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Abstract

Many genomic techniques have been developed to study gene essentiality genome-wide, such as CRISPR and
shRNA screens. Our analyses of public CRISPR screens suggest protein interaction networks, when integrated with
gene expression or histone marks, are highly predictive of gene essentiality. Meanwhile, the quality of CRISPR and
shRNA screen results can be significantly enhanced through network neighbor information. We also found network
neighbor information to be very informative on prioritizing ChIP-seq target genes and survival indicator genes from
tumor profiling. Thus, our study provides a general method for gene essentiality analysis in functional genomic
experiments (http://nest.dfci.harvard.edu).

Keywords: CRISPR screen, Network analysis, Gene essentiality

Background
Essential genes are those genes critical for cell viability
under certain contexts. Recent years have seen the rapid
development of functional genomics techniques for
studying gene essentiality genome-wide. For example,
large-scale shRNA screens have been used to search for
essential genes in diverse cell lines [1]. If a specific transcrip-
tion factor drives the cell viability under certain condition,
ChIP-seq technique can be used to profile the regulatory
targets to further find essential genes [2]. Many computa-
tional methods have also been developed to predict context
specific gene essentiality through integration of gene expres-
sion, molecular alterations, and biological pathways [3].

Recently, the CRISPR (clustered regularly interspaced
short palindromic repeats) screen emerged as an exciting
new approach to profile gene essentiality at genome
scale [4–11]. In the CRISPR system, single-guide RNAs
(sgRNA) direct Cas9 nucleases to induce double-strand
breaks (DSB) at targeted genomic regions [12, 13].
When the error-prone non-homologous end-joining
mechanism repairs the DSBs, insertions and deletions
occur with high frequency, which produce a non-functional

protein. Catalytically inactive Cas9 fused with a transcrip-
tional activator or repressor has also been used to modulate
gene expression at targeted loci [8, 9, 14–17]. Combined
with lentiviral delivery method, CRISPR systems enable
genome-scale functional screening in a cost-effective man-
ner [4–11]. In CRISPR screens, sgRNAs targeting candidate
genes are synthesized, and viral integration enables readout
through next-generation sequencing [18]. The relative
abundances of each integrated sgRNA between different
conditions are compared and the importance of sgRNA tar-
get gene is inferred according to its sgRNAs’ effect on cell
growth.

The progress of CRISPR screen technology enabled
systematic and reliable determination of gene essentiality
under diverse conditions. The high quality gene essenti-
ality profiles from CRISPR could enable a better com-
parison among essentiality prediction methods and
better identification of distinct features of the essential
genes. Such features not only facilitate a better under-
standing of the CRISPR screen data, but also can help
prioritize the leads from CRISPR screens. From the ana-
lysis of yeast protein interactions, it is well known that
highly connected proteins in a network (degree hubs)
are more likely to be essential for viability [19–21].
Thus, we hypothesize that the gene essentiality outcome
in CRISPR screens might depend on the gene connectiv-
ity in biological networks. Protein interaction networks
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have been integrated to improve the quality of RNAi
screen results, which are very noisy due to off-target ef-
fect and low knockdown efficiency [22–25]. These previ-
ous works on RNAi screen indicate that the CRISPR
screen result quality may also be improved by integra-
tion with protein interaction networks.

In this study, we took a network perspective and
developed a method called NEST (Network Essenti-
ality Scoring Tool) to systematically analyze the re-
cent genome wide CRISPR screen data. We found
that gene essentiality determined by CRISPR screen
largely depends on the expression level of interacting
genes in the biological network. Moreover, the qual-
ity of CRISPR and shRNA screen data can be further
improved by NEST after considering the gene neigh-
borhood screen outcome. Besides applications on
CRISPR and shRNA screens, NEST is also generally
applicable on many other types of genomics data
analysis, such as ChIP-seq target gene prioritization
and survival gene identification from tumor profiling
data.

Results and discussion
NEST predicts gene essentiality in CRISPR screen
We first collected recently published CRISPR loss-of-
function screen data [4, 5, 8], and selected three cell
lines (K562, HL60, and A375) with publicly available
gene expression data [26–28]. The significant CRISPR
screen gene hits are called with software MAGeCK [29].
In CRISPR screens for growth phenotype, most signifi-
cant genes are negatively selected, which means these
genes are essential in the corresponding experimental
condition (Additional file 1: Figure S1). To identify dis-
tinct features of gene essentiality in CRISPR screens, we
developed a network-based method called NEST (Net-
work Essentiality Scoring Tool), and found the following
metric to give reliable performance.

For each gene, NEST calculates neighbor expression
measure as the sum of normalized expression of its
neighbor genes connected in the protein interaction net-
work, weighted by the interaction confidence (Fig. 1a).
The calculation of NEST score can also be formulated as
product between connectivity matrix, which is composed
of interaction weights between protein pairs, and gene
expression vector. Each gene’s relative expression in one
cell is normalized against its average expression across
all cell lines, and the protein interaction network infor-
mation is from STRING [30] (Additional file 1: Figure
S2). For essential genes selected by CRISPR screen, we
defined the gold standard set as the genes hits called by
MAGeCK with FDR threshold 0.05 [29]. For each meas-
ure, such as NEST score or network degree, all genes
were ranked by their values in descending order. Re-
ceiver operating characteristic (ROC) curve was used to

test the performance of predicting the CRISPR screen
gold standard set (Fig. 1b).

For gene essentiality prediction in K562 CRISPRi
screen, NEST achieved a false positive rate of 0.2 and a
true positive rate of 0.8, with an area under the ROC
curve (AUC) of 0.89. The AUC of NEST score is consist-
ently better than network degree, gene expression, and
shRNA screen data from the Achilles project [1] (Delong
P value <1e-10 for all comparisons). Similar performance
differences were also observed in CRISPR screen in
HL60 and A375 (Additional file 1: Figure S3a). To
visualize the CRISPR prediction performance in an intui-
tive way, we plotted the rank percentile of NEST scores
for essential genes and non-essential genes in CRISPR
screen (Fig. 1c and Additional file 1: Figure S3B). The
NEST ranks are significantly higher for essential genes
than non-essential genes (Wilcoxon rank-sum P value
<1e-10 for cell lines). Besides STRING network, we also
used other large-scale networks for CRISPR outcome pre-
diction. However, we did not find any performance im-
provement using either other network or merged network
among several data sources (Additional file 1: Figure S4).

The results above suggest that if a gene’s network
neighbors are over-expressed in some conditions, the
gene itself becomes more essential. We also found that
genes with high NEST scores are tightly clustered in
protein interaction network. The STRING network
genes were grouped into 2,271 dense complexes using
SPICi [31]. Gene with high NEST scores tend to stay in
fewer number of STRING clusters than clusters with
gene names shuffled (Additional file 1: Figure S5). Thus,
a high NEST score may indicate the gene to be member
of an active protein complex.

To test the prediction specificity, we applied NEST for
gene expression profiles of 56 cell lines profiled by Road-
map project [26]. Measured by rank-sum test Z-scores,
K562 CRISPRi screen data achieved the highest associ-
ation with NEST score in K562 cell than all other cell
lines (Fig. 1d). Similarly, HL60 and A375 CRISPR screen
data also achieved higher associations with NEST scores
in the same cell line (Additional file 1: Figure S3C).
Housekeeping genes, such as ribosome members are
often selected as essential genes in CRISPR screens
[5, 8]. Thus, we further tested that the high prediction
power of NEST scores was not purely derived from the
same set of housekeeping genes. The prediction perform-
ance of NEST remains high after removal of housekeeping
genes annotated previously [32] (Additional file 1:
Figure S6). Notably, the majority of essential genes
selected in CRISPR screen do not overlap between
K562, HL60, and A375 (Additional file 1: Table S1).
Thus, our NEST score is an orthogonal feature of
CRISPR selected gene essentiality other than the uni-
versal housekeeping genes shared across conditions.
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Since gene network degree and gene expression are
also predicative of gene essentiality (Fig. 1b), we then
tested whether the prediction performance of NEST is
simply an additive effect of network degree and gene ex-
pression (Table 1). Using the gene essentiality in CRISPR

screen as responsive variable, we did a multivariate logis-
tic regression among all three covariates (NEST score,
gene network degree, and expression). While all covari-
ates are predictive of gene essentiality jointly, NEST has
the largest statistical significance defined as Logit Z-
score (Table 1). Moreover, the logistic regression fitted
value, combining all covariates together, did not improve
the CRISPR prediction performance comparing to NEST
score alone (Additional file 1: Figure S7). As a further
control, we randomized the STRING network but pre-
served the network degree for each gene [33]. The Logit
Z-scores for the NEST score in random networks are
significantly smaller than in real data (Fig. 1e, empirical
P value <0.001 for K562 and HL60, and P value = 0.003
for A375).

There have been many previous methods developed
for gene essentiality prediction. Since CRISPR screen
measures the gene essentiality, any previous methods
can be predictive for CRISPR outcome. In a recent
DREAM challenge, contenders were asked to develop al-
gorithms to predict cell specific gene essentiality [3].
Among cell lines included in the DREAM challenge,
A375 has CRISPR screen data available. We compared
the CRISPR outcome prediction performance between
our method and the top three methods from the

Table 1 Confounding factors for NEST prediction performance

Covariate Coefficient Standard error Z-score P value

NEST 0.02329 0.001748 13.32 1.72e-40

Degree 0.00415 0.000846 4.91 9.33e-07

Expression 0.12937 0.054223 2.39 1.70e-02

A. K562

NEST 0.03494 0.00505 6.91 4.73e-12

Degree 0.00608 0.00146 4.16 3.13e-05

Expression 0.33873 0.16595 2.04 4.12e-02

B. HL60

NEST 0.07296 0.02483 2.94 0.00329

Degree 0.00792 0.00357 2.22 0.02647

Expression 1.12266 0.48343 2.32 0.02022

C. A375

The prediction power of NEST score on gene essentiality decided by CRISPR
screen is tested through logistic regression with gene network degree and gene
expression as covariates. The Logit Z-score is defined as Coef/Stderr. The P value is
calculated by Ward test. The result is shown for (A) K562, (B) HL60, and (C) A375

a b c

d e f

Fig. 1 Prediction of CRISPR screen outcome. a NEST calculates the neighbor expression of a gene as the sum of expression values of its neighbor
genes connected in the network, weighted by the interaction weight. b Receiver operating characteristic (ROC) curve is used to test the
performance of predicting gene essentiality determined by K562 CRISPRi screen. The performance of NEST score, network degree, gene
expression, and shRNA screen are shown. The black point represents false positive rate 0.2 and true positive rate 0.8. c The NEST scores are
converted to rank percentiles from 0 to 1, and shown for essential genes and non-essential genes determined in K562 CRISPRi screen. d For each
Roadmap expression profile, we calculated the prediction power of NEST score on gene essentiality in K562 screen by Wilcoxon rank-sum test.
The rank-sum Z-scores for all cell lines are ranked and the K562 profile has the largest value. e The STRING network was randomized 1,000 times,
and the NEST scores were calculated for random networks. We used multivariate logistic regression to test the association of NEST score with
gene essentiality after controlling the effects of network degree and gene expression (Table 1). The Logit Z-scores are shown for real and random
networks. f In DREAM gene essentiality prediction challenge, A375 cell line also has CRISPR screen data available. Using essential genes selected
in CRISPR screen as gold standard, the prediction performance is compared between NEST (red) and the top three winners in DREAM
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DREAM challenge, and found NEST to consistently out-
perform all DREAM winners (Fig. 1f ). Besides the
methods in DREAM, we also compared the performance
of NEST with other methods using gene expression and
network to predict gene essentiality [34, 35]. NEST sig-
nificantly outperformed all other methods (Additional
file 1: Figure S8 and Additional file 1: Methods).

Besides gene expression, we also used H3K27ac his-
tone mark data to compute NEST scores and tested the
gene essentiality prediction performance. Previously, we
developed a method to calculate the regulatory potential
(RP) scores of a histone modification on each gene pro-
moter from the ChIP-seq profile [36, 37]. Based on our
previous method, gene level RP scores in K562 cell were
computed using the Roadmap H3K27ac ChIP-seq profile
[26]. For each gene, NEST computed neighbor H3K27ac
score as the sum of H3K27ac RP scores of its neighbor
genes connected in the protein interaction network,
weighted by the interaction confidence (Fig. 1a). H3K27ac
NEST scores could also reliably predict the gene essential-
ity in K562 CRISPRi screen (Additional file 1: Figure S3),
suggesting the applicability of NEST analysis on histone
modification data.

NEST enhances the quality of CRISPR screen results
Since early CRISPR screens might have inefficient
sgRNA selection and few sgRNA per gene, these screens
may not give very strong hits. Encouraged by the predic-
tion performance, we checked whether the network neigh-
bor information could enhance the quality of CRISPR
screen results. To measure the quality of a screen data, we
need to know the expected outcome. In a K562 CRISPRi
screen, the authors performed a genome-scale selection
for genes that modulate sensitivity to Cholera/Diphtheria
toxin [8]. For genes that work with the toxin, their knock
out will protect the cell against the toxin and induce a
positive gene selection in screen. For genes that are tar-
geted by toxin, their knock out will sensitize the cell for
toxin effect and induce a negative gene selection. The
positively selected genes, which played a protective role
against toxin, were enriched in KEGG pathways ‘Vibrio
Cholerae Infection’ and ‘Glycosphingolipid Biosynthesis’
[8]. The negatively selected genes, which played a sensitiz-
ing role for toxin, were enriched in ‘Ribosome’ and ‘Prote-
asome’ pathways [8]. We used these enriched pathway
genes as gold standard and tested how well network inter-
action could improve the CRISPR screen result (Fig. 2).

For each gene, NEST calculated a neighbor CRISPR
score by adding up the CRISPR fold change scores
among neighbor genes connected in the STRING net-
work, weighted by the interaction confidence. This
NEST score is significantly more predictive on the
gold standard outcome than the original CRISPR
scores for both protective and sensitizing genes

(Fig. 2a, b, Delong test P value = 0.010 for protective
genes, P value = 9.92e-14 for sensitizing genes). More-
over, when we put different levels of Gaussian white
noise into CRISPR screen scores, the prediction per-
formance of NEST score diminishes slower than
original CRISPR scores (Fig. 2c, d). As a control, if
we calculated the NEST scores from randomized net-
work, the prediction power became significantly worse
(Fig. 2e, P value <0.001 for both protective and sensitizing
genes). Thus, through the connectivity of protein inter-
action network, NEST can enhance the quality of CRISPR
screen result.

As an example of gene with high NEST score, COG6 is
a member of Golgi complex and its NEST score is sig-
nificantly larger than expected (permutation test P value
<0.001). COG6 is connected with many other members
of Golgi complex (Fig. 2f ), and most of them have posi-
tive CRISPR screen fold change scores. Since they are
connected with each other in network, they mutually
boosted each other’s NEST scores. Our result is consist-
ent with the knowledge that cholera toxin needs to enter
host cells and travel through the trans-Golgi network to
take effect [38].

The above results suggest that if a gene’s network
neighbors are under CRISPR screen selection, the gene
itself is more likely to be under CRISPR screen selection
in the same direction. Besides CRISPR screen, we applied
NEST on the Achilles shRNA screen data [1]. NEST can
also significantly enhance the quality of shRNA screen
result (Additional file 1: Figure S9). Thus, in general,
the quality of functional genomic screen result can be
improved by considering the gene network neighbor
information.

Previously, there were methods developed to improve
the quality of RNAi screen results from integration with
protein interaction networks [25]. For CRISPR enhance-
ment, we compared our method NEST against NePhe,
which was a leading method on RNAi screen network
analysis [24]. Using K562 toxin screen as the gold stand-
ard, we found that NePhe and NEST show similar per-
formance as measured by ROC curves (Additional file 1:
Figure S10AB). However, while NePhe used 14 GB
memory and 6.2 h running time, NEST only used
8.3 MB memory and 10.8 s (Additional file 1: Figure
S10C). Thus, NEST maintains reliable screen enhance-
ment performance of previous method with much better
computational efficiency.

NEST prioritizes ChIP-seq essential targets
Besides functional genomic CRISPR/shRNA screen,
many other genomic experimental techniques can be
used to search for essential genes. For example, if a spe-
cific transcription factor (TF) drives the cell viability
under certain condition, ChIP-seq technique can be used
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to profile its regulatory targets to further find essential
genes [2]. The previous analyses demonstrate that NEST
can identify the essential genes in a CRISPR screen. We
further explored whether NEST can help prioritize key
target genes in a ChIP-seq experiment. ChIP-seq often
finds tens of thousands in vivo binding sites for a TF.
Since target genes can be regulated by TF binding
through long range DNA looping, often thousands of
genes near the TF binding sites can be putative targets,
and it is hard to prioritize the functional target genes
directly from a ChIP-seq experiment. We therefore in-
vestigated using network neighbor information to
prioritize the functional TF target genes.

Our previous studies of NOTCH1 ChIP-seq and gene
expression profiles in the T-lymphoblastic leukemia
(TLL) cell line CUTLL1 identified 1,012 differential
NOTCH1 binding sites between the NOTCH on and off
conditions [2]. Based on the ChIP-seq peaks, we cal-
culated a regulatory potential (RP) score for each
gene [36, 37, 39], a distance-weighted sum of binding
sites measuring the overall regulatory impact of differ-
ential NOTCH1 binding on target genes. We set the
KEGG NOTCH signaling pathway members as the
gold stand, and tested the prediction performance of

expression, ChIP-seq RP and NEST scores (Fig. 3). In
addition to NEST scores computed from gene expres-
sion (NEST E), we also computed NEST scores from
ChIP-seq (NEST C), which measures the sum of
ChIP-seq RP scores of neighbor genes connected in
network. While expression and ChIP-seq measures

a b

Fig. 3 Prediction of NOTCH signaling pathway members. a The
differential gene expression between NOTCH on and off conditions is
used to calculate the NEST E score. The NOTCH1 ChIP-seq regulatory
potential score for each gene is used to calculate the NEST C score.
The KEGG Notch Signaling pathway members are used as gold
standard and the prediction performances of all measures are shown
by ROC curves. b The area under ROC curve (AUC) is shown for each
measure. The comparison between AUCs is done by Delong test

Fig. 2 Enhancement of CRISPR screen result. a For K562 CRISPRi screen under Cholera/Diptheria toxin selection, the gold standard of toxin protective
genes comes from KEGG pathways ‘Vibrio Cholera Infection’ and ‘Glycosphingolipid biosynthesis’. For each gene, NEST computes the neighbor CRISPR
score as the sum of CRISPR screen fold change scores of neighbor genes connected in the network. The prediction performance is compared
between NEST and original CRISPR scores. b The gold standard of toxin sensitizing genes comes from KEGG pathways ‘Ribosome’ and ‘Proteasome’.
The prediction performances of NEST and original CRISPR values are compared. c The original CRISPR values were randomized by Gaussian white
noise. The standard deviation of all original CRISPR values was used as base level. At each noise level relative to the base level, the area under ROC
curve (AUC) of prediction is compared with the initial AUC for toxin protective genes in K562 Cholera toxin screen. The reduction ratios were plotted
for NEST and original CRISPR scores. d The reduction ratios were plotted for toxin sensitizing genes. e The STRING network was randomized and the
NEST scores were calculated for 1,000 random networks. We used multivariate logistic regression to test the association of NEST scores with gold
standards, after controlling the effects from network degree and original CRISPR score. The Logit Z-scores are shown for real and random networks.
f As an example of high NEST score gene, COG6 is a component of Golgi complex, and connected with several other components in Golgi complex.
The thickness of each edge represents the interaction weight. The color of each gene represents the CRISPR screen fold change score;
red color indicates toxin protective and blue color indicates toxin sensitizing
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are barely better than random, NEST scores can pre-
dict the annotated KEGG NOTCH signaling pathway
members at AUC 0.90 and 0.95 (Fig. 3). It suggests
that if a gene’s network neighbors are enriched in the
binding target of a TF, the gene itself is more likely
to be regulated by the same TF.

NEST predicts cancer patient survival
Encouraged by the above analyses in cell lines, we
checked whether NEST could facilitate the analysis of
tumor profiling data. There have been previous studies
integrating biological networks with cancer (or disease)
biology data to understand the mechanisms of pathogen-
esis [35, 40–43]. Inspired by these studies, we examined
the TCGA tumor profiling data to see whether NEST
score computed from gene expression can better predict
patient survival than gene expression. For example,
over-activation of oncogene EGFR is a key feature of
Glioblastoma (GBM) [44]. In TCGA GBM profiles [45],
while EGFR over-expression does not correlate with
worse survival (Fig. 4a, Cox-PH P value = 0.109), higher
EGFR NEST score is significantly associated with worse
survival (Fig. 4b, Cox-PH P value = 0.001).

To systematically evaluate the survival prediction per-
formance, we hypothesized that a good gene-wise sur-
vival predictor should show significant higher death risk
for oncogenes than for tumor suppressors. We tested
this hypothesis on all the annotated oncogenes and
tumor suppressors [46] using the TCGA GBM data
(Fig. 4c). While gene expression showed no significant
difference on survival risk Z-scores, NEST gave signifi-
cantly higher survival risk for oncogenes than tumor
suppressors (Fig. 4c). This observation was corroborated
in another independent GBM cohort [47] (Additional
file 1: Figure S11), suggesting NEST score to be a much
better indicator of GBM survival than gene expression
alone. To examine the survival prediction performance
of NEST in other cancer types, we used the Wilcoxon
rank-sum test to measure the difference of survival risk
Z-scores between oncogenes and tumor suppressors. A
positive rank-sum Z-score indicates oncogenes with
higher survival risk than tumor suppressors, and a nega-
tive Z-score indicates the opposite. For low death rate
cancers, the Cox-PH survival regression may not get ac-
curate risk estimation for each gene. In contrast, cancer
types with high death rate, such as GBM and ovarian
cancer (OV), seemed to give positive rank-sum Z-scores
that separate oncogenes from tumor suppressors
(Fig. 4d). These results suggest that if a gene’s neighbors
are over expressed in tumors, the gene itself is more
likely to be an oncogene with associated survival risk.

We conducted pathway analysis on all the genes
whose NEST scores are associated with GBM survival
(FDR < = 0.05), and found ‘cytokine cytokine-receptor

interaction’ to be the most enriched KEGG pathway
(Additional file 1: Table S2). It was known that cytokines
played a pivotal role in the pathogenesis of GBM [48], so
we plotted the outcome-associated cytokine genes using
CytoScape [49] (Fig. 5). Many of them are known onco-
genes in GBM, such as EGFR and CSF1R [46], and sev-
eral also have known targeted drugs from Drug Bank
[50]. For example, the inhibitors of EGFR, CSF1R, and
CXCR4 were shown to reduce the invasiveness of Gli-
oma cells or block GBM progression [51–53]. Besides
the known druggable genes, many other genes in our
prediction could serve as promising targets. For ex-
ample, NEST predicted KITLG as indicator of poor
GBM survival which is consistent with the finding that
downregulation of KITLG inhibits angiogenesis and Gli-
oma growth [54]. Thus, our predictions could sketch a
general landscape to investigate therapeutic possibilities
for GBM and other cancers.

a b

c d

Fig. 4 Prediction of patient survival. a All TCGA Glioblastoma (GBM)
patients are ranked by EGFR expression; the top half patients are
assigned as high group and the lower half are assigned as low.
Kaplan Meier (KM) survival plot is shown for two groups. b The
survival analysis is done in the same way as A for EGFR NEST scores.
c For each gene, we calculated a death risk Z-score by Cox-PH
model from either gene expression or NEST score. We compared the
Z-scores for oncogenes (Onco) and tumor suppressor genes (TSG)
based on the annotation from Vogelstein et al. The bottom and top
of the boxes are the 25th and 75th percentiles (interquartile range).
Whiskers on the top and bottom represent the maximum and minimum
data points within the range represented by 1.5 times the interquartile
range. The distribution of Z-scores is compared by Wilcoxon rank-sum
test and three stars represent P value <0.001. d For each TCGA cohort,
the difference of risk Z-scores computed from NEST was tested by
Wilcoxon rank-sum test. The rank-sum Z-scores are plotted against the
death rate of each cancer type, with Spearman’s rank correlation as title
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Conclusion
To identify distinct features of gene essentiality in
CRISPR screens, we developed a network-based method
called NEST (Network Essentiality Scoring Tool). We
found that essential genes selected in CRISPR screens
showed characteristic higher expression level of neigh-
bor genes connected in protein interaction network. Our
analysis of Cholera toxin screen in K562 cell also
suggests that the quality of CRISPR screen result can be
enhanced through the neighbor CRISPR selection score.
For a ChIP-seq experiment, NEST can also reliably iden-
tify the key TF target genes. Last but not least, NEST
score can better predict patient survival than gene ex-
pression alone from TCGA tumor profiles. Historically,
protein interaction networks were widely used to infer
discrete labels such as gene functions, phenotypes [55–
57], or gene categories [58]. Our study is different from
these previous works in that continuous expression or
screen change fold values are integrated with the protein
networks. Despite these differences, all of these studies
indicate that network information can greatly help bio-
logical inference.

NEST significantly outperformed previous methods on
gene essentiality prediction and functional screen result
enhancement, including all winning methods in the
DREAM challenge (Fig. 1f ). According to the rule of
DREAM challenge, all DREAM methods can gene ex-
pression as well as any other features they could utilize.
However, NEST outperformed all top DREAM methods.
One possible reason is that the gene essentiality gold
standard of DREAM is the Achilles shRNA screen data,
which is poorly correlated with CRISPR screen (Fig. 1b
and Additional file 1: Figure S3A). Because we used
CRISPR data as gold standard, those top DREAM
methods, optimized to fit Achilles shRNA screen, may
not have satisfactory performance.

Several limitations should be noted for our study.
NEST computed gene activity is based on network inter-
action partners, which could have either an activating or
a repressive effect. Meanwhile, for compensating inter-
action such as synthetic lethality, the activation of inter-
action partners indicates gene loss of function. For
example, PLK1, an interaction partner of TP53 in STRING
network, was consistently upregulated in cancer cells with

Fig. 5 Cytokine receptor interaction network for GBM survival. For all members in KEGG pathway Cytokine Cytokine-Receptor Interaction, we
selected the genes indicating death risk with FDR threshold 0.05. The pathway members are colored by their gene family categories, including
Chemokine, Tumor Necrosis Factor (TNF), Interleukin, and Receptor Tyrosine Kinase (RTK). A diamond shape indicates the gene to be drug targetable
in Drug Bank. The node size is proportional to the NEST score averaged among all GBM patients. Stars are used to label known oncogenes annotated
by Vogelstein et al. The directed edge indicates a cytokine-to-receptor relation in KEGG, and undirected edge indicates an experimental protein
interaction curated by STRING. The thickness of each edge indicates the interaction confidence
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inactivated TP53 compared with those with wild type [59].
We currently summed all neighbor values without distin-
guishing between activating, repressive, or synthetic lethal
relations. Thus, further categorization of network inter-
action types will be critical for better gene prioritization.
Another limitation of our study is that current data on
protein interaction network only covered a subset of
well-studied genes [60]. Because of the dependence on
interaction knowledge, our method may not reliably
infer the activity for under-studied genes. As a third
limitation, we only tested NEST on gene loss-of-
function CRISPR screens. However, for CRISPRa gain
of function screen [8, 9], it remains to see whether
network-based analysis can bring any predictive power
and result enhancement.

In summary, we derived a network-based method,
NEST, to interpret and enhance the outcome of
genome-wide CRISPR screens, and NEST showed sig-
nificantly better performance than previous related
methods. We recommend researchers using NEST to
calculate neighbor CRISPR values from their CRISPR
screen result. Moreover, the candidate essential genes in
a cell condition might be prioritized before running a
large-scale screen to reduce the total number of genes
under the screen, which might improve the results and
practicality of in vivo CRISPR screens. Besides CRISPR
analysis, our method can also identify key targets from
ChIP-seq experiments, and find clinical outcome associ-
ated genes from tumor profiling data. Thus, we foresee
NEST as generally applicable to many applications re-
lated with gene essentiality prioritization.

Materials and methods
Availability
The web application and source code of NEST are
freely available under the GNU Public License v3 at
http://nest.dfci.harvard.edu. The source code and test-
ing data of NEST are additionally deposited at https://
github.com/foreverdream2/NEST/releases.

Data collection
For CRISPR screen data, we searched published studies
with data publicly available and sgRNA coverage on gen-
ome scale for human cell lines until 1 June 2015. There
are three studies fulfilling our criterion. In K562 cell,
growth phenotype and toxin selection phenotype are
screened with CRISPRi technology [8]. In HL60 and
A375 cell lines, growth phenotype is screened on gen-
ome scale with CRISPR technology [4, 5]. Significant
gene hits are called from these datasets by MAGeCK
0.5 with default parameters and FDR threshold 0.05
[29]. For gene essentiality prediction in each cell line,
only negatively selected gene hits were considered as
gold standard, because most significant gene hits are

negatively selected in collected CRISPR experiments
(Additional file 1: Figure S1). For gold standard con-
trol set, we extracted the same number of genes
ranked by MAGeCK on bottom.

For K562, the gene expression profile was downloaded
from the Roadmap project [26]. For HL60, the gene ex-
pression profile by exon-array was downloaded from the
ENCODE project [27] and converted to gene level values
by JETTA [61]. For A375, the gene expression profile
was downloaded from the CCLE project [28]. For each
gene, we normalized the expression value by subtracting
the mean across all samples in each cohort. Compared
to absolute expression level, the normalized expression
value can achieve a better CRISPR prediction perform-
ance of NEST (Additional file 1: Figure S12). The TCGA
tumor gene expression data was downloaded from
TCGA Data Portal on 27 July 2014. Only cohorts that
are not embargoed are used. For each cancer cohort, the
expression values of all normal control samples were av-
eraged as background, and the difference of gene expres-
sion between tumor sample and normal background was
analyzed. For NOTCH signaling pathway analysis, the
NOTCH off condition is defined as gamma secretase
inhibitors (GSI) treatment 3 days, and NOTCH on con-
dition is defined as GSI wash 4 h [62]. The differential
expression value between on/off conditions was analyzed
[62]. The NOTCH1 ChIP-seq data are generated in our
previous work, and the dynamic binding peaks between
NOTCH on/off conditions were used [2].

For H3K27ac ChIP-seq profiles, we downloaded data
from the Roadmap project [26]. Among all cell lines
with CRISPR data collected, K562 is the only one having
H3K27ac profile available. Previously, we developed a
BETA method to calculate the regulatory potential (RP)
on gene promoters from the ChIP-seq profile of a tran-
scription factor or histone modification [36, 37]. We
used the implementation in RABIT package with default
parameters to calculate the H3K27ac RP scores [39]. For
each gene, the RP scores were normalized, by subtract-
ing the mean across all cell lines profiled.

Network randomization and permutation test
We used stub rewiring method to randomize un-
weighted STRING network, which preserves gene degree
[33]. The edges from each gene are first detached from
its partners, and then randomly connected with each
other. Since we do not allow self-interaction and dupli-
cated edges, the connection process may fail to finish. In
this case, we restart the rewiring process until 98 %
edges are reconnected.

Based on random networks, we derived a permutation
test to access whether the NEST score of each gene is
significantly larger (or smaller) than expected. For each
random network, we calculated the NEST values as
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random NEST. For each gene, we computed the Z-score
as (real NEST – average random NEST)/(Stderr of ran-
dom NEST). If the Z-score is positive, we computed the
P value as the fraction of random NEST scores that are
larger than or equal to the real NEST score. If the Z-score
is negative, we computed the P values as the fraction of
random NEST scores that are smaller than or equal to the
real NEST score.

Survival analysis
We used Cox-PH model to analyze the effect of gene
expression or NEST scores on survival. For GBM, there
are several factors that affect the survival and we in-
cluded them as covariates in survival regression, includ-
ing age, gender, G-CIMP status, and treatment status
[45]. So the final survival effect was corrected with the
effects of these confounding factors. For TCGA pan-cancer
analysis, we only included cancer types with more than 50
patients and 5 % death rate. In the Cox-PH regression, we
only included age, gender, and stage (if available) to enable
uniform comparison among different cancer types.

Additional file

Additional file 1: Supplementary methods, Supplementary Figures
S1 to S12 and Tables S1 and S2. (PDF 524 kb)
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