
nal. For these applications, a technique to deplete
specific unwanted sequences that is independent of sam-
ple preparation protocols and agnostic to measurement
technology is highly desired.

CRISPR (clustered regularly interspaced short palin-
dromic repeats) and Cas (CRISPR associated) nucleases,
such as Cas9, function in bacterial adaptive immune sys-
tems to remove incoming phage DNA from the host
without harm to the bacteria’s own genome. The
CRISPR-Cas9 system has attained widespread adoption
as a genome editing technique [8—11]. When coupled
with single guide RNAs (sgRNAs) designed against
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targets of interest, Streptococcus pyogenes Cas9 binds to
3’ NGG protospacer adjacent motif (PAM) sites and pro-
duces double-stranded breaks if the sgRNA successfully
hybridizes with the adjacent target sequence (Fig. 1a). In
vitro, Cas9 may be used to cut DNA directly, in a man-
ner analogous to a conventional restriction enzyme, ex-
cept that the target sequence (outside of the PAM site)
may be programmed at will and massively multiplexed
without significant off-target effects. This affords the
unique opportunity to target and prevent amplification
of undesired sequences, such as those that are generated
during next-generation sequencing (NGS) protocols.

In this paper, we have exploited the unique properties
of Cas9 to selectively deplete unwanted high-abundance
sequences from existing RNA-Seq libraries. We refer
to this approach as Depletion of Abundant Sequences
by Hybridization (DASH). Employing DASH after
transposon-mediated fragmentation but prior to the fol-
lowing amplification step (which relies on the presence of
adaptor sequences on both ends of the fragment) prevents
amplification of the targeted sequences, thus ensuring
they are not represented in the final sequencing library
(Fig. 1b). We show that this technique preserves the rep-
resentational integrity of the non-targeted sequences while
increasing overall sensitivity in cell line samples and hu-
man metagenomic patient samples. Further, we demon-
strate the utility of this system in the context of cancer
detection, in which depletion of wild-type sequences in-
creases the detection limit for oncogenic mutant se-
quences. The DASH technique may be used to deplete
specific unwanted sequences from existing [llumina se-
quencing libraries, PCR amplicon libraries, plasmid col-
lections, phage libraries, and virtually any other existing
collection of DNA species.

Existing specific sequence enrichment techniques —
such as pull-down methods [5, 12—14], amplicon-based
methods [3, 15], molecular inversion methods [16—18],
COLD-PCR [19], competitive allele-specific TagMan
PCR (castPCR) [20], and the classic method of using re-
striction enzyme digestion on mutant sites [21] — can
effectively enrich for targets in sequencing libraries, but
these are not useful for discovery of unknown or unpre-
dicted sequences. Brute force counting methods also
exist, such as dPCR [3, 7], but they are not easy to
multiplex across a large panel. While high-throughput
sequencing of select regions can be highly multiplexed
to detect rare and novel mutations, and barcoded unique
identifiers can overcome sequencing error noise [22], it
is costly since the vast majority of the sequencing reads
map to non-informative wild-type sequences. A number
of sequence-specific RNA depletion methods also cur-
rently exist. [llumina’s Ribo-Zero rRNA Removal Kit and
Ambion’s GLOBINclear Kit pull rRNAs and globin
mRNAs, respectively, out of total RNA samples using
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sequence-specific oligos conjugated to magnetic beads.
RNAse H-based methods, such as New England BioLab’s
NEBNext rRNA Depletion Kit similarly mark abundant
RNA species with sequence-specific DNA oligos, and
then subject them to degradation by RNAse H, which di-
gests RNA/DNA hybrid molecules [23]. These methods
are all employed prior to the start of library prep, and are
limited to samples containing at least 10 ng to 1 ug
of RNA. DASH, in contrast, depletes abundant spe-
cies after complementary DNA (cDNA) amplification,
and thus can be utilized for essentially any amount of
input sample.

Results

We demonstrate deletion of unwanted mitochondrial
rRNA using DASH first on HeLa cell line RNA (Fig. 2)
and then on CSF RNA from patients with pathogens in
their CSF (Fig. 3), in order to increase sequencing band-
width of useful data. Selection of rRNA sgRNA targets
was based on examining coverage plots for standard
RNA-Seq experiments on HeLa cells as well as on sev-
eral patient CSF samples. Coverage of the 12S and 16S
mitochondrial rRNA genes was consistently several or-
ders of magnitude higher than the rest of the mitochon-
drial and non-mitochondrial genes (Figs. 2c and 3). We
chose 54 sgRNA target sites within this high-coverage
region of the mitochondrial chromosome, situated ap-
proximately every 50 bp over a 2.5 kb region (sequences
listed in Additional file 1). sgRNA sites are indicated by
red arrowheads in Fig. 2b. sgRNAs for these sites were
generated as described in the "Materials and methods"
section.

To calculate the input ratio of Cas9 and sgRNA to
sample nucleic acid, we estimated that 90 % of each
sample was comprised of the rRNA regions that we tar-
geted; thus, our potential substrate makes up 4.5 ng of a
5 ng sample. This corresponds to a target site concentra-
tion of 13.8 nM in the 10 pL reaction volume. To assure
the most thorough Cas9 activity possible, and given that
Cas9 is a single-turnover enzyme in vitro [24], we used a
100-fold excess of Cas9 protein and a 1000-fold excess
of sgRNA relative to the target. Thus, each 10 uL sample
of cDNA generated from a CSF sample contained a final
concentration of 1.38 uM Cas9 protein and 13.8 uM
sgRNA. In the case of HeLa cDNA, we used only 1 ng
per sample, and therefore decreased the Cas9 and
sgRNA concentrations by fivefold. However, since mito-
chondrial rRNA sequences represented only approxi-
mately 60 % of the HeLa samples (compared with
approximately 90 % for CSF), the HeLa samples con-
tained 150-fold Cas9 and 1500-fold sgRNA. To examine
dose response, we processed additional 1 ng HeLa sam-
ples treated with 15-fold Cas9 and 150-fold sgRNA. Both
concentrations were done in triplicate (Additional file 2).
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Fig. 1 a S. pyogenes Cas9 protein binds specifically to DNA targets
that match the ‘NGG' protospacer adjacent motif (PAM) site.
Additional sequence specificity is conferred by a single guide RNA
(sgRNA) with a 20 nucleotide hybridization domain. DNA double
strand cleavage occurs three nucleotides upstream of the PAM site.
b Depletion of Abundant Sequences by Hybridization (DASH) is
used to target regions that are present at a disproportionately high
copy number in a given next-generation sequencing library following
tagmentation or flanking sequencing adaptor placement. Only
non-targeted regions that have intact adaptors on both ends of
the same molecule are subsequently amplified and represented in
the final sequencing library

Reduction of unwanted abundant sequences in HelLa
samples

We first demonstrate the utility and efficacy of our ap-
proach using sequencing libraries prepared from total
RNA extracted from HeLa cells. In the untreated sam-
ples, reads mapping to 12S and 16S mitochondrial rRNA
genes represent 61 % of all uniquely mapped human
reads. After DASH treatment, these sequences are re-
duced to only 0.055 % of those reads (Fig. 2a, b). Com-
parison of gene-specific fragments per kilobase of
transcript per million mapped reads (fpkm) values be-
tween treated and untreated samples reveals mean 82-
fold and 105-fold decreases in fpkm values for 12S and
16S rRNA, respectively, in the samples treated with 150-
fold Cas9 and 1500-fold sgRNA (Fig. 2c). Similarly, the
samples treated with 15-fold Cas9 and 150-fold sgRNA
show 30- and 45-fold reductions in 12S and 16S fpkm
values, respectively, indicating a dose-dependent response
to DASH treatment (Additional file 2).

Enrichment of non-targeted sequences and analysis of
off-target effects in HeLa samples

This profound depletion of abundant 12S and 16S tran-
scripts increases the available sequencing capacity for
the remaining, untargeted transcripts. We quantify this
increase by the slope of the regression line fit to the
remaining genes, showing a 2.38-fold enrichment in
fpkm values for all untreated transcripts. An R* coeffi-
cient of 0.979 for this regression line indicates strong
consistency between replicates with minimal off-target
effects (Fig. 2c¢).

To confirm that our depletion was specific to only the
targeted mitochondrial sequences, we calculated the
changes in fpkm values across all genes in the treated
and untreated samples and identified those genes that
were significantly diminished (>2 standard deviations)
relative to their control values. To overcome issues with
stochastic variation at low gene counts/fpkm, we elimi-
nated those genes that, between the three technical rep-
licates at each Cas9 concentration, showed standard
deviations in fpkm values greater than 50 % of the mean.
All of the genes meeting this criterion were present at
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Fig. 2 Depletion of Abundant Sequences by Hybridization (DASH)
targeting abundant mitochondrial ribosomal RNA in HelLa RNA
extractions. a Normalized coverage plots showing alignment to the
full-length human mitochondrial chromosome. Before treatment,
three distinct peaks representing the 125 and 16S ribosomal
subunits characteristically account for a large majority of the coverage
(>60 % of total mapped reads). After treatment, the peaks are virtually
eliminated — with 125 and 16S signatures reduced 1000-fold to 0.055 %
of mapped reads. b Coverage plot of Cas9-targeted region with 125 and
165 gene boundaries across the top. Each red arrowhead represents one
sgRNA target site. We chose 54 target sites, spaced approximately 50 bp
apart. ¢ Scatterplot of the log of fragments per kilobase of transcript
per million mapped reads (log-fpkm) values per human gene in the
control versus treated samples illustrate the significant reduction in
reads mapping to the targeted 125 and 16S genes. DASH treatment
results in 82- and 105-fold reductions in coverage for the 125 and
16S subunits, respectively. The slope of the regression line (red) fit
to the untargeted genes indicates a 2.38-fold enrichment in reads
mapped to untargeted transcripts. R-squared (R?) value of the regression
line (0.979) indicates minimal off-target depletion. Between replicates,
the R? coefficient between fokm values across all genes is 0.994,
indicating high reproducibility (three replicates). Notably, one gene,
MT-RNR2-L12 (MT-RNR2-like pseudogene), shows significant depletion
in the DASHed samples compared with the control

less than 15 fpkm. Of the remaining genes, only one
non-targeted human gene, MT-RNR2-L12, showed sig-
nificant depletion when compared with the un-treated
samples (Fig. 2c). MT-RNR2-L12 is a pseudogene and
shares over 90 % sequence identity with a portion of the
16S mitochondrial rRNA gene. Out of the 24 sgRNA
sites within the homologous region, 16 of them retain
intact PAM sites in MT-RNR2-L12. Of these, seven have
perfectly matching 20mer sgRNA target sites, and the
remaining nine each have between one and four muta-
tions (Additional file 3). Depletion of this gene is, there-
fore, an expected consequence of our sgRNA choices.

Reduction of unwanted abundant sequences in CSF
samples

We next tested the utility of our method when applied
to clinically relevant samples. In the case of pathogen
detection in patient samples, the microbial transcripts
are typically low in number and become greatly outnum-
bered by human host sequences. As a result, sequencing
depth must be drastically increased to confidently detect
such small minority sequence populations. We reasoned
that depletion of unwanted high-abundance sequences
from patient libraries could result in increased representa-
tion of pathogen-specific sequence reads. We thus inte-
grated the DASH method with our in-house metagenomic
deep sequencing diagnostic pipeline for patients with
meningeal inflammation (i.e., meningitis) or brain inflam-
mation (i.e., encephalitis) likely due to an infectious agent
or pathogen. Figure 3 and Table 1 summarize the results
of this analysis. In all three cases, the DASHed and un-
treated samples have a similar number of reads (1.8-3.4
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Fig. 3 Normalized coverage plots of DASH-treated (orange) and untreated (blue) libraries generated from patient cerebrospinal fluid (CSF) samples
with confirmed infections. Targeted mitochondrial rRNA genes (left) and representative genes for pathogen diagnosis (right) are depicted for the
following: patient 1, Balamuthia mandrillaris (a), patient 2, Cryptococcus neoformans (b), patient 3, Taenia solium (c). Across all cases, the DASH
technique significantly reduced the coverage of human 12S and 16S genes by an average of 7.5-fold while increasing the coverage depth for
pathogenic sequences by an average 5.9-fold. See Table 1 for relevant data

million), but DASHing reduces the number of duplicate
reads, indicating an increase in library complexity.

In the case of a patient with meningoencephalitis
whose CSF was previously shown to be infected with the
amoeba Balamuthia mandrillaris [25] (patient 1),

diagnosis was originally made by identification of a small
fraction (<0.1 %) of reads aligning to specific regions of
the B. mandrillaris 16S mitochondrial gene. After DASH
treatment, human mitochondrial 12S and 16S genes
were reduced by more than an order of magnitude, and

Table 1 Summary of depletion/enrichment results in DASH-treated clinical CSF samples

Pathogen Read count Targeted genes (fpkm)

Representative R* non-targeted

(percentage duplicates)

pathogenic gene®

125 165 (fold change) \g/)sgissl ;Qgiiit(’jed
Un-treated DASHed Un-treated  DASHed  Un-treated  DASHed  Un-treated  DASHed

B. mandrillaris 181 M (26 %) 254 M (15 %) 298922 28,005 380,073 93,164 0.028 % 0.102 % 0.992
(3.6X)

C neoformans 295 M (27 %) 343 M (11 %) 361,501 37,168 342,857 93,703 15 % 154 % 0.986
(10.3%)

T. solium 238M (33%)  1.89 M (30 %) 451,044 46,993 317,640 43,257 120 % 443 % 0.994
(3.7%)

2 Representative genes are 16S for Balamuthia mandrillaris and 18S for Cryptococcus

neoformans and Taenia solium
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sequencing coverage of the B. mandrillaris 16S fragment
increased 3.6-fold. Notably, B. mandrillaris is a eukaryotic
organism, yet depletion of the human 16S gene by DASH
did not have off-target effects on the 16S B. mandrillaris
mitochondrial gene. Similarly, patient CSF samples with
confirmed Cryptococcus neoformans (fungus; patient 2)
and Taenia solium (pork tapeworm; patient 3) infections
showed 2- and 3.9-fold increases in coverage of the 18S
genes of C. neoformans and T. solium, respectively, the de-
tection of which was crucial in the initial diagnoses. The
observed increases in relative signal can be translated into
either a sequencing cost savings or a higher sensitivity that
may be useful clinically for earlier detection of infections.

Reduction of wild-type background for detection of the
KRAS G12D (c.35G>A) mutation in human cancer samples
Specific driver mutations known to promote cancer evo-
lution and at times to make up the genetic definition of
malignant subtypes are important for diagnosis and tar-
geted therapeutics (i.e., precision medicine). In complex
samples isolated from biopsies or cell-free body fluids
such as plasma, wild-type DNA sequences often over-
whelm the signal from mutant DNA, making the applica-
tion of traditional Sanger sequencing challenging [2, 3, 26].
For NGS, detection of minority alleles requires additional
sequencing depth and therefore increases cost. We rea-
soned that the DASH technique could be applied to in-
crease mutation detection from a PCR amplicon derived
from a patient sample. We chose to focus on depletion of
the wild-type allele of KRAS at the glycine 12 position, a
hotspot of frequent driver mutations across a variety of
malignancies [27-29]. This is an ideal site for DASH be-
cause all codons encoding the wild-type glycine residue
contain a PAM site (NGG), while any mutation that alters
that residue (e.g., ¢.35G>A, p.G12D) ablates the PAM site
and is thus uncleavable by Cas9 (Fig. 4a). This will be true
of any mutation that changes a glycine (codons GGA,
GGC, GGG, and GGT) or a proline (codons CCA, CCC,
CCG, and CCT) to any other amino acid. Furthermore, it
is relevant to the ubiquitous C>T nucleotide change found
in germline mutations as well as somatic cancer mutations
[30]. Targeting of other mutations will likely be possible in
the near future with reengineered CRISPR nucleases or
those that come from alternative species and have different
PAM site specificities [31, 32].

The sequence of the sgRNA designed to target the
KRAS G12D PAM site is listed in Additional file 1, as is
the non-human sequence used for the negative control
sgRNA. Both were transcribed from a DNA template by
T7 RNA polymerase, purified, and complexed with Cas9
as described in the "Materials and methods" section.
Samples were prepared by mixing sheared genomic DNA
from a healthy individual (with wild-type KRAS genotype
confirmed with dPCR) and KRAS G12D genomic DNA to
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achieve mutant to wild-type allelic ratios of 1:10, 1:100,
and 1:1000, and 0:1. For each mixture, 25 ng of a DNA
was incubated with 25 nM Cas9 pre-complexed with 25
nM of sgRNA targeting KRAS G12D. This concentration
is high relative to the concentration of target molecules,
but empirically we found it to be the most efficient ratio.
We hypothesize that this may be due to non-cleaving
Cas9 interactions with the rest of the human genome [24],
which effectively reduce the Cas9 concentration at the
cleavage site.

Samples were subsequently heated to 95 °C for 15 min
in a thermocycler to deactivate Cas9 ("Materials and
methods"). Droplet digital PCR (ddPCR) was used to
count wild-type and mutant alleles using the primers
and TagMan probes depicted in Fig. 4a and described in
the "Materials and methods" section. All samples were
processed in triplicate. Samples incubated with or with-
out Cas9 complexed to a non-human sgRNA target
show the expected percentages of mutant allele: approxi-
mately 10 %, 1 %, and 0.1 % for the 1:10, 1:100, and
1:1000 initial mixtures respectively (Fig. 4b). With
addition of Cas9 targeted to KRAS, the wild-type allele
count drops nearly two orders of magnitude (purple bars
in Fig. 4b), while virtually no change is observed in num-
ber of mutant alleles (blue bars). This confirms the high
specificity of Cas9 for the NGG of the PAM site.

With the addition of DASH targeted to KRAS G12,
the percentage of mutant allele jumps from 10 % to 81
%, from 1 % to 30 %, and from 0.1 % to 6 % (Fig. 4c).
This corresponds to 8.1-fold, 30-fold and 60-fold repre-
sentational increases for the mutant allele, respectively.
As expected, there was virtually no detection of mutant
alleles in the wild-type-only samples both with and with-
out DASH treatment (one droplet in one of three no
DASH wild-type-only samples).

Discussion
In this paper we have introduced DASH, a technique
that leverages in vitro Cas9 ribonucleoprotein (RNP)
activity to deplete specific unwanted high-abundance se-
quences, which results in the enrichment of rare and less
abundant sequences in NGS libraries or amplicon pools.
While the procedure may be easily generalized, we de-
veloped DASH to address current limitations in metage-
nomic pathogen detection and discovery, where the
sequence abundance of an etiologic agent may be present
as a minuscule fraction of the total. For example, infec-
tious encephalitis is a syndrome caused by well over 100
pathogens ranging from viruses, fungi, bacteria and para-
sites. Because of the sheer number of diagnostic possibil-
ities and the typically low pathogen load present in CSF,
more than half of encephalitis patients never have an etio-
logic agent identified [33]. We have demonstrated that
NGS is a powerful tool for identifying infections, but as
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the B. mandrillaris meningoencephalitis case demon-
strates, the vast majority of sequence reads are “wasted”
re-sequencing high abundance human transcripts. In this
case, we have shown that DASH depletes with incredible
specificity the small number of human rRNA transcripts
that comprise the bulk of the NGS library, thereby lower-
ing the required sequencing depth to detect non-human
sequences and enriching the proportion of non-human
(Balamuthia) reads in the metagenomic dataset. In this
study, we have targeted mitochondrial rRNA species be-
cause we have consistently observed them to be the most
abundant sequences in these CSF-derived RNA samples.
For other types of tissues, alternative programming of
DASH for removal of nuclear rRNA species or essentially
any other abundant sequences would be warranted.

In the case of infectious agents, it is possible to dir-
ectly enrich rare sequences by hybridization to DNA mi-
croarrays [34] or beads [12]. However, these approaches
rely on sequence similarity between the target and the
probe and therefore may miss highly divergent or un-
anticipated species. Furthermore, the complexity and
cost of these approaches will continue to increase with
the known spectrum of possible agents or targets. In
contrast, the identity and abundance of unwanted se-
quences in most human tissues and sample types has
been well described in scores of previous transcriptome
profiling projects [23], and therefore optimized collec-
tions of sgRNAs for DASH depletion are likely to remain
stable.

A number of methods for depleting ribosomal RNA
from RNA-Seq libraries exist in the form of commercially
available kits. We assert that DASH is equally effective or
better than these methods on four metrics: (1) input re-
quirements, (2) performance, (3) programmability, and (4)
cost. These can be assessed based on information available
on company websites or in publications for three major
competing techniques: Illumina’s Ribo-Zero and Thermo
Fisher’s RiboMinus, which both use biotinylated capture
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probes for depletion; and New England Biolab’s NEBNext
rRNA depletion kit, which uses RNAse H for depletion.

Input requirements

[lumina recommends 1 pg of total RNA as input for
Ribo-Zero, but also has a low-input protocol requiring
only 100 ng [35]. ThermoFisher recommends 2—10 pg of
total RNA for its standard RiboMinus protocol [36], and
100 ng to 1 pg for its Low Input RiboMinus Eukaryote
System v.2 [37]. NEB recommends 10 ng to 1 pg total
RNA input for the NEBNext rRNA Depletion Kit [38].
The reason for these stringent amount requirements is
that these three methods all deplete samples at the RNA
stage. DASH, in contrast, avoids the need to delicately
manipulate the original sample. Instead, DASH is
employed after cDNA synthesis and library generation;
thus, it can be performed on any library, without regards
to starting total RNA amount, or the manner in which
the library was constructed (tagmentation or otherwise).
For scarce and precious samples, such as patient CSF,
often less than 10 ng of total cDNA is available even
after NuGEN Ovation amplification; prior to this work,
no commercial depletion method was available for these
samples.

Performance

All commercial rRNA depletion methods promise at
least 85 % reduction in reads of the sequences they tar-
get. Illumina states that the Ribo-Zero technique can
achieve between 85 % and >99 % reduction in the rRNA
sequences it targets [35]; RiboMinus states 95-98 % re-
duction [39]; and NEBNext states 95-99 % reduction
[38]. Adiconis et al. [23] compared several RNA-Seq
methods and reported on many metrics, including de-
pletion of rRNA sequences. Ribosomal RNA sequences
comprised 84.7 % of reads in their un-depleted sample
(100 ng total RNA from K-562 cells), while Ribo-Zero
reduced this to 11.3 % (an 86.7 % reduction), and RNAse
H reduced it to 0.1 % (a 99.9 % reduction). In this paper,
we show that DASH decreases the mitochondrial rRNA
reads in HeLa total RNA from 61 % to 0.055 % (99.9 %
reduction). Adiconis et al. obtained similar numbers
from 1 pg total RNA samples from formalin-fixed
paraffin-embedded (FFPE) kidney tissue (78.2 % and
99.9 % reduction for Ribo-Zero and RNAse H, respect-
ively) and pancreas tissue (73.0 % and 99.7 % reduction
for Ribo-Zero and RNAse H, respectively). This is com-
parable to DASH reduction in three patient CSF samples
(82.1 %, 81.4 % and 88.2 % reduction). However, it is im-
portant to note again that Adiconis et al. used 1 pg total
RNA from tissue samples, while the DASHed CSF sam-
ples consisted of only 5 ng of NuGEN Ovation-amplified
c¢DNA (total RNA content in the original CSF samples
was too low to accurately quantify).
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Another important measure of performance is mainten-
ance of relative abundances of non-targeted sequences,
such as the human transcriptome. Correlation coefficients
for samples with and without DASH treatment ranged
from R*=0.979 to 0.994 in this study (Fig. 2; Additional
file 4), slightly higher than those found by Adiconis et al.
for all methods [23].

Programmability

DASH can be adapted to target any sequence con-
taining a PAM site; construction of new sgRNAs is
facile and inexpensive (see "Materials and methods"
section). Because it is employed after sequencing
adapter addition, DASH’s utility is not limited to
RNA-Seq; it can be applied to any library type. Exam-
ples include ATAC-Seq libraries, in which desired nu-
clear DNA is contaminated with a significant amount
of mitochondrial DNA sequences, and microbiome
sequencing, where it may be desirable to eliminate a
particularly abundant species in order to better
sample the underlying diversity. Since Ribo-Zero,
RiboMinus and NEBNext are all proprietary kits, they
cannot easily be re-programmed by the user to target
other sites.

Cost

Based on current publicly available list prices of the
most economical kit sizes, the per-sample costs (in US
dollars) of the kits discussed here are $82.00 (Ribo-Zero
Gold Kit H/M/R) [35], $93.67 (RiboMinus Human/Mouse
Transcriptome Isolation Kit) [36] and $45.00 (NEBNext
rRNA Depletion Kit H/M/R) [38]. In contrast, we calcu-
late the cost of DASH at less than $4 per sample when
Cas9 and T7 RNA polymerase are made in-house — a
very sensible solution for labs that are already spending
large amounts of money on NGS. Where Cas9 production
is not possible, DASH can still be carried out using com-
mercially available Cas9 protein.

DASH may also enhance the detection of rare mutant
alleles that are important for liquid biopsy cancer diag-
nostics. Allelic depletion with DASH increases the signal
(oncogenic mutant allele) to noise (wild-type allele) by
more than 60-fold when studying the KRAS hotspot
mutant p.G12D. Other approaches for enriching low-
abundance mutations exist, such as restriction enzyme
digestion and COLD-PCR. However, these methods are
limited when large mutation panels are required. Here
we have described a single application for DASH in can-
cer, but the utility of this method will be fully realized by
multiplexing large panels of mutation sites, using guide
RNAs and PAM sites as a way to essentially create
programmable restriction enzymes that can be used in a
single pool. With the rapidly growing number of onco-
logic therapies that target particular cancer mutations,
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sensitive and non-invasive techniques for cancer allele
detection are increasingly relevant for optimizing patient
care [26]. These same techniques are also becoming in-
creasingly important for diagnosis of earlier stage (and
generally more curable) cancers as well as the detec-
tion of cancer recurrence without needing to re-biopsy
the patient [2, 14, 36—38].

The potential applications of DASH are manifold.
Currently, DASH can be customized to deplete any set
of defined PAM-adjacent sequences by designing spe-
cific libraries of sgRNAs. Given the popularity and
promise of CRISPR technologies, we anticipate the
adaptation and/or engineering of CRISPR-associated
nucleases with more diverse PAM sites [31, 32, 40]. A
portfolio of next-generation Cas9-like nucleases would
further enable DASH to deplete large and diverse num-
bers of arbitrarily selected alleles across the genome
without constraint. We envision that DASH will be im-
mediately useful for the development of non-invasive
diagnostic tools, with applications to low input samples
or cell-free DNA, RNA, or methylation targets in body
fluids [4, 6, 41-45].

Many other NGS applications could also benefit from
depletion of specific sequences, including hemoglobin
mRNA depletion for RNA-Seq of blood samples [46]
and tRNA depletion for ribosome profiling studies.
Depletion of pseudogenes or otherwise homologous
sequences by small but consistent differences in se-
quences is also theoretically possible, and may serve to
remove ambiguities in clinical high-throughput se-
quencing. Using DASH to enrich for minority varia-
tions in microbial samples may enable early discovery
of pathogen drug resistance. Similarly, the application
of DASH to the analysis of cell-free DNA may augment
our ability to detect early markers of drug resistance in
tumors [26].

Conclusions

Here, we have demonstrated the broad utility of DASH
to enhance molecular signals in diagnostics and its
potential to serve as an adaptable tool in basic science
research. While the degree of regional depletion of
mitochondrial rRNA was sufficient for our application,
the depletion parameters were not maximized: we used
only 54 sgRNA target sites out of about 250 possible S.
pyogenes Cas9 sgRNA candidates in the targeted mito-
chondrial region. Future studies will explore the upper
limit of this system while elucidating the most effective
sgRNA and CRISPR-associated nuclease selections,
which will likely differ based on target and application.
Irrespective, depletion of unwanted sequences by DASH is
highly generalizable and may effectively lower costs
and increase meaningful output across a broad range
of sequence-based approaches.
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Materials and methods

Generation of cDNA from Hela cell line and clinical
samples

CSF samples were collected under the approval of the
institutional review boards of the University of California
San Francisco and San Francisco General Hospital. Sam-
ples were processed for high-throughput sequencing as
previously described [1, 25]. Briefly, amplified cDNAs
were made from randomly primed total RNA extracted
from 250 uL of CSF or 250 pg of HeLa RNA using the
NuGEN Opvation v.2 kit (NuGEN, San Carlos, CA, USA)
for low nucleic acid content samples. A Nextera protocol
(lumina, San Diego, CA, USA) was used to add on a
partial sequencing adapter on both sides.

In vitro preparation of the CRISPR/Cas9 complex

The Cas9 expression vector, containing an N-terminal
MBP tag and C-terminal mCherry, was kindly provided
by Dr. Jennifer Doudna. The protein was expressed in
BL21 Rosetta cells for three hours at 18 °C. Cells were
pelleted and frozen. Upon thawing, cells from a 4 L cul-
ture preparation were resuspended in 50 mL of lysis buf-
fer (50 mM sodium phosphate pH 6.5, 350 mM NaCl, 1
mM TCEP (tris(2-carboxyethyl)phosphine), 10 % gly-
cerol) supplemented with 0.5 mM EDTA, 1 uM PMSF
(phenylmethanesulfonyl), and a single Roche complete
EDTA-free protease inhibitor tablet (Roche Diagnostics,
Indianapolis, IN, USA) and passed through an HC-8000
homogenizer (Microfluidics, Westwood, MA, USA) five
times. The lysate was clarified by centrifugation at
20,000 rpm for 45 min at 4 °C and then filtered through
a 0.22 pm vacuum filtration unit. The filtered lysate was
loaded onto three 5 mL HiTrap Heparin HP columns
(GE Healthcare, Little Chalfont, UK) arranged in series
on a GE AKTA Pure system. The columns were washed
extensively with lysis buffer, and the protein was eluted
with a gradient of lysis buffer to buffer B (lysis buffer
supplemented with NaCl up to 1.5 M). The resulting
fractions were analyzed by Coomassie gel, and those
containing Cas9 (centered around the point on the gra-
dient corresponding to 750 mM NaCl) were combined
and concentrated down to a volume of 1 mL using 50 K
MWCO Amicon Ultra-15 Centrifugal Filter Units (EMD
Millipore, Billerica, MA, USA) and then fed through a
0.22 pm syringe filter. Using the AKTA Pure, the 1 mL
of filtered protein solution was then injected onto a
HiLoad 16/600 Superdex 200 size exclusion column (GE
Healthcare, Little Chalfont, UK) pre-equilibrated with
buffer C (lysis buffer supplemented with NaCl up to 750
mM). Resulting fractions were again analyzed by Coo-
massie gel, and those containing purified Cas9 were
combined, concentrated, supplemented with glycerol up
to a final concentration of 50 %, and frozen at —80 °C
until use. Protein concentration was determined by BCA
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assay. Yield was approximately 80 mg from 4 L of bac-
terial culture.

sgRNA target sites were selected as described in the
main text. DNA templates for sgRNAs based on an opti-
mized scaffold [47] were made with a similar method to
that described in [48]. For each chosen target, a 60mer
oligo was purchased including the 18-base T7 transcrip-
tion start site, the targeted 20mer, and the first 22 bases
of the tracr RNA (5'-TAATACGACTCACTATAGNN
NNNNNNNNNNNNNNNNNNGTTTAAGAGCTATG
CTGGAAAC-3"). This was mixed with a 90mer repre-
senting the 3" end of the sgRNA on the opposite strand
(5'- AAAAAAAGCACCGACTCGGTGCCACTTTTTC
AAGTTGATAACGGACTAGCCTTATTTAAACTTGC
TATGCTGTTTCCAGCATAGCTCTTA-3"). DNA tem-
plates for T7 sgRNA transcription were then assembled
and amplified with a single PCR reaction using primers
5'- TAATACGACTCACTATAG-3" and 5'- AAAAAA
AGCACCGACTCGGTGC-3". The resulting 131 base
pair (bp) transcription templates, with the sequence
5'- TAATACGACTCACTATAGNNNNNNNNNNNNN
NNNNNNNGTTTAAGAGCTATGCTGGAAACAGCA
TAGCAAGTTTAAATAAGGCTAGTCCGTTATCAAC
TTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTT-
3’, were pooled (for the mitochondrial rRNA library),
or transcribed separately (for the KRAS experiments).
All oligos were purchased from IDT (Integrated DNA
Technologies, Coralville, IA, USA).

Transcription was performed using custom-made T7
RNA polymerase (RNAP) [49, 50] In each 50 pL reaction,
300 ng of DNA template was mixed with T7 RNAP (final
concentration 8 ng/uL), buffer (final concentrations of 40
mM Tris pH 8.0, 20 mM MgCl,, 5 mM DTT, and 2 mM
spermidine), and Ambion brand NTPs (ThermoFisher
Scientific, Waltham, MA, USA) (final concentration 1
mM each ATP, CTP, GTP and UTP), and incubated at 37
°C for 4 h. Typical yields were 2—20 pg of RNA. sgRNAs
were purified with a Zymo RNA Clean & Concentrator-5
kit (Zymo Research, Irvine, CA, USA), aliquoted, stored
at —80 °C, and used only a single time after thawing.

CRISPR/Cas9 treatment

To form the ribonucleoprotein (RNP) complex, Cas9
and the sgRNAs were mixed at the desired ratio with
Cas9 buffer (final concentrations of 50 mM Tris pH 8.0,
100 mM NaCl, 10 mM MgCl,, and 1 mM TCEP), and
incubated at 37 °C for 10 min. This complex was then
mixed with the desired amount of sample ¢cDNA in a
total of 20 pL, again in the presence of Cas9 buffer, and
incubated for 2 h at 37 °C.

Since Cas9 has high nonspecific affinity for DNA [24]
it was necessary to disable and remove the Cas9 before
continuing. For the rRNA depletion samples, 1 uL (at >600
mAU/mL) of Proteinase K (Qiagen, Hilden, Germany)
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was added to each sample which was then incubated
for an additional 15 min at 37 °C. Samples were then
expanded to a volume of 100 pL and purified with
three phenol:chloroform:isoamyl alcohol extractions
followed by one chloroform extraction in 2 mL Phase-
lock Heavy tubes (5prime, Hilden, Germany). We
added 10 pL of 3 M sodium acetate pH 5.5, 3 pL of lin-
ear acrylamide and 226 pL of 100 % ethanol to the 100
uL aqueous phase of each sample. Samples were cooled
on ice for 30 min. DNA was then pelleted at 4 °C for
45 min, washed once with 70 % ethanol, dried at room
temperature and resuspended in 10 pL water.

In the case of the KRAS samples, Cas9 was disabled by
heating the sample at 95 °C for 15 min in a thermocycler
and then removed by purifying the sample with a Zymo
DNA Clean & Concentrator-5 kit (Zymo Research,
Irvine, CA, USA).

High-throughput sequencing and analysis of sequencing
data

Tagmented samples with and without DASH treatment
underwent 10-12 cycles of additional amplification
(Kapa Amplification Kit, Kapa Biosystems, Wilmington,
MA, USA) with dual-indexing primers. A BluePippin in-
strument (Sage Science, Beverly, MA, USA) was used to
extract DNA between 360 and 540 bp. Sequencing li-
braries were purified using the Zymo DNA Clean &
Concentrator-5 kit and amplified again on an Opticon
qPCR machine (M] Research, Waltham, MA, USA)
using a Kapa Library Amplification Kit until the expo-
nential portion of the quantitative PCR signal was found.
Sequencing libraries were then pooled and re-quantified
with a ddPCR Library Quantification Kit (Bio-Rad,
Hercules, CA, USA). Sequencing was performed on
portions of one lane in an Illumina HiSeq 4000 instru-
ment using 135 bp paired-end sequencing.

All reads were quality filtered using PriceSeqFilter
v.1.2 [51] such that only read pairs with less than five
ambiguous base calls (defined as Ns or positions with <95 %
confidence based on Phred score) were retained. Fil-
tered reads were aligned to the hg38 build of the hu-
man genome using the STAR aligner (v.2.4.2a) [52].
The number of mapped reads per gene and fpkm values
were calculated using the exon length and sequence infor-
mation encoded in the Gencode v.23 primary annotations
(GTF file). Library complexity was determined by calculat-
ing the reduction in library size after clustering using the
cd-hit-dup package [53, 54]. Pathogen-specific alignments
to 16S and 18S sequences were accomplished using
Bowtie2 [55]. Per-nucleotide coverage was calculated
from alignment (SAM/BAM) files using the SAMtools
suite [56] and analyzed with custom iPython [57] scripts
utilizing the Pandas data package. Plots were generated
with Matplotlib [58].
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dPCR of KRAS mutant DNA

KRAS wild-type DNA was obtained from a healthy con-
senting volunteer. The sample sat until cell separation
occurred, and DNA was extracted from the buffy coat
with the QIAamp Blood Mini Kit (Qiagen, Hilden,
Germany). KRAS G12D genomic DNA from the human
leukemia cell line CCRE-CEM was purchased from ATCC
(Manassas, VA, USA). All DNA was sheared to an average
of 800 bp using a Covaris M220 (Covaris, Woburn, USA)
following the manufacturer’s recommended settings. Cas9
reactions occurred as described above.

A primer/probe pair was designed with Primer3 [59, 60]
targeting the relatively common KRAS G12D (c.35G>A)
mutation. Reactions were themocycled according to
manufacturer protocols using a two-step PCR. An ideal 62
°C annealing/extension temperature was determined by a
gradient experiment to ensure proper separation of FAM
and HEX signals. The PCR primers and probes used were
as follows (purchased from IDT): forward 5'- TAGCTG
TATCGTCAAGGCAC-3', reverse 5'-GGCCTGCTGAA
AATGACTGA-3’; wild-type probe, 5'-/5SHEX/TGCCT
ACGC/ZEN/CA<C>CAGCTCCA/3IABKFQ/-3’; mutant
probe, 5'-/56-FAM/TGCCTACGC/ZEN/CA<T>CAGCT
CCA/3IABKFQ/-3’, with <> denoting the mutant base lo-
cation, 5HEX and 56-FAM denoting the HEX and FAM
reporters, and ZEN and 3IABKFQ denoting the internal
and 3" quenchers. Original samples and those subjected
to DASH were measured with the ddPCR assay on a
Bio-Rad QX100 Droplet Digital PCR system (Bio-Rad,
Hercules, CA, USA), following the manufacturer’s in-
structions for droplet generation, PCR amplification,
and droplet reading, and using best practices. Pure
CCRF-CEM samples were approximately 30 % G12D
and 70 % wild type; all calculations of starting mixtures
were made based on this starting ratio.

Ethics

CSF samples, as well as a whole blood sample for the
KRAS negative control, were collected under the approval
of the institutional review boards of the University of
California San Francisco and San Francisco General
Hospital (IRB number 13-12236). All experimental
methods comply with the Helsinki Declaration.

Availability of data and materials

All sequencing data for human subjects has been deposited
to NCBI’s database of Genotypes and Phenotypes (dbGaP)
and can be accessed at http://www.ncbi.nlm.nih.gov/gap by
entering study accession number phs001067.v1.pl. Sequen-
cing data for HeLa samples has been deposited as a separ-
ate BioProject in NCBI’s Sequence Read Archive (SRA) and
can be found at http://www.ncbi.nlm.nih.gov/bioproject by
entering study accession number PRJNA311047. Reagents
are available upon request from J.L.D.
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