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Abstract

Single-cell RNA-seq data allows insight into normal cellular function and various disease states through molecular
characterization of gene expression on the single cell level. Dimensionality reduction of such high-dimensional data
sets is essential for visualization and analysis, but single-cell RNA-seq data are challenging for classical dimensionality-
reduction methods because of the prevalence of dropout events, which lead to zero-inflated data. Here, we develop a
dimensionality-reduction method, (Z)ero (I)nflated (F)actor (A)nalysis (ZIFA), which explicitly models the dropout
characteristics, and show that it improves modeling accuracy on simulated and biological data sets.

Introduction
Single-cell RNA expression analysis (scRNA-seq) is rev-
olutionizing whole-organism science [1, 2] allowing the
unbiased identification of previously uncharacterized
molecular heterogeneity at the cellular level. Statistical
analysis of single-cell gene expression profiles can high-
light putative cellular subtypes, delineating subgroups of T
cells [3], lung cells [4] and myoblasts [5]. These subgroups
can be clinically relevant: for example, individual brain
tumors contain cells from multiple types of brain cancers,
and greater tumor heterogeneity is associated with worse
prognosis [6].
Despite the success of early single-cell studies, the sta-

tistical tools that have been applied to date are largely
generic, rarely taking into account the particular struc-
tural features of single-cell expression data. In particular,
single-cell gene expression data contain an abundance
of dropout events that lead to zero expression measure-
ments. These dropout events may be the result of tech-
nical sampling effects (due to low transcript numbers)
or real biology arising from stochastic transcriptional
activity (Fig. 1a). Previous work has been undertaken
to account for dropouts in univariate analysis, such as
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differential expression analysis, using mixture model-
ing [7, 8]. However, approaches for multivariate prob-
lems, including dimensionality reduction, have not yet
been considered. As a consequence, it has not been
possible to ascertain fully the ramifications of applying
dimensionality-reduction techniques, such as principal
components analysis (PCA), to zero-inflated data.
Dimensionality reduction is a universal data-processing

step in high-dimensional gene expression analysis. It
involves projecting data points from the very high-
dimensional gene expressionmeasurement space to a low-
dimensional latent space reducing the analytical problem
from a simultaneous examination of tens of thousands of
individual genes to a much smaller number of (weighted)
collections that exploit gene co-expression patterns. In the
low-dimensional latent space, it is hoped that patterns or
connections between data points that are hard or impos-
sible to identify in the high-dimensional space will be easy
to visualize.
The most frequently used technique is PCA, which

identifies the directions of largest variance (principal com-
ponents) and uses a linear transformation of the data into
a latent space spanned by these principal components.
The transformation is linear as the coordinates of the data
points in the low-dimensional latent space are a weighted
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Fig. 1 Zero-inflation in single-cell expression data. a Illustrative distribution of expression levels for three randomly chosen genes showing an
abundance of single cells exhibiting null expression [15]. b Heat maps showing the relationship between dropout rate and mean non-zero
expression level for three published single-cell data sets [3, 5, 14] including an approximate double exponential model fit. c Flow diagram illustrating
the data generative process used by ZIFA. d Illustrative plot showing how different values of λ in the dropout-mean expression relationship
(blue lines) can modulate the latent gene expression distribution to give a range of observed zero-inflated data

sum of the coordinates in the original high-dimensional
space and no non-linear transformations are used. Other
linear techniques include factor analysis (FA), which is
similar to PCA but focuses on modeling correlations
rather than covariances. Many non-linear dimensionality
techniques are also available but linear methods are often
used in an initial step in any dimensionality-reduction
processing since non-linear techniques are typically more
computationally complex and do not scale well to simulta-
neously handling many thousands of genes and samples.
In this article, we focus on the impact of dropout events

on the output of dimensionality-reduction algorithms

(principally linear approaches) and propose a novel
extension of the framework of probabilistic principal
components analysis (PPCA) [9] or FA to account
for these events. We show that the performance of
standard dimensionality-reduction algorithms on high-
dimensional single-cell expression data can be perturbed
by the presence of zero-inflation making them subopti-
mal. We present a new dimensionality-reduction model,
zero-inflated factor analysis (ZIFA), to account explic-
itly for the presence of dropouts. We demonstrate that
ZIFA outperforms other methods on simulated data and
single-cell data from recent scRNA-seq studies.
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The fundamental empirical observation that underlies
the zero-inflation model in ZIFA is that the dropout rate
for a gene depends on the expected expression level of
that gene in the population. Genes with lower expres-
sion magnitude are more likely to be affected by dropout
than genes that are expressed with greater magnitude.
In particular, if the mean level of non-zero expression
(log read count) is given byμ and the dropout rate for that
gene by p0, we have found that this dropout relationship
can be approximately modeled with a parametric form
p0 = exp(−λμ2), where λ is a fitted parameter, based on
a double exponential function. This relationship is con-
sistent with previous investigations [7] and holds in many
existing single-cell data sets (Fig. 1b), including a data set
with unique molecular identifiers [10] (Additional file 1:
Figure S1). The use of this parametric form permits fast,
tractable linear algebra computations in ZIFA enabling
its use on realistically sized data sets in a multivariate
setting.

Method
Overview
ZIFA adopts a latent variable model based on the FA
framework and augments it with an additional zero-
inflation modulation layer. Like FA, the data generation
process assumes that the separable cell states or sub-
types initially exist as points in a latent (unobserved)
low-dimensional space. These are then projected onto
points in a latent high-dimensional gene expression space
via a linear transformation and the addition of Gaussian-
distributed measurement noise. Each measurement then
has some probability of being set to zero via the dropout
model that modulates the latent distribution of expres-
sion values. This allows us to account for observed zero-
inflated single-cell gene expression data (Fig. 1c). The
scaling parameter in the dropout model can allow for a
large range of dropout-expression profiles (Fig. 1d).
In the following, we provide a more detailed mathe-

matical treatment of the proposed zero-inflated factor
analysis model, although we leave a complete exposition
for Additional file 1. A Python-based software implemen-
tation and source code are made freely available online via
an MIT License: https://github.com/epierson9/ZIFA.

Statistical model
LetN be the number of samples,D be the number of genes
and K be the desired number of latent dimensions. The
data are given by a high-dimensional N × D data matrix
Y = [ y1, . . . , yN ], where yij is the level of expression (log
read count) of the jth gene in the ith sample. The data are
assumed to be generated from a projection of a latent low-
dimensional N × K matrix Z = [ z1, . . . , zN ] (K � D).
In all derivations below, we use use i = 1, . . . ,N to index
over samples (cells), j = 1, . . . ,D to index over genes and

k = 1, . . . ,K to index over latent dimensions. Each sample
yi is drawn independently:

zi ∼ Normal(0, I), (1)
xi|zi ∼ Normal(Azi + μ,W), (2)
hij|xij ∼ Bernoulli(p0), (3)

yij =
{
xij, if hij = 0,
0, if hij = 1, (4)

where I denotes the K × K identity matrix, A denotes
a D × K factor loadings matrix, H is a D × N mask-
ing matrix, W = diag

(
σ 2
1 , . . . , σ

2
D
)
is a D × D diagonal

matrix and μ is a D × 1 mean vector. We choose the
dropout probability to be a function of the latent expres-
sion level, p0 = exp

(
−λx2ij

)
, where λ is the exponential

decay parameter in the zero-inflationmodel. Note that λ is
shared across genes, which reduces the number of param-
eters to be estimated and captures that technical noise
should have similar effects across genes.

Statistical inference
Given an observed single-cell gene expression matrix Y,
we wish to identify model parameters � = (A, σ 2,μ, λ)

that maximize the likelihood p(Y|θ). We do this using the
expectation-maximization (EM) algorithm. We summa-
rize the algorithm in the box below and then describe the
algebraic details:

Algorithm 1: EM for Zero-Inflated Dimensionality
Reduction

1 initialize model parameters A,μ, σ 2, λ;
2 while parameters not converged do
3 E-step: given A,μ, σ 2, λ, compute p(Z,X0|Y) and

E[Z] ,E
[
ZZT ]

,E[X0] ,E
[
X2
0
]
,E[X0Z];

4 M-step: compute analytic updates for A,μ, σ 2 and
optimize λ numerically;

5 end

We denote the value of the parameters at the nth
iteration, �n, as the value that maximizes the expected
value of the complete log likelihood p(Z,X,H,Y) under
the conditional distribution over the latent variables
given the observed data and the parameters at the last
iteration. Computing the value of the parameters at
each iteration requires two steps: the expectation step
(E-step) and the maximization step (M-step). In the
E-step, we derive an expression for the complete log like-
lihood p(Z,X,H,Y|�n) and compute all necessary expec-
tations under the distribution p(Z,X,H|Y,�n−1). The
approximate zero-inflation model that we adopt admits
closed form expressions for the expectations allowing the
algorithm to be applied to realistically sized data sets.

https://github.com/epierson9/ZIFA
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In the M-step, we maximize the expected value of the
complete log likelihood with respect to �n.
The EM algorithm structurally resembles the equivalent

algorithm for FA that iterates between imputing the coor-
dinates of the observed data points in the low-dimensional
latent space (E-step) and optimizing model parameters
(M-step). In ZIFA, the expectation step incorporates a
data imputation stage to compute the expected gene
expression levels for genes/cells with observed null values.
Note that if the noisemeasurement variances attributed to
each gene are identical, we obtain a zero-inflated version
of the probabilistic PCA algorithm [9] (ZI-PPCA).

Fast approximation for whole transcriptome analysis
The EM algorithm requires computations involving
conditional expectations of multivariate Gaussian dis-
tributions. For each cell, information from non-zero
measurements is used to impute the expected expres-
sion levels for genes with zero measured values jointly.
If all available expressed genes are used for this imputa-
tion process, the exact computations would necessitate
large computationally intensive matrix multiplications. In
practice, we have discovered that it is not necessary to
compute the expectations using all available genes at once.
Substantial computational savings can be achieved by par-
titioning the genes into non-overlapping disjoint sets, and
then performing exact computations within each block of
genes. This decreases the run time of our algorithm from
quadratic to linear in the number of genes, allowing it
to run on data sets with hundreds of samples and tens
of thousands of genes on a standard computer. Figure 2
shows that expectations obtained via this approximate
strategy closely follow those from exact calculations but
can be achieved with a substantial computational speed-
up. Parameter estimates based on these approximate
expectations are also robust (Additional file 1: Figure S2).

Table 1 details running times using our serial Python
implementation for four data sets. For all data sets, we fil-
tered out genes that were zero more than 95 % of the time
except for the 11 cell populations data set, for which the
algorithm did not converge unless we filtered out genes
that had zeros across more than 80 % of samples. Tests
were run on a standard quad-core Apple MacBook Pro
laptop computer. We do not report timings for the exact
version of our algorithm as these require many orders of
magnitude more compute time. The computational times
are not of the order of seconds, like PCA or FA, as a
price must be paid for the increased expressive power
of ZIFA. However, the availability of exact and approxi-
mate versions of ZIFA does allow the application of the
method for data of a variety of sizes. The computational
implementation of our approximate inference method
can also be parallelized since the expectation calculations
are independent across each cell and gene subset. We
seek to implement this strategy in future versions of the
software.

Results
Simulation study
We tested the relative performance of ZIFA against PCA,
PPCA [9], FA and, for reference, non-linear techniques
including stochastic neighbor embedding (t-SNE) [11],
Isomap [12] and multidimensional scaling [13]. First, we
generated simulated data sets according to the PPCA/FA
data generative model with the addition of one of three
dropout models: (i) a double exponential model (as
assumed by ZIFA), (ii) a linear decay model and (iii) a
missing-at-random uniformmodel. The latter two models
were designed to test the robustness of ZIFA to extreme
misspecification of the dropout model. Data were sim-
ulated under a range of different conditions by varying
noise levels, dropout rates, number of latent dimensions

Fig. 2 Comparison of exact and block-based EM algorithms. Plots show the correlation between expectations computed using the exact and
block-based EM algorithms for latent low-dimensional positions (Z) (a) and latent observations X (b). Simulations were performed on a simulated
data set with 500 genes and 200 cells. A block size of 50 was chosen for the approximate approach
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Table 1 Computational times for single-cell data sets of various
sample and gene set sizes using the approximate version of our
method

Data set # Samples # Genes Run time (mins)

Differentiating T cells [3] 182 8.968 4.5

Myoblasts [5] 372 15,529 26.7

Bone marrow [14] 1861 11,115 61.0

11 Populations [15] 249 12,336 9.9

and number of genes. The simulation experiment was not
intended to truly reflect actual real world data characteris-
tics but to establish, when all other modeling assumptions
are true, the impact of dropout events on the outcomes of
(P)PCA and FA.

Setup
We used the assumed generative model to produce simu-
lated data. For the simulations, the values ajk were drawn
from a uniform distribution U(−0.5, 0.5), the diagonal
elements of the covariance matrix were drawn from a uni-
form distribution U(0.9, 1.1)σ 2, where σ 2 is a simulation
parameter, andμj were drawn fromU(2.7, 3.3). We exper-
imented with three choices of f (·): a decaying squared
exponential, f (Xij) = exp

(
−λX2

ij

)
(used in ZIFA); a linear

decay function, f (Xij) = 1 − λXij; and a uniform (missing
at random) function for each gene j, f (Xij) = 1 − λj.
We used a base setting of N = 150, K = 10, D = 50,

σ 2 = 0.3 and λ = 0.1, and we explored the effects of alter-
ing the decay parameter λ, the number of latent dimen-
sions K, the cluster spread σ 2, the number of observed
dimensions D and the number of samples N.

Performancemetrics
As a measure of algorithm performance, we compared the
true zi to the ẑi for each sample estimated by the algo-
rithms as follows.We computed the true distance between
each pair of points j, k and defined a pairwise distance
matrix F such that Fjk = ||zj − zk||2. We compared
this to the estimated distance matrix F̂jk = ||ẑj − ẑk||2.
We scored the correspondence between the two distance
matrices using the Spearman correlation. By compar-
ing F and F̂ rather than zi and ẑi, we account for the
fact that dimensionality-reduction algorithms may rotate
the points but ought to preserve the relative distances
between them.

Outcomes
Although the data sets were generated according to a
PPCA/FAmodel (up to the dropout stage), in the presence
of cells with genes possessing zero expression, the per-
formance of all standard dimensionality-reduction meth-
ods (even PPCA/FA) deteriorated relative to ZIFA. An

example is illustrated in Fig. 3a. Our simulation results
(Fig. 3b) indicate that standard approaches may be safely
used in certain regimes but should be avoided in oth-
ers. In particular, gene sets with a high degree of zero-
inflation will be problematic (small λ), as the relative
distances between data points in the gene expression
measurement space will be distorted by the presence of
zeros and hence there will be an error when project-
ing back into the latent space. Performance also falls if
the gene set is small since there is less scope to exploit
strong co-expression signatures across genes to mitigate
for the presence of zeros. These regimes are impor-
tant to consider in the context of linear transformation
techniques (PCA, PPCA and FA) that are often applied
only to curated gene sets where the linearity constraints
may be approximately applicable. The application of non-
linear techniques did not cure the problems induced by
dropouts.
Overall, ZIFA outperformed the standard dimensionality-

reduction algorithms. This would be expected for those
simulations adopting the same generative model assumed
by ZIFA (Fig. 3b) but performance was also replicated
regardless of whether dropouts were added following a
linear model (Additional file 1: Figure S3A), or a missing-
at-random model (Additional file 1: Figure S3B). This
suggests that it is better to account for dropouts somehow
even if the dropout characteristics are not realistic. Inter-
estingly, this may suggest that ZIFA could be applicable
for other zero-inflated multivariate data sets. Additional
file 1: Figure S4 also shows performance measured in
terms of sum-of-squared error rather than Spearman cor-
relation.
ZIFA should, therefore, be considered a safe alterna-

tive in that it converges in performance to PPCA/FA in
the large-data low-noise limit but is robust to dropout
events that might distort the outcomes of these methods
in non-ideal situations.

Single-cell data modeling
We next sought to test these methods in an experiment
based on real single-cell expression data sets [3, 5, 6, 14].
In this case, the true latent space is unknown and we are
unable to measure performance as with the previous sim-
ulated data experiment. Instead, for each of the data sets,
we took random subsets of 25, 100, 250 and 1000 genes
and applied ZIFA, PPCA and FA to each subset assuming
five latent dimensions.
For each gene j, we compared the posterior predictive

distribution Ŷj of the distribution of read counts from each
method to the observed distribution Yj as follows: (1) we
computed the proportion of values in Yj and Ŷj that fell
into 30 discrete intervals, (2) we then computed the dif-
ference between the histograms �j. If hn is the proportion
of values in bin n for the true distribution, and ĥn for the
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Fig. 3 Performance comparison of dimensionality-reduction techniques. a Toy simulated data example illustrating the performance of ZIFA
compared to standard dimensionality-reduction algorithms. b Performance on simulated data sets based on correlation score between the
estimated and true latent distances as a function of λ (larger λ, lower dropout rate), number of genes and latent dimensions, and noise level used in
the simulations. c Plots showing the divergence between the predictive and empirical data distributions as a function of dropout rate and mean
expression level for FA, PPCA and ZIFA. Illustrative predictive performance and model fits (red, color online) on the T-cell single-cell data set (black) [3]

predicted distribution, then the histogram divergence is
given by

�j =
30∑
n=1

|hn − ĥn|. (5)

We computed the fraction of genes for which the �j
from ZIFA was less than �j from PPCA and FA. To pre-
vent overfitting, we assessed the fit on a test set: we fitted
the model for each data set on a training set containing
70 % of the data points, and computed the difference bet-
ween the histograms on the remaining 30 % of data points.
Note that it is not possible to do this comparison with

standard PCA or other dimensionality methods, such as
t-SNE, since these are not based on a probabilistic gener-
ative model framework and therefore, it is not possible to

derive the posterior predictive distributions that we use
for performance comparisons.
Using this criterion, we found that predictive distri-

butions from PPCA and FA showed high divergence for
genes that exhibited a high dropout rate or possessed a
low non-zero expression level. This meant that the pre-
dictive data distributions were a poor fit for the empirical
data. The performance of ZIFA was largely unaffected in
contrast (Fig. 3c). Example predictivemodel fits are shown
for the T-cell data set [3] for three genes: Plscr3, Ulk2 and
Ncrna00085 (Fig. 3c).
The statistical frameworks underlying PPCA and FA

employ Gaussianity assumptions that are unable to
account explicitly for zero-inflation in single-cell expres-
sion data. The dropout model used by ZIFA modulates
this Gaussianity assumption allowing for zero-inflation
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leading to drastically improvedmodeling accuracy. Across
the four data sets, we found that the predictive distribu-
tion derived by ZIFA was superior to those of PPCA and
FA on at least 80 % of the genes examined and often over
95 % (Table 2).
We further assessed whether the low-dimensional pro-

jections by ZIFA were more consistent than those of
PPCA. For the four data sets, we repeated the following
procedure 100 times: we sampled 100 genes at random,
ran ZIFA or PPCA, and computed the pairwise distances
between points in the low-dimensional space. This yielded
100 distance matrices, one for each iterate. We computed
the Spearman correlation between each pair of distance
matrices (for a total of 100 × 99/2 correlations) and
recorded the average Spearman correlation for both ZIFA
and PPCA. Figure 4 shows the distribution of the Spear-
man correlations for ZIFA and PPCA on the four data sets.
Overall, the distance matrices produced by ZIFA were
more correlated with each other than those produced
by PPCA, indicating that the ZIFA distance matrices are
more consistent across random iterates as ZIFA’s perfor-
mance is less dependent on the number of dropout events
present in the data.

Cell type separability
We now address the utility of ZIFA for a common ana-
lytical problem in single-cell expression analysis: the iden-
tification of distinct cellular subtypes or states. Typically,
this occurs by reducing the high-dimensional gene expres-
sion measurements to a low-dimensional representation
(often with PCA). The data are then clustered in this low-
dimensional space to identify groups of cells exhibiting
similar expression behaviors. Similarity is usually defined
in terms of the relative positions of the cells in this low-
dimensional space: cells that are close together are more
likely to be of the same subtype, whilst cells that are far
apart are more likely to be of different types.

We speculated that dropout events may distort the rel-
ative positions of cells in the low-dimensional subspace
potentially leading tomisclassification of cell types. To test
this, we utilized single-cell data from two recent studies
[15, 16] where the cell type identities had been estab-
lished and could be used as ground truth in a simulation
study. We applied PCA and ZIFA to 30 gene subsets of
size 500 that were randomly sampled from each data set
and projected the data from an initial 500 dimensions
to 10 dimensions. We then trained classifiers, using lin-
ear and quadratic discriminant analysis (LDA/QDA), and
computed the classification error rate of the classifiers. If
the cell types are separated well in the latent space, then
it would be possible to construct decision boundaries to
segregate the classes perfectly and achieve zero classifica-
tion error on the training data. If cell type classes overlap,
it will not be possible to construct classifiers that will sep-
arate all cells into their respective groups. The greater
the overlap, the greater the rate of misclassification. We
treated these misclassification errors as measures of cell
type separability.
Figure 5 shows that dimensionality reduction using

ZIFA led to lower classification error rates than PCA
on the Usoskin data [16] indicating that, by taking into
account dropout events, ZIFA was able to separate cell
types better than PCA. For the Pollen data set, PCA
showed better performance than ZIFA when classifica-
tion error was measured based on an LDA classifier but
equal performance when using QDA. It should be noted
that overall absolute classification errors for the Pollen
data [15] were extremely low (0–2 % using QDA). This is
unsurprising as the cell types in this study were derived
from a number of unrelated cell lines. Therefore, a com-
parison of the performance of PCA and ZIFA for this
data may not necessarily reflect most experimental condi-
tions. In contrast, the four cell types we considered in the
Usoskin data are all neuronal cells.

Table 2 Comparison of ZIFA to PPCA and FA on four biological data sets

Data set Method Subset size

25 100 250 1000

Differentiating T cells [3]
FA 86 ± 6.6 % 84 ± 4.6 % 82 ± 4.9 % 84 ± 8.8 %

PPCA 88 ± 6.3 % 87 ± 4.1 % 89 ± 4.5 % 100 ± 0.3 %

11 populations [15]
FA 97 ± 3.7 % 96 ± 2.5 % 96 ± 2.1 % 95 ± 2.7 %

PPCA 98 ± 3.2 % 97 ± 2.0 % 97 ± 1.5 % 99 ± 0.6 %

Myoblasts [5]
FA 97 ± 3.3 % 97 ± 2.4 % 96 ± 2.7 % 95 ± 2.7 %

PPCA 97 ± 3.2 % 96 ± 2.3 % 96 ± 2.1 % 99 ± 1.7 %

Bone marrow [14]
FA 98 ± 3.0 % 97 ± 2.0 % 97 ± 1.7 % 97 ± 1.7 %

PPCA 98 ± 3.1 % 97 ± 1.8 % 97 ± 1.4 % 97 ± 1.3 %

The column headings are the number of genes in the data set (selected at random). Percentages denote the proportion of genes for which ZIFA provided a better fit than
FA/PPCA, averaged across 100 replicates
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Fig. 4 Consistency of cell-to-cell distances. Box plots showing the correlation between distance matrices for PPCA and ZIFA from 100 gene sets
selected at random from (a) differentiating T cells [3], (b) 11 populations [15], (c) myoblasts [5] and (d) bone marrow [14]. The distance matrices
produced by ZIFA are more correlated with each other than are the distance matrices produced by PPCA

Fig. 5 Cell type separability. Plot shows relative cell type misclassification error rates after applying PCA and ZIFA on random subset of 500 genes
sampled for the Pollen [15] and Usoskin [16] data sets. Performance was measured based on error rates from (a, c) linear and (b, d) quadratic
discriminant classifiers. Positive values indicate better performance based on PCA, and negative values for ZIFA



Pierson and Yau Genome Biology  (2015) 16:241 Page 9 of 10

The previous simulation study was limited because each
of the gene subsets had very similar dropout rates that
were approximately 50 % and 60 %, respectively, for the
Pollen and Usoskin data sets (Additional file 1: Figure S5).
To understand better the relationship between the per-
formance of PCA and ZIFA and dropout rate, we used
these data sets as a scaffold upon which to construct
further simulated data sets. Using simulations allows us
to control the rate of dropout events. Our double expo-
nential dropout model was used to introduce dropouts
by varying the decay parameter λ used in the simula-
tions. The simulation algorithm is detailed in Additional
file 1.
Figure 6 shows the relative performance of PCA and

ZIFA on the simulated data sets. As the data were sim-
ulated, we can also provide a baseline performance from
classifiers built from PCA applied to the latent expression
measurements with no dropout events (i.e., treating the
latent measurements X as the observations instead of the
zero-inflated observations Y). The results show that for
low dropout rates, the performance of PCA and ZIFA con-
verges to the baseline. However, at higher dropout rates,
ZIFA proves more effective at maintaining cell type sep-
aration than PCA for both data sets. We observed from
the magnitude of the absolute misclassification errors that
separating the neuronal cell types in the Usoskin data is
more challenging than with the cell types in the Pollen
data set. Classification performance quickly declines as

dropout rates increase with the Usoskin data but, even
when the average dropout rate was nearly 90 %, it was still
possible to achieve less than 10 % misclassification errors
with the Pollen data.
In conclusion, the performance gain of ZIFA over PCA

for cell type identification problems will heavily depend
on the intrinsic separability of the cell subtypes and
the dropout rate. Our analysis of the Pollen data sug-
gests there is little to gain from ZIFA over PCA for cell
types that are straightforward to separate and would be
expected to lie far apart in latent space. However, the
Usoskin results suggest there may be greater advantages
from modeling dropouts when cellular expression behav-
iors are more similar and the positions of the cells in latent
space are close.

Discussion
The density of dropout events in scRNA-seq data can ren-
der classical dimensionality-reduction algorithms unsuit-
able and to date it has not been possible to assess the
potential ramifications of applying such methods on zero-
inflated data. We have modified the PPCA/FA framework
to account for dropout to produce a safe method for the
dimensionality reduction of single-cell gene expression
data that provides robustness against such uncertainties.
In the absence of dropout events, the method is essen-
tially equivalent to PPCA/FA, and therefore, software
implementations can straightforwardly substitute our

Fig. 6 Understanding the relationship between cell type separability and dropout rate. This is a comparison of dimensionality-reduction techniques
for cell typing. These plots show cell type misclassification rates (using QDA) as a function of dropout rate for the preprocessing using PCA and ZIFA
on simulated data sets based on the (a) Pollen [15] and (b) Usoskin [16] data sets. The exact PCA results correspond to a ground-truth baseline when
PCA is applied to simulated data with no dropout events
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approach for existing methods (e.g., Z = PCA(Y, k) to
Z = ZIFA(Y, k)). Therefore, users could use ZIFA as
a direct substitute with the benefit that it will automati-
cally account for dropouts whereas remedial efforts may
be required with standard PCA. Note that our method-
ology differs from approaches, such as the many variants
of robust PCA, that aim to model corrupted observations.
ZIFA treats dropouts as real observations, not outliers,
whose occurrence properties have been characterized
using an empirically informed statistical model.
The inclusion of a zero-inflation model gives ZIFA

greater expressive power than standard PPCA/FA but
increases the computational complexity. We have devel-
oped an approximate inference method for ZIFA and
shown that it is possible to handle usefully larger data sets
involving thousands of genes and hundreds of samples.
Whilst improved approximation methods and paralleliza-
tion could yield further performance gains, a particularly
important factor in determining computational complex-
ity is the selection of the gene set. Potential users should
note that ZIFA attempts to impute latent expression val-
ues for zero measurements. If a gene has a very low
frequency of expression and is zero across most cells, this
imputation process is unlikely to yield further information
and these genes are best removed before analysis to avoid
redundant computations.
One of the limitations of ZIFA is that it models strictly

zero measurements rather than near-zero values. It has
been possible to account for near-zero values in a uni-
variate mixture modeling framework by placing a small-
variance distribution around zero rather than a point mass
[7, 8]. Achieving the same goal, in a multivariate con-
text, requires further methodological thought and devel-
opment to produce solutions that are computationally
tractable with a large number of dimensions.
Finally, the ZIFA framework lies strictly in the linear

transformation framework but non-linear dimensionality-
reduction approaches, such as t-SNE [11], have proven
to be highly effective in single-cell expression analysis.
There are ongoing investigations to determine how zero-
inflation can be formally accounted for with such meth-
ods. A natural direction would be to incorporate it directly
in a non-linear generative approach such as the Gaussian
process latent variable model (GP-LVM) [17]. ZIFA is also
potentially applicable to other zero-inflated data where
there is a negative correlation between the frequency with
which a measurement feature is zero and its mean signal
magnitude in non-zero samples.
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