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Abstract

Background: DNA methylation is an important mechanism of epigenetic gene expression control that can be
passed between generations. Here, we use sodium bisulfite treatment and targeted gene enrichment to study
genome-wide methylation across the three sub-genomes of allohexaploid wheat.

Results: While the majority of methylation is conserved across all three genomes we demonstrate that differential
methylation exists between the sub-genomes in approximately equal proportions. We correlate sub-genome-specific
promoter methylation with decreased expression levels and show that altered growing temperature has a small effect

progenitor Aegilops tauschii.

on methylation state, identifying a small but functionally relevant set of methylated genes. Finally, we demonstrate
long-term methylation maintenance using a comparison between the D sub-genome of hexaploid wheat and its

Conclusions: We show that tri-genome methylation is highly conserved with the diploid wheat progenitor
while sub-genome-specific methylation shows more variation.
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Background
The wheat genome is allohexaploid, 17 Gb in size and is
derived from three diploid progenitor genomes (AABBDD).
The A sub-genome originates from Triticum urartu, the B
sub-genome an unknown species related to Aegilops spel-
toides, and the D sub-genome from Aegilops tauschii.
AABB tetraploids (Triticum turgidum) appeared less than
0.5 million years ago, and bread wheat from a further
hybridization with the D genome 10,000 years ago [1]. Its
size, polyploidy and high repeat content (~80 %) have made
sequencing and analysis challenging [2]. Recent sequencing
efforts have utilized targeted capture re-sequencing to
analyze the genic portion of hexaploid wheat [3, 4].
Cytosine methylation of DNA acts as a mechanism of
gene expression control. In plants, it occurs typically at
CpG residues but can also occur at CHG and CHH sites
(where H represents adenine, cytosine or thymine) [5].
In Arabidopsis most methylation in the gene body oc-
curs at CpG sites with non-CpG methylation seen at
lower levels, whilst methylation elsewhere and in repeti-
tive regions occurs at CpG, CHH and CHG sites [6, 7].
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Methylation within gene promoter regions is thought to
inhibit regulatory protein binding and repress tran-
scription (and can also silence transposable elements),
whereas methylation within introns and exons is cor-
related with highly expressed genes [6].

The potential for differential methylation of homoeo-
logous genes in a polyploidy species such as wheat is an
important question, where it could control gene dosage
between the three sub-genomes. Differential or allele-
specific methylation has been frequently observed in
humans [8] and plants [9] and has been correlated with
changes in gene expression. It is thought that differential
methylation of a region rather than a single position is
more likely to contribute to gene expression change.
However, no detailed study exists comparing homoeolo-
gous genes in a complex polyploid.

Here, we develop an enrichment system to investigate
methylation patterns across ~81 Mb of the genic regions
of the allohexaploid wheat genome. This allows us for
the first time to explore epigenetic variation in this large
complex genome and open up a new level of genetic
variation, which can be exploited by breeders. We imple-
mented this genome-wide methyl-Seq approach to test a
number of hypotheses in wheat: firstly, that differential
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methylation exists between the sub-genomes; secondly,
that temperature is capable of altering the methylation
state in both a sub-genome-specific and sub-genome-
independent manner; thirdly, that it is this underlying
methylation that correlates with both sub-genome-specific
and temperature-dependent changes in gene expression;
and finally, that methylation is maintained over long time
periods but that differences in methylation accumulate
over time.

Results and discussion

Development of a platform for genome-wide analysis of
methylation patterns in wheat

To investigate genome-wide methylation patterns in the
17-Gb allohexaploid wheat genome, we used genomic
enrichment followed by bisulfite treatment [10] (Agilent
SureSelect Methyl-Seq) and Illumina HiSeq paired-end
sequence generation. Based on DNA sequence, 50,000
120-mer RNA baits were each designed to capture a subset
of wheat genes totaling 18 Mb; 6 Mb from each of the three
sub-genomes of wheat (Figure S1 in Additional file 1). The
use of paired-end Illumina libraries, which extend beyond
the baits, necessitated a reference sequence that was con-
structed using the baits plus surrounding contiguous DNA
sequence, based on assemblies from Brenchley et al. [2].
These extended reference contigs ranged from 121-8835 bp
with a median length of 698 bp. The total size of the poten-
tial mapping reference was ~44 Mb per sub-genome.

To test the performance of our experimental pipeline;
we investigated reproducibility between biological repli-
cates, conversion rates of the bisulfite treatment and
enrichment bias between the three sub-genomes. Total
genomic DNA was extracted from 7-day-old Chinese
Spring wheat seedlings; three were grown at 12 °C and
three at 27 °C. Genomic DNA was enriched, bisulfite
treated, sequenced and mapped to the reference sequences
using Bismark [11]. Cytosine residues could then be classi-
fied as methylated or un-methylated.

The samples had an average sequencing depth of 102x
across 96.3 % of the 6-Mb bait sequence (Table S1 in
Additional file 1). The depth of coverage across the
probe set was consistent (Figure S2 in Additional file 1)
with less than 0.2 % of baits exceeding tenfold the aver-
age depth of coverage. Mapping statistics between the
12 °C and 27 °C replicates were therefore comparable
and 99.7 % of single-nucleotide polymorphisms (SNPs)
were conserved between sample replicates at positions

Table 1 Mapping statistics
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that were mapped to a minimum depth of 15x per
replicate. Furthermore, high conservation of methyla-
tion was seen between replicate samples using the
software Methylkit [12] with <0.09 % of residues
showing differential methylation (Note 1 and Figures
S3 and S4 in Additional file 1); moreover, any sites
that were considered differentially methylated between
replicates were excluded from sample-wise comparisons.

An independent analysis was carried out on a subset
of methylation and SNP calls for validation. Here, Sanger
sequencing was utilized and ~83 % of SNPs analyzed
from both samples were validated and ~90 % of methyla-
tion sites were confirmed in both samples (see "Materials
and methods"; Table S2 and Figure S5 in Additional file 1).

Identifying a high concordance between replicate sam-
ples allows us to pool replicates for downstream analyses,
thus increasing coverage to an average depth of 297.6x
with 97.5 % of the 6-Mb capture probe sequences being
mapped to (Table 1). Moreover, an average depth of cover-
age of 128x was observed with 27 Mb of the extended
44 Mb reference being mapped to by both replicate pools.
Using homoeologous SNPs to distinguish the three sub-
genomes, this 27 Mb translates to approximately 81 Mb
of the allohexaploid genome that could be analyzed. In the
12 °C sample Bismark [11] identified 7,813,105 cytosine
residues per sub-genome (methylated and un-methylated)
and 8,069,906 in the 27 °C sample that could be interro-
gated to determine their methylation state; numbers vary
between datasets due to slight differences in the coverage
of the reference. Mapping reads to the non-methylated
chloroplast genome was used to assess bisulfite conversion
efficiency; using strict mapping parameters, 98.92 % of
cytosine bases were successfully bisulfite converted. This
is within the limits determined for successful bisulfite con-
version in previous studies [13].

In our extended reference sequence 72,345 homoeolo-
gous SNP positions were identified for sub-genome dis-
crimination using a combination of two methodologies:
firstly, we mapped International Wheat Genome Se-
quencing Consortium (IWGSC) homoeologous SNPs to
our 44-Mb reference (see "Materials and methods"). This
left some regions of extended reference with no homo-
eologous SNP calls; therefore, we mapped polymorphic
bases from the genomes of diploid wheat ancestors to
our reference to generate additional homoeologous SNPs
(see "Materials and methods"). Comparing overlapping
SNPs between the two methods validated this second

Sample Average percentage coverage per Average depth of coverage per Number of 120-mer probes

Percentage of 120-mer probes

120-mer probe 120-mer probe mapped mapped
12 °C 984 290.8 49,986 99
27 °C 98.5 3044 49,982 99

The mapping output statistics for the two enriched and bisulfite-treated wheat DNA samples in relation to the 6-Mb capture probe base space



Gardiner et al. Genome Biology (2015) 16:273

method; 80 % of SNP alleles were conserved, giving high
confidence in these inferred SNPs.

The homoeologous SNP information was used to
assign 7,813,105 and 8,069,906 cytosines in the 12 °C
and 27 °C samples, respectively, to specific sub-genomes
(outlined in Figure S6 in Additional file 1). This enabled
us to identify 318,452 residues for the 12 °C sample and
324,227 for the 27 °C sample either where all three sub-
genomes could each be identified at a depth of 5x or more
(28,632 and 29,202 residues for the 12 °C and 27 °C sam-
ples) or where biallelic SNPs allowed categorization of
reads at a position as A or BD, B or AD and D or AB
genome-specific with a requirement of 5x coverage or
more for a single genome and 10x or more for a genome
pair (289,820 and 295,025 residues for the 12 °C and 27 °C
samples). These residues mapped across the 27 Mb of the
reference sequence and were annotated for exon, intron
and predicted promoter regions using the MIPS gene
models (v2.2): 8902 genes were represented partially or
fully (per sub-genome), including 244 promoters, 6356
genes with one or more exon and 4450 genes with one or
more intron; 3702 genes had both exons and introns
represented.

Uniform enrichment was seen across the wheat sub-
genomes with approximately one-third of sequencing
reads mapping per genome. There was also no signifi-
cant difference in efficacy of enrichment of methylated
compared with non-methylated DNA sequence. Finally,
there was negligible difference between the capture effi-
ciency in exons/introns and non-transcribed regions.
However, fewer homoeologous SNPs could be confi-
dently identified in repetitive non-transcribed regions for
sub-genome discrimination (Note 2 in Additional file 1).

Global methylation patterns match other plant species

Methylation in plants is found in CpG, CHG and CHH
contexts. In rice the percentages of methylated cytosines
found at CpG, CHG and CHH sites were 54.7 %, 37.3 %
and 12.0 %, respectively, while the average methylation
levels (i.e., the proportion of reads showing a methylated
cytosine among all reads covering the same cytosine site)
in the three contexts were 44.5 %, 24.1 % and 4.7 % [14].
Here, looking at the 318,452 residues for the 12 °C sample,
the percentages of methylated cytosines were 60.0 %,
4.58 % and 1.42 % across CpG, CHG and CHH sites, re-
spectively. These figures were conserved across the wheat
sub-genomes and in the 27 °C sample. The average
methylation levels in wheat in the three sequence contexts
were 53.3 %, 348 % and 1.41 % across the sub-genomes
and the 12 °C and 27 °C samples. Similarly to rice and
Arabidopsis, we see a tendency towards high-level methy-
lation in the CpG context but low-level methylation in the
CHH context. Notably, we also observe very low levels of
both CHG and CHH methylation (Figure S7 in Additional
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file 1). Since our analysis mainly focuses on gene body
methylation, with 80 % of the analyzed cytosine residues
found in intron/exon sequences, this is an anticipated
result, since in Arabidopsis and rice there is enrichment
for CpG methylation in gene bodies [6, 7]. In predicted
non-transcribed regions we see an increase in CHG
methylation; average methylation levels in wheat in the
three sequence contexts were 50.7 %, 10.4 % and 1.77 %
across the sub-genomes and the two samples, which is
more comparable to the patterns in rice and Arabidopsis.

To discriminate methylated CpG, CHG and CHH sites
from non-methylated residues, we defined standard
thresholds for each category based on published meth-
odologies (see "Materials and methods"). These thresh-
olds take into account the tendency for high-level CpG
methylation and low-level non-CpG methylation. Using
these thresholds over the cytosine residues where all
three sub-genomes could be distinguished at a depth of
5% or more (318,452 residues for the 12 °C sample and
324,227 for the 27 °C), 11.9 % of the sites that were ana-
lyzed were methylated in one or more sub-genomes;
12.5 % of residues under analysis were CpG sites, with
62.0 % methylated in one or more sub-genomes; 20.5 %
of residues were CHG sites, with 9.5 % methylated; and
67 % of residues were CHH sites with 3.4 % methylated.

Analyzing methylation distribution between CpG, CHH
and CHG sites using these thresholds, we found that
714 % of methylated sites in transcribed regions were
CpG sites, 18.1 % were CHH sites and 10.5 % were CHG
sites; in un-transcribed regions, 46.3 % of methylated sites
were CpQG sites, 21.7 % were CHH sites and 32.0 % were
CHG sites. In previous studies in plants such as Arabidop-
sis [6, 15] mostly methylated CpG sites were found in cod-
ing regions while CpG, CHG and CHH methylated sites
were seen in non-coding regions. Here, unlike Arabidop-
sis, all types of methylation are a significant presence in
both transcribed and non-transcribed regions, although
an increase in CHH/CHG site methylation was observed
in non-transcribed regions.

Transposons are highly methylated

Off-target sequencing data were found to be unbiased
carryover DNA, equivalent to low coverage shotgun
sequencing of total wheat DNA, since they comprised
mainly repetitive sequence and proportions of trans-
poson types closely matched those seen in previous
shotgun sequence data [2] (Table S3 in Additional file
1). It was noted that transposons in general were
highly methylated in comparison with the enriched
gene-rich regions. Hyper-methylation of repeats is
consistent with other plant species and is associated
with reducing transposon mobilization [5] (Note 3 in
Additional file 1).
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Conserved methylation across all three genomes
predominates but genome-specific methylation is
significant

Methylation can be further classified as uni-genome
(methylation of a single sub-genome at a site where the
other two are non-methylated), bi-genome (methylation of
two sub-genomes at a site where the other sub-genome is
non-methylated) or tri-genome (methylation of all three
sub-genomes). Tri-genome methylation was recorded using
our standard thresholds. Differential (uni- and bi-genome)
methylation between the A, B and D sub-genomes was re-
corded using the tool Methylkit [12] to identify a minimum
difference of 50 % and q < 0.01 combined with our standard
thresholds for identification of methylated regions (see
"Materials and methods"). Using these thresholds, differen-
tial methylation between the sub-genomes was observed
across the 12 °C and 27 °C samples at 2.4 % of all analyzed
cytosine residues and 20 % of methylated cytosine residues;
45 % of methylated residues showed tri-genome methyla-
tion and the remaining 35 % showed intermediate level
methylation (see "Materials and methods"). Table S4 in
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Additional file 1 details differentially and tri-genome meth-
ylated CpG, CHH or CHG sites and their transcription sta-
tuses for the 12 °C and 27 °C samples. Figure 1 presents
these data averaged between the samples. The A, B and D
sub-genomes show uni-genome methylation in similar
proportions and methylation levels in the bi-genome
methylation group were also conserved across the genome
pairs and the two samples (Note 4 in Additional file 1).
The proportions of methylated CpG, CHH and CHG
sites are conserved across the two samples, the three
sub-genomes, and within transcribed and non-transcribed
regions, although the ratios differ. In transcribed or gene
body regions, uni-genome methylation is mostly at CpG
sites (72 %), although CHH and CHG sites are still present
at 18 % and 10 %, respectively. Bi-genome methylation fol-
lows a similar pattern with 81 % of methylation at CpG
sites and 11 % and 8 % at CHH and CHG sites, respect-
ively. In non-transcribed regions, the percentage of uni-
genome methylation at CpG sites drops to 60 % and an
increase in the number of methylated CHG sites is seen
(24 %), with 16 % of sites in the CHH context. Bi-genome
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Fig. 1 Categorizing observed methylation averaged across the 12 °C and 27 °C sample datasets. a Uni-genome methylation distribution between
the three sub-genomes and an overview of its occurrence at CpG, CHG and CHH sites in transcribed and non-transcribed/promoter regions (averaged
over all three sub-genomes due to high similarity). b Bi-genome methylation distribution between the three pairs of sub-genomes and an overview of
its occurrence at CpG, CHG and CHH sites in transcribed and non-transcribed/promoter regions (averaged over all three pairings due to high similarity).
¢ Tri-genome methylation and its occurrence at CpG, CHG and CHH sites in transcribed and non-transcribed/promoter regions
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methylation again follows a similar pattern, with 61 % of
methylation at CpG sites and 12 % and 27 % at CHH and
CHG sites, respectively. In summary, across all sub-
genomes for uni- and bi-genome methylation we see a
drop in CpG and an increase in CHH/CHG methylation
in non-transcribed regions, consistent with other plant
genomes.

Across the 12 °C and 27 °C datasets 45 % of methylated
residues showed tri-genome methylation. In the 12 °C and
27 °C samples, in transcribed regions, the tri-genome
methylated residues are almost exclusively CpG sites
(96 %); this differs from the observation for uni- and bi-
genome associations where CHG and CHH methylation is
still significant. In contrast, in non-transcribed regions,
similar to differentially methylated sites, we observe a
decrease in specificity for CpG sites (59 %) and an enrich-
ment for CHG and CHH methylation (35 % and 6 %). It is
possible that the presence of CHG/CHH uni- and bi-
genome methylation in transcribed regions could associate
with pseudo genes in wheat.

Gene Ontology (GO) analysis using GOEAST [16]
highlighted common functional terms associated with
the methylated sites that were specific to each of the A,
B and D sub-genomes in the 12 °C sample (p <0.05;
Table S5 in Additional file 1). The A sub-genome’s
enriched genes relate to biosynthetic/metabolic processes
and response to external stimulus. The B sub-genome
showed enrichment for terms such as biosynthetic/meta-
bolic processes, growth and membrane/cell wall associ-
ation. It also showed enrichment for terms associated with
histone binding and translation initiation. Finally, the D
sub-genome’s enrichment profile contained terms associ-
ated with zinc ion trans-membrane transport and cellular
homeostasis. The enriched GO terms for the 27 °C sample
were conserved with the 12 °C sample, although in the
27 °C sample for sub-genome A we identified additional
terms relating to stress response.

Plotting uni-, bi- and tri-genome methylation for the
12 °C sample onto pseudo-wheat chromosomes based on
synteny with POPSEQ-based pseudomolecules [17, 18],
an even distribution of methylation is observed across the
genomes genic sequence, with no obvious hotspots or bias
towards chromosome ends. Most gaps are due to missing
information rather than a break in methylation (Fig. 2;
Figure S8 in Additional file 1 for the 27 °C sample).
Furthermore, uni-, bi- and tri-genome methylation
does not appear to target transcribed/non-transcribed
regions specifically; 73 % of tri-genome methylated
sites are in transcribed regions, compared with 78 %
showing uni-genome methylation and 77 % bi-genome
methylation (Table S4 in Additional file 1). None of these
three proportions deviate by more than 10 % from the
80 % of residues that were found to be in transcribed
regions in the full dataset.
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Identification of differentially methylated regions

Gene expression changes are often associated with meth-
ylated regions rather than single methylated nucleotides.
To survey differentially methylated regions (DMRs) across
the genome it is preferable to analyze tiled windows across
it, typically of 1000 bp [19]. As this analysis is based on
fragmented gene regions rather than whole genome se-
quence, we summarized methylation per extended bait
probe and compared these figures between the sub-
genomes of wheat to identify DMRs. We used Methylkit
for this analysis and focused only on regions that were
identified between sub-genomes with a q value below 0.01
using the Fisher's exact test. The three sub-genomes were
compared and a region selected if a single genome was at
least 25 % more methylated than the other two. In the 12 °
C sample 11 DMRs were found to be specific to genome
A, 15 specific to genome B and 4 specific to genome D;
these figures were 7, 18 and 5, respectively, for the 27 °C
sample. Similar to the enriched GO terms for uni-genome
methylation, sub-genome As densely methylated gene
regions relate to metabolic processes, sub-genome B’s
relate to metabolic processes, binding and membrane
association and sub-genome D’s relate to zinc ion
trans-membrane transport. Sixteen DMRs are conserved
between the two temperatures. All DMRs are detailed in
Table S6 in Additional file 1.

Promoter methylation correlates with a decrease in gene
expression

Using the same leaf material used for the methyl-Seq
analysis, RNA-seq data were generated and analyzed
using Bowtie2 [20] for mapping and BitSeq [21] for al-
lelic expression level estimates to enable direct compari-
son with methylation patterns. Allelic expression levels
are given as a percentage of the maximum expression
that was observed. By aligning our extended baits to the
wheat genome we estimate that they represent 22,696
(partial or full) wheat genes per sub-genome. For 87.8 %
of wheat genes one or more of the three sub-genomes
showed measurable expression in the 12 °C sample; this
is similar to the 88 % found when Pfeifer et al. examined
the expression of homoeologous gene triplets [22]. We
may see a bias for expressed genes after enrichment due
to the use of cDNA sequence for probe design. Analyzing
the co-expression levels for expressed gene loci, 31.3 %
showed closely conserved expression levels between the
three sub-genomes (within 5 %); 46.2 % showed uni-
genome expression increased by a minimum of 5 % above
the other two sub-genomes; 14.7 % showed bi-genome ex-
pression increased by a minimum of 5 % above that of the
other sub-genome. This leaves 7.8 % where expression
levels differ between all three sub-genomes. Although our
analysis and parameters differ, we can still see a similar
pattern to that observed by Pfeifer et al. [22] where
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Fig. 2 (See legend on next page.)
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(See figure on previous page.)

Fig. 2 Positional information for methylation sites. Incidences of tri-genome methylation (a) and uni-/bi-genome methylation in genome A/BD
(b), genome B/AD (c) and genome D/AB (d) in the 12 °C sample are detailed relative to all analyzed sites (methylated and non-methylated). Data
are shown along each of the pseudo-chromosomes and methylation is classified using threshold values plus a 50 % difference and q < 0.01 for

sites showing differential methylation between the sub-genomes

approximately one-third of homoeologous triplet genes
show co-expression of all three genes, and co-expressed
gene pairs are the most frequently encountered expression
category and are relatively uniformly distributed across
the genome pairs (28.3 %, 39.8 % and 31.9 % for sub-
genomes BD, AD and AB, respectively).

To investigate correlation between CpG, CHH and
CHG regional methylation and gene expression in the
12 °C sample, the percentage methylation per extended
bait probe and per sub-genome was summarized and
compared with the allelic expression for the same region
(Figure S9 in Additional file 1). Here, methylation was
categorized as promoter, non-transcribed or transcribed
intron/exon and promoters/non-transcribed regions
were assigned the expression of their neighboring gene.
Methylation levels were largely conserved between tran-
scribed and promoter regions with no significant differ-
ences found; however, average allelic expression levels
were significantly lower when associated with promoter
region methylation compared with transcribed region
methylation in the associated gene (two-tailed ¢ test, p <
0.05; Table S7 in Additional file 1). Correlation between
single point CpG, CHH and CHG methylation level and
allelic expression was also summarized in the same way
for the 12 °C sample. Comparisons of this methylation
across transcribed and promoter regions were made
(Figure S10 in Additional file 1) but no correlation was
observed at the single point level.

Methylation of a single genome affects genome-specific
gene expression

To compare the impact of uni-, bi- and tri-genome
methylation, we normalized allelic gene expression for
each extended bait probe across the sub-genomes so that
per site cumulative expression values for the individual
A, B and D sub-genomes were all equal to 100 %, 0 %
meaning a specific genome was not expressed at all and
100 % meaning that all expression for that region was
from a single sub-genome. If the allelic expression was
balanced between the three sub-genomes, we expect
~33 % expression. A histogram of methylated cytosine
sites per sub-genome against allelic expression for the
extended bait sequence that the site originated from is
shown in Fig. 3. The data set was also subdivided into
transcribed, promoter and non-transcribed regions. The
distributions in Fig. 3 were tested to see if they fit a nor-
mal distribution using the Kolmogorov-Smirnov test
(Table S8 in Additional file 1) and 94.4 % of the

distributions fit this assumption (p <0.01) with only AB
bi-genome methylation being the exception (p = 0.200);
the low number of residues in this dataset (28) may be
responsible for this result.

In Fig. 3, for tri-genome methylated sites, the data uni-
formly tend towards a peak in the 30-35 % interval with
an average allelic expression of 33.33 % (Fig. 3a, d, g).
This shows a tendency towards equal contribution per
sub-genome to overall expression at a position that is
conserved across transcribed, non-transcribed and pro-
moter regions. Notably, also in tri-genome methylated
promoter regions (Fig. 3d) we see a loss of high allelic
expression compared with transcribed regions with a 75™
percentile of expression of 37.84 versus 40.35 in tran-
scribed regions and resultant a shift of the promoter-
based expression distributions to be more leptokurtic
(distribution kurtosis of 5.529 compared with 1.581 in
transcribed regions). This loss of high expression is
seen more markedly in uni-genome methylated promoter
sites (Fig. 3f), where the 75™ percentile of expression is
35.73 versus 41.02 in transcribed regions. Looking further
at promoter regions we see a significant drop in the aver-
age allelic expression correlating with uni- and bi-genome
methylated genomes compared with tri-genome methyl-
ated genomes: 30.90 % (t=2.4916, df = 1034, p = 0.0129)
and 3291 % (t=0.5127, df=1175, p=0.6082), respect-
ively. Therefore, uni-genome methylation in promoter re-
gions correlates with a significant reduction in expression
of the affected sub-genome (p < 0.05).

Temperature has a small effect on gene methylation but
is associated with stress responses

We could assay 293,076 cytosine residues across the
three sub-genomes in both the 12 °C and 27 °C samples,
of which 39,855 showed sub-genome methylation in one
or both of the samples. Methylation changes could be
identified at these sites between the two temperatures
and differential methylation could be seen at 40 sites
(0.1 %) in at least one sub-genome after sites that were
considered differentially methylated between replicates
were removed (Table S9 in Additional file 1). Only differ-
ential methylation between the samples that were con-
served over the three replicate samples was considered. Of
the 40 sites identified, two tri-genome differences, 11 bi-
genome differences and 27 uni-genome differences were
seen between the two samples. Variation in uni-genome
methylation between the samples was most common, with
four cases targeting sub-genome A, 13 targeting sub-
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Fig. 3 Histograms correlating gene expression with methylation. Allelic gene expression for each extended bait probe was normalized across the
sub-genomes so that per site cumulative expression values for the individual A, B and D sub-genomes were all equal to 100 %. The x-axis
is divided into 20 individual 5 % interval bins that correspond to allelic gene expression. The y-axis is the percentage of total counts for
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genome B and 10 targeting sub-genome D. Twenty-seven
sites could be directly associated with either temperature/
stress sensitivity or methyltransferase activity, i.e., 77 % of
those sites that could be annotated. Using the same
method as previously described to identify DMRs, the two
samples were compared and four DMRs were identified
(minimum difference 25 %, q value < 0.01). Three DMRs
were found between the samples in sub-genome B and
one in genome D (Table S10 in Additional file 1).
RNA-seq data for the 12 °C and 27 °C samples was
used for a comprehensive comparison of gene expression
between the samples, i.e., to investigate if temperature-
dependent, differential methylation correlated with gene
expression. Following on from previous allelic expression
level estimates, differential expression between the sam-
ples was quantified using probability of positive log ratio
(PPLR) values calculated using BitSeq [21]. The PPLR
values detail changes in expression levels between the

12 °C and 27 °C samples for each genome. A low PPLR in-
dicates down-regulation of a sub-genome specific gene in
the 27 °C sample compared with the 12 °C sample and a
high PPLR value indicates up-regulation of the gene in the
27 °C sample compared with the 12 °C sample.

Here, 50,000 gene regions were analyzed per sub-
genome and these were spread across 22,696 wheat
genes. Comparing the two samples, 34,299 genome A
gene regions, 34,595 genome B gene regions and 34,231
genome D gene regions were differentially expressed
(69 % of analyzed regions), i.e.,, PPLR values deviated
from the baseline 0.5 by +20 % (<0.4 or >0.6). These
numbers are highly comparable between the sub-genomes:
1158 genome A, 1321 genome B and 1290 genome D
genes were found to be highly differentially expressed, i.e.,
with a PPLR value <0.10 or >0.90.

Of the 40 sites that were differentially methylated
between the 12 °C and 27 °C samples, 25 (63 %) from 20
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gene regions were both differentially expressed and differ-
entially methylated between the two samples; these show
expression changes that could be linked to differential
methylation (Table S11 in Additional file 1). In non-
transcribed regions low methylation in the 27 °C sample
resulted in a higher average expression than the 12 °C sam-
ple (18.02 % compared with 12.99 %, t=0.6966, df =12,
p=04994), while in transcribed regions it resulted in a
lower average expression than the 12 °C sample (19.04 %
versus 24.92 %, t=0.9094, df=10, p=0.3845). Though
these differences are not statistically significant, they fit the
predicted model for decreased expression with methylation
in non-transcribed regions versus increased expression with
gene body methylation; therefore, methylation may have a
role in gene expression control here but it is not solely
responsible. Thirteen up-regulated genes in the 27 °C sam-
ple (Table S11 in Additional file 1) are linked to differential
methylation and can be associated with GTP/ATPases,
envelope proteins, small nuclear ribonucleoproteins and
stress response, e.g., the MYB family proteins ATMYB1/2
[23] and promoter elements know to be involved in stress
responses. Eight down-regulated genes in the 27 °C sample
are linked to differential methylation and have been associ-
ated with stress and temperature sensitivity (Table S11 in
Additional file 1), eg, the two-component response
regulator-like clock gene PRR95 known to effect clock
function at high temperature [24].

Of the DMRs that were identified between the sam-
ples, 75 % could be linked to differential gene expression
(Table S10 in Additional file 1); this is an increase on the
63 % of differentially methylated sites and the 69 % of re-
gions in general showing gene expression changes demon-
strating that DMRs are enriched for differential expression.
These DMRs were a small group found in unknown/non-
transcribed and transcribed regions only, although they
could be indicative of larger DMRs in surrounding
sequence that was not picked up by this analysis. Here the
observed gene expression changes between samples are
also relatively small, which is similar to the methylation
changes that were observed and could be indicative of
tissue specific methylation/gene expression change.

Tri-genome methylation is highly conserved with a
diploid wheat progenitor while sub-genome-specific
methylation is more variable

To investigate the stability of methylation we investi-
gated the methylation state of the likely diploid progeni-
tor of the D sub-genome of wheat, Ae. tauschii, which is
thought to have hybridized with the AABB progenitor
approximately 10,000 years ago. We enriched, bisulfite-
treated and sequenced Ae. tauschii DNA as described
for Chinese Spring. After mapping, the Ae. tauschii se-
quence dataset had an average coverage of 27.9x across
the extended bait reference sequence and mapped across
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14 Mb. We sequenced 243,141 cytosine positions at 5x
depth or more; 61,380 of these were in the 12 °C sample
dataset, i.e., overlapping a homoeologous SNP that al-
lows discrimination of sub-genome D for comparison in
the hexaploid. Ae. tauschii was found to map to 3336
sites that were tri-genome methylated in the 12 °C hexa-
ploid wheat sample. Looking at these positions, 4.8 % of
the time Ae. tauschii methylation differed from that of
hexaploid wheat. However, at the sites that showed uni-
genome methylation in the 12 °C sample, and could be
analyzed (247, 287 and 258 for sub-genomes A, B and
D, respectively), we compared the methylation state of
Ae. tauschii. We found 74.5 % of Ae. tauschii sites
showed different methylation levels for sub-genome A-
specific methylation, 73.9 % of sites did for sub-genome
B-specific methylation and 13.6 % of sites did for sub-
genome D-specific methylation. In summary, methyla-
tion that is conserved between the three sub-genomes is
most highly conserved with the Ae. tauschii genome.
However, while differences of only 4.8 % may seem
small, if this was nucleotide variation, even this propor-
tion would be considered large. Sub-genome D-specific
methylation is also conserved with Ae. tauschii, at a
lower level, and sub-genome A/B-specific methylation is
largely non-conserved, although, surprisingly, a signifi-
cant proportion of the A and B sub-genome-specific
methylation is conserved with Ae. tauschii.

In addition to our analysis of methylation conserva-
tion, we also identified differences in methylation be-
tween hexaploid wheat and Ae. tauschii. Using the
61,380 cytosine sites that we mapped to Ae. tauschii and
could also discriminate the sub-genomes in hexaploid
wheat, we compared differences between each sub-
genome and Ae. tauschii. For 7184 of these sites methy-
lation was seen in one or more sub-genomes and/or Ae.
tauschii (using standard thresholds). For sub-genome D
the methylation levels across these cytosine sites were
compared with the profile for Ae. tauschii using
Methylkit (minimum 50 % difference, q<0.01). We
identified 497 sites (6.9 % of those that were methylated)
as having differences in methylation. Of these 497, 278
(55.9 %) showed a gain of methylation in sub-genome D
and 219 (44.1 %) showed a loss of methylation in sub-
genome D compared with Ae. tauschii. Additionally,
sub-genome A- and B-specific methylation levels were
compared with the profile for Ae. tauschii using the
same methodology. More pronounced differential
methylation was observed between the A and B sub-
genomes of hexaploid wheat and Ae. tauschii: for sub-
genome A, differences were seen at 1202 sites (16.7 %)
with 51.8 % showing a gain of methylation in the A sub-
genome and 48.2 % showing a loss; and for sub-genome
B, differences were seen at 1180 sites (16.4 %) where
57.1 % showed a gain of methylation in the B sub-
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genome of hexaploid wheat and 42.9 % showed a loss.
We see, as anticipated, that the methylation in Ae.
tauschii is more closely conserved with sub-genome D
than with sub-genome A or B. This is further highlighted
by the Pearson correlation coefficient plots shown in
Figure S11 in Additional file 1. GO terms that were
enriched within the differentially methylated sites between
sub-genome D and Ae. tauschii are detailed in Table S12
in Additional file 1, showing a focus on metabolism.

Conclusions

The size and lack of reference sequence for the bread
wheat genome has made it intractable to the comprehen-
sive analysis of methylation patterns. Here we demon-
strate the ability to analyze methylation across ~81 Mb of
genic sequence, through a combination of sequence cap-
ture across the seven wheat chromosomes, bisulfite treat-
ment and genome-specific assignment of reads using
homoeologous SNPs. This allows us, for the first time, to
address genome-wide methylation changes in this com-
plex polyploid. We show that the degree and context of
genome-wide methylation in wheat is comparable to that
of rice, that methylated cytosines are evenly distributed
along the chromosome’s genic sequence, that transposons
are hyper-methylated and that the chloroplast genome is
un-methylated. We identify sub-genome specific methyla-
tion and we demonstrate a correlation between promoter
methylation and decreased expression. We found that the
methylation conserved across the three sub-genomes of
hexaploid wheat is most highly conserved in Ae. tauschii
and that the methylation pattern in hexaploid wheat’s
sub-genome D is more similar to that of Ae. tauschii
than sub-genome A or B.

A key question in polyploids is whether genomes are
differentially methylated. Allele-specific methylation has
been observed in animals and plants and frequently
linked to gene expression changes [8, 9]. Here, while the
majority (45 %) of methylation we see in wheat is
genome-independent, with all three genomes methylated,
we do see considerable evidence for genome-specific
methylation between the A, B and D sub-genomes with no
one genome under selective methylation/de-methylation.
We also show that transcribed regions had higher levels of
sub-genome-specific non-CpG methylation than expected
for diploid plants, suggesting a potential association of
sub-genome specific methylation with pseudo-genes since
this non-CpG methylation is more prevalent in non-
transcribed regions.

In common with other plant polyploids, evidence for
differential expression across the three sub-genomes has
been seen in a number of studies, with as much as one-
third of genes being ascribed to expression from a only
one of the sub-genomes [25, 26]. Here, tri-genome
methylation, which accounted for the majority of
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observed cytosine positions, correlates with equal ex-
pression at that position, i.e., equal expression levels
across the three sub-genomes. Promoter regions show
this tendency for equal contribution per sub-genome to
overall expression at tri-genome methylated sites com-
bined with a loss of top end allelic expression that is also
seen at uni-genome methylated sites. We also found that
uni-genome methylation correlated with a significant re-
duction in expression of the affected sub-genome com-
pared with tri-genome methylated sites in promoter
regions. In other organisms, links between allele-specific
methylation and gene expression have been well docu-
mented [8, 9]. Genome-specific methylation accounts for
2.4 % of observed positions and 20 % of methylated cyto-
sines and, as such, it may be important, although unlikely,
to be responsible for all gene expression change. Further-
more, its influence may be masked when looking at
genome-wide expression trends. Uni-genome expression
was evenly distributed between the three sub-genomes, as
was bi-genome expression, which, as an analysis across all
plant tissues, is consistent with other investigations [22].

Population level variations in methylation patterns
have been associated with disease [27] and environmental
factors [28—30]. Here, we found only minor differences in
methylation patterns between plants grown at 12 °C and
27 °C even though temperature had a dramatic effect on
gene expression. However, in the few cases where we did
see methylation, this was associated with small changes in
gene expression and classes of genes that would be
predicted to have a temperature-dependent expression
profile, including heat shock and stress-related genes.

We found that tri-genome methylation sites are most
highly conserved between hexaploid bread wheat and
Ae. tauschii. Sub-genome D-specific methylation also
showed similarity to Ae. tauschii with sub-genome A/B-
specific methylation less conserved. This is anticipated
since Ae. tauschii is the proposed donor of the D sub-
genome. Interestingly, however, sub-genome D-specific
methylation is conserved with Ae. tauschii at a lower
level than tri-genome methylation, suggesting that tri-
genome methylation is the most stable form of methyla-
tion. Furthermore, there was clear similarity between
methylation patterns in Ae. tauschii and the A and B
sub-genomes that was missing from the D sub-genome;
this suggests that the hybridization between the AABB
and D genome may have had significant impact on the
A and B sub-genomes or that the A and B sub-genomes
already had a similar methylation profile to Ae. tauschii
that has since been lost from the D genome. It is clear
that future methylome sequencing of the A and B sub-
genome progenitors will be of great value.

We now have a technology to allow us to explore the
role of methylation in an agriculturally important and
complex polyploid genome. Wheat has a huge amount
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of genetic resources, including single genome progeni-
tors, over 150,000 cultivars, phenotyped populations and
modern elite cultivars with well-understood pedigrees.
With the ability to characterize genome-wide patterns of
methylation we can now address important biological
questions, such as the role of epigenetics in the domesti-
cation of crops, the stability and long-term function of
methylation in a polyploid genome and the interaction
between epi-type and genotype.

Materials and methods

Design of the methylation enrichment system

The 6-Mb target sequence for this Agilent enrichment
system was generated as per Figure S1 in Additional file
1. During selection of 120-mer RNA baits from the cap-
ture target sequence, previous mapping analyses of the
wheat genic sequence were used to select fragments on
the basis of previous good mapping coverage of the re-
gion, the presence of homoeologous SNPs and good
genome-wide representation (determined using tech-
niques and data derived from Winfield et al. [4] and
Gardiner et al. [17]). The 120-mer baits were uploaded
onto Agilent’s EArray (online custom microarray design
tool) to allow submission for manufacture. Bait ‘boost-
ing’ was selected to allow excess unused design space
(less than 1 Mb in this case) to be filled with repeat
sequences of baits that are predicted to perform less effi-
ciently, ie., those with an above average GC content are
‘boosted’ to ultimately gain even depth of sequence
coverage across the target region.

Preparation and mapping of bisulfite treated DNA
samples

Six genomic DNA samples were enriched and sequenced.
These samples were all extracted from the areal tissue of
7-day-old seedlings of the wheat variety Chinese Spring
and included plants (B, C and D) grown at 12 °C and
plants (B, C and D) grown at 27 °C. We sheared 3 pg of
each sample for 6 x60 s using a Covaris S2 focused-
ultrasonicator (duty cycle 10 %, intensity 5, 200 cycles per
burst using frequency sweeping). Fragmented DNA qual-
ity and quantity were assessed on a Bioanalyzer High Sen-
sitivity DNA chip (Agilent) prior to purification using 1.8x
Agencourt AMPure XP beads (Beckman Coulter). The six
samples were enriched using custom SureSelect RNA
oligomer baits. For this, end-repair, 3" adenylation, meth-
ylated adapter ligation, hybridization, bisulfite conversion
and PCR were carried out according to the SureSelect™"
Methyl-Seq Ilumina Multiplexed Sequencing Protocol
(version B, January 2013). Following bisulfite treatment, in
order to determine the minimal number of PCR cycles re-
quired in the first amplification step, enriched libraries
were quantified by quantitative PCR using the Agilent
qPCR NGS Library Quantification Kit (for Illumina) on a
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Roche LightCycler 480 II System. Library concentrations
were found to be between 200 and 400 pM and nine PCR
cycles were therefore used. Amplified libraries were then
indexed using six PCR cycles as per the standard protocol.
Final libraries were pooled in equimolar amounts and se-
quencing was carried out on an Illumina HiSeq 2000,
using version 3 chemistry, generating 2 x 100-bp paired-
end reads.

The sequencing datasets for the samples were mapped
to the extended bait sequence using Bismark, an aligner
and methylation caller designed specifically for bisulfite-
treated sequence data [11], a mismatch number of three
was used and the non-directional nature of the library
was specified. The Bismark methylation extractor tool
was then used to identify all cytosine residues within the
mapping and categorize the reads mapping to them as
un-methylated or methylated at that position while also
detailing which type of potential methylation site was
present (CHH, CHG or CpG). The mapping results were
also processed for SNP calling using the standard poly-
ploid pipeline below.

Standard mapping pipeline

For mapping analyses in this study, rather than mapping
directly to the 6-Mb Agilent bait probe sequences, un-
less otherwise stated, data were mapped to the baits plus
any surrounding contiguous DNA sequence that was
available. This was because we used paired-end Illumina
libraries which extended beyond the 120-mer baits. The
total size of the mapping reference was ~44 Mb. All
mapping analyses of non-bisulfite-treated samples were
carried out using BWA [31] (version 0.7.4) using four
mismatches per read. Mapping results were processed
using SAMtools [32]; any non-uniquely mapping reads,
unmapped reads, poor quality reads and duplicate reads
were removed. SNP calling in diploid datasets was car-
ried out using the GATK [33] Unified genotyper (after
Indel realignment), which was used with a minimum
quality of 50 and filtered using standard GATK recom-
mended parameters, a minimum coverage of 5 and
homozygous SNPs only selected. For polyploid datasets
SAMtools mpileup was implemented with the SNP caller
VarScan [34] to identify positions containing an alterna-
tive allele, with a minimum coverage of 5, an average
mapping quality above 15 and a minor allele frequency
(MAF) of greater than 0.1.

Determining a reference homoeologous SNP list

Sequencing datasets representing the closest available
diploid ancestor representatives for sub-genome A
(Triticum monococcum), B (Ae. speltoides) and D (Ae.
tauschii) [2, 35] were mapped individually to the ex-
tended sequence capture bait sequences to produce a
list of positions at which all three sub-genome’s
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alleles were unambiguous and known, and at least
one differed from the reference base, i.e., homoeologous
SNPs. Sub-genome A data were generated on the Illumina
GAIIx and the ~30-bp reads were mapped using the
standard pipeline except only one mismatch per read was
allowed. Sub-genome B data were generated on the Illu-
mina GAIIx and the ~100-bp reads were mapped using
the standard pipeline. Sub-genome D data were generated
using SOLID sequencing technology. The ~30-bp reads
were mapped using the standard pipeline with use of pa-
rameters to allow mapping of reads in color-space. All
mapping results were processed and SNP calling was car-
ried out as per the standard diploid pipeline. Positions
were identified at which all three sub-genomes' alleles
were unambiguous and known, and at least one differed
from the reference base and/or the other two sub-
genomes, i.e., homoeologous SNPs. All C to T or G to A
SNPs were excluded from this list to avoid future
confusion between genuine SNP sites and C to T con-
versions of un-methylated cytosines as a result of the
bisulfite conversion.

To complement this SNP list an additional homoeolo-
gous SNP list was generated. Three additional genomic
DNA samples were extracted from the areal tissue of the
same Chinese Spring 7-day-old seedlings that were
grown at 12 °C. These were treated as per the previous
DNA samples (i.e., enriched and sequenced), but bisul-
fite treatment was not used. The resultant sequencing
reads were pooled for the three samples and mapped to
the IWGSC wheat reference sequence using BWA [31].
Only reads that mapped perfectly (no mismatches or
gaps) to one of the wheat sub-genomes were taken
forward, ie., genome assigned reads. Reads aligning
perfectly to two genomes were also taken forward as
bi-genome markers if both IWGSC contigs that they
mapped to originated from the same chromosomal
arm. These genome and bi-genome associated reads
were then mapped to our extended bait sequence ref-
erence using BWA [31] and reads containing one
mismatch but otherwise perfect alignment were se-
lected. The genome assigned reads were thus aligned
to this single reference sequence, which is representa-
tive of the three sub-genomes, allowing the discrimin-
ation of homoeologous SNP positions. SNP calling for
polyploid datasets was carried out as previously
described. Using genome assigned reads allowed us to
match up the alleles at SNP locations with the con-
tributing wheat sub-genome to define an additional
homoeologous SNP list.

Association of cytosine residues with the reference
homoeologous SNP list

This technique is detailed in Figure S3 in Additional file 1.
SNP positions were identified in the enriched hexaploid
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wheat bisulfite-treated sequencing dataset using the stand-
ard polyploid pipeline. Reads mapping to these SNP posi-
tions therefore have sufficient depth and average mapping
quality overall and one or more alternative alleles present.
Those positions that could also be found in the homoeolo-
gous SNP list were selected for further analysis, i.e., homo-
eologous SNPs within the treated data. Any sequencing
read with a mapping quality over 20 and containing a
cytosine residue methylation status calculated by Bismark
plus a homoeologous SNP allele can be identified. Its SNP
allele can be matched to a sub-genome, thus associating
methylation status of that cytosine residue with a wheat
sub-genome. For each cytosine position a summary of
the number of reads hitting it for each sub-genome
and whether or not these reads are methylated can be
produced.

Implementation of Methylkit

The software Methylkit was used to identify regions of
differential methylation: our summary of each cytosine
plus the number of reads hitting it per sub-genome and
whether or not these reads are methylated can be used
for such analysis. Firstly, variation was determined be-
tween the sample replicates to record ‘background
methylation’ (e.g., between samples 12B, 12C, 12D and
between samples 27B, 27C and 27D), i.e., sites contain-
ing noise that could easily be flagged and removed from
downstream analyses. Replicates were used in pairwise
comparisons and as such Fisher's exact test was used to
discriminate statistically significant differences (q < 0.01
and methylation difference of =50 %). Methylkit was
implemented in the same way, after replicate sample
pooling, to define differential methylation between the
sub-genomes of wheat, within and between samples,
using pairwise comparisons. Differences were recorded
between one genome and the other two (uni-genome
methylation if the site also met the standard threshold
for methylation) and vice versa (bi-genome methylation).
Differences between all three genomes could then be de-
termined, whereas, between samples, pairwise compari-
sons were between sub-genome A-A, B-B and D-D. Due
to higher sample coverage after pooling, differences were
called at q <0.01 and a methylation difference of >25 %.
Finally, after summarizing methylation per extended bait
probe, Methylkit could be implemented with pairwise
comparisons to define DMRs between the sub-genomes
of wheat and between the two samples (q<0.01 and
methylation difference of >25 %).

MethylKit was used to define differential methylation
between the ‘older’ Chinese Spring and the 12 °C sample
using pairwise comparisons and a methylation difference
of 50 % (q < 0.01) due to the lower coverage in the ‘older’
Chinese Spring dataset. The same method was used for
the Ae. tauschii dataset.
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Validation of homoeologous SNP calls and methylation
status from next generation sequencing data using
Sanger sequencing

The DNA for the 12 °C and 27 °C samples was bisulfite-
treated using the EZ DNA Methylation-Gold kit (Zymo
research group). Twenty-three SNP sites were selected
at random for validation and primers were designed to
capture 150-400-bp regions surrounding the SNP sites
in bisulfite-treated DNA. These regions contained a total
of 337 analyzed cytosine sites (304 un-methylated and
33 partially or fully methylated) that could also be used
for methylation site status validation. For primer design
all Cs were treated as Ys (C/T) and no more than two Ys
were included in a primer sequence. PCR amplification
of the DNA followed using KAPA HiFi HotStart Uracil
+ ReadyMix and finally samples were sequenced using
Sanger sequencing (Source Bioscience). If SNP alleles
that had been seen in the next generation sequencing
data could be seen in the Sanger sequencing data in ap-
proximately the same proportions (within ~20 %), they
were said to be validated. Similarly, a methylation call
was deemed to be correct if the Sanger sequencing data
showed a proportion of methylation that was within ap-
proximately 20 % of that seen previously, i.e., 50 %
methylation would mean approximately equal peaks of
C and T in the Sanger sequencing data. All of the SNP
validations for the 12 °C sample are shown in Figure S5
in Additional file 1. This SNP analysis was coupled to
the analysis of the cytosine residues surrounding the
SNP call. Table S2 in Additional file 1 details the posi-
tions of these residues and their expected and observed
methylation statuses, demonstrating the high degree of
accuracy of calls generated within this study.

Calculation of bisulfite conversion rate

Bisulfite conversion rates can be measured by mapping
reads to the chloroplast genome, which is un-methylated
[36, 37]. While we did not enrich for chloroplast DNA,
because we used total wheat DNA, a proportion of our
off-target sequences mapped to the wheat chloroplast
genome. With our off-target DNA we were able to map
to 99.73 % of the chloroplast genome with an average
coverage of ~114x and 98.92 % of the cytosine bases in
the sequencing reads were bisulfite converted.

Identifying transcribed and non-transcribed regions in the
extended bait sequence

The 44-Mb extended bait sequence was used as a query
in a BLAST [38] alignment against the IWGSC wheat
reference sequence. Aligned regions with an E-value less
then 1le-5, over 90 % sequence identity and a length of
greater than 100 bp were taken forward. Of the 50,000
reference contigs, 46,756 (94 %) had hits and correlation
of these hits with the MIPS gene annotations (v2.2)
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allowed identification of exon and intron or transcribed
regions. Promoter-associated regions were predicted as
sequence up to 2000 bp upstream of the 5 untranslated
region or transcription start site. If no gene association
was found, regions were labeled as unknown/potentially
non-transcribed.

Setting of thresholds for identification of differential
methylation

Within this study homoeologous SNPs were used to
associate sequencing reads with individual wheat sub-
genomes. Due to the density of SNPs, we have regions
where we can define the three sub-genomes unambigu-
ously. Individually, however, homoeologous SNPs typically
define only two SNP alleles; e.g., a sub-genome A SNP
would define reads for the A sub-genome and for the
remaining two sub-genomes, B and D, together, although,
proportionally, read numbers tend to double for the allele
representing the two sub-genomes. This is expected since
the bisulfite treatment renders the discrimination of C-to-
T and G-to-A SNPs impossible. We can only confidently
categorize reads that are an average of two sub-genomes
into highly methylated (i.e., both genomes likely to be
methylated) or low level methylation (i.e., both genomes
likely to be un-methylated) and this formed the reasoning
for developing our own thresholds to categorize methyla-
tion in wheat. However, it means that intermediate level
methylation, which is likely to be associated with tissue-
specific regulation, was not fully described and is beyond
the scope of this study. We adjusted thresholds that were
used in a genome-wide analysis of Arabidopsis where CpG
sites were called methylated at 80-100 % methylation,
CHG sites at over 25 % and CHH sites at levels over 10 %
[7]. Thresholds of >75 % and <25 % methylation were
used to categorize the CpG data as methylated or un-
methylated. At CHG and CHH sites >95 % of methylation
fell below the 10 % threshold and, as such, methylation ex-
ceeding a threshold of 10 % was likely to denote a highly
methylated residue, or two methylated genomes at posi-
tions that are an average of two sub-genomes, with 0 %
methylation denoting two un-methylated genomes. This
scoring allows the analysis of positions that were assigned
to a genome pair in addition to those that were assigned
to a single genome.

At each cytosine residue site, where sub-genomes can
be discriminated, the percentage of the reads mapping
to each sub-genome that were methylated can be calcu-
lated using Bismark’s [11] categorization of sequencing
reads as methylated or un-methylated at each cytosine
residue. Under the same rationale differential methylation
was identified between sub-genomes and/or samples at a
minimum difference of 50 % to ensure elimination of
replicate variance and the analysis of genuine methy-
lation changes.
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Construction of pseudo-chromosomes from capture
design contigs

We made use of 21 wheat chromosomal pseudo-molecules
that were created by organizing and concatenating the
IWGSC CSS assemblies using POPSEQ data [18].
BLASTN [38] was used to place the capture design contigs
onto these chromosomal pseudo-molecules (E-value cutoff
le-5, minimum sequence identity 90 and minimum length
of 100 bp). Relative positions for the capture design contigs
along the chromosomal pseudo-molecules could then
be used to order them into our POPSEQ based
pseudo-chromosomes. We desired seven POPSEQ
based pseudo-chromosomes, as per our capture probe
set, that were representative of the 21 wheat chromo-
somes. This would in effect align the three wheat ge-
nomes to allow comparison directly. Therefore, the
order of the capture design contigs along genome B’s
chromosomal pseudo-molecules 1-7 was preferen-
tially utilized since the greatest number of contigs
could be aligned to these sequences and therefore
included (83 %).

GOEAST analysis

The online tool GOEAST (Gene Ontology Enrichment
Analysis Software Toolkit) was implemented (custom-
ized microarray analysis) using a background file of all
methylated sites under analysis and their GO annota-
tions compared individually with each of the files of uni-
genome A, B and D methylation sites. Default parame-
ters were used and enriched terms were filtered out if
they had a p value <0.05. The previous alignment of the
extended bait probes with the ITWGSC reference se-
quence and MIPS gene annotations, including GO term
annotation, allowed easy assignment of GO terms to
methylation site regions.

Generation of gene expression data for the 12 °C and 27 °C
sample for differential gene expression analysis

A FASTA file of reference sequences was created from
the extended bait sequences. The reference homoeolo-
gous SNP list was implemented to develop three se-
quences for each probe representing the A, B and D
sub-genomes. Bowtie2 [20] was used to map the paired-
end RNA-seq reads to this reference. These reads were
generated for the same two wheat samples, 12 °C and
27 °C, using the Illumina HiSeq using largely the same
methods that were implemented for the genomic DNA
with the exception of the enrichment step. Reads were
permitted to map to multiple locations (up to 101) and
all other parameters were left as default. Allelic expres-
sion levels were estimated for each sample using stage
one of BitSeq [21], without the assumption of uniform
read distribution. The limitA parameter was set at 100
in the parseAlignment step, telling BitSeq to ignore any
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reads that had aligned more than 100 times. This param-
eter was set as one lower than the maximum number of
alignments permitted when aligning reads. This was
done due to the way Bowtie2 reports multiple align-
ments; it reports the first alignments found if it reaches
the maximum number of alignments permitted, which
do not necessarily include all of the best alignments.
Stage two of BitSeq was then used to identify differential
expression between plants grown at 12 °C and 27 °C, on
the basis of PPLR values.

Availability of supporting data

All sequencing datasets plus our constructed pseudo-
genome are available (study PRJEB8762) from the European
Nucleotide Archive (http://www.ebi.ac.uk/ena/data/view/
PRJEB8762). Our constructed pseudo-genome is also
available on request via iPLant (http://www.ebi.ac.uk/
ena/data/view/PRJEB8762).

Ethics approval
Ethics approval was not needed for this study.
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Additional file 1: Supplementary data file includes Figures S1-S11,
Tables S1-S12 and Notes 1-4. (PDF 107087 kb)
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