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Abstract

Background: The origin of new genes with novel functions creates genetic and phenotypic diversity in organisms.
To acquire functional roles, new genes must integrate into ancestral gene-gene interaction (GGI) networks. The
mechanisms by which new genes are integrated into ancestral networks, and their evolutionary significance, are yet
to be characterized. Herein, we present a study investigating the rates and patterns of new gene-driven evolution
of GGI networks in the human and mouse genomes.

Results: We examine the network topological and functional evolution of new genes that originated at various stages
in the human and mouse lineages by constructing and analyzing three different GGI datasets. We find a large number
of new genes integrated into GGI networks throughout vertebrate evolution. These genes experienced a gradual
integration process into GGI networks, starting on the network periphery and gradually becoming highly connected
hubs, and acquiring pleiotropic and essential functions. We identify a few human lineage-specific hub genes that have
evolved brain development-related functions. Finally, we explore the possible underlying mechanisms driving the GGI
network evolution and the observed patterns of new gene integration process.

Conclusions: Our results unveil a remarkable network topological integration process of new genes: over 5000 new
genes were integrated into the ancestral GGI networks of human and mouse; new genes gradually acquire increasing
number of gene partners; some human-specific genes evolved into hub structure with critical phenotypic effects. Our
data cast new conceptual insights into the evolution of genetic networks.

Background
New genes provide important genetic novelties responsible
for biological diversity in organisms [1], and are often the
genetic basis for lineage- or species-specific components in
important biological processes and structures [2, 3]. As bio-
logical characteristics mostly emerge through complicated
interactions among a cell’s components [4], new genes will
inevitably be integrated into and reshape ancestral gene-
gene interaction (GGI) networks to acquire their corre-
sponding biological roles. Recently, several case-studies
have shown individual new genes can participate in local
ancestral GGI networks and acquire important functions in
fruit fly [5, 6], budding yeast [7], and plants [8, 9]. Conse-

quently, it is intriguing to ask how new genes are topo-
logical and functionally incorporated in and subsequently
change ancestral GGI networks in genome-wild scale.
Thanks to the accumulation of GGI data brought by the

development of high throughput technologies, a couple of
attempts have been made to address this issue. Through
examining the evolution of new genes in the protein-
protein interaction networks of yeast Saccharomyces
cerevisiae, Capra et al. [10] found novel genes are less inte-
grated in cellular networks than duplicated genes, genes
prefer to interact with other genes of similar age and origin,
and new genes participated in the network modules for
synthesis of important metabolites. By applying different
network data source, another research group showed a
similar integration process of new genes in yeast [11]. Popa-
din et al. [12] recently analyzed a co-expression network
with previous data of gene ages in vertebrates [2, 13] and
observed a difference of integration of these genes into the
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networks between young and old ages. These works en-
courage us to further explore a potential quantitative cor-
relation between a continuous evolutionary process of new
genes and their degree to be integrated into and subsequent
rewiring of various ancestral gene networks in vertebrates,
which have provided data of evolutionarily well resolved di-
vergence times and interesting phenotypic data with the
rich datasets of recently evolved genes we identified [2, 13].
In the present report, we investigated evolutionary pat-

terns of GGI networks driven by new genes originating
throughout various stages in the lineages toward human
and mouse. Taking advantage of a well-resolved gene
dating dataset [2, 13] and the rich and independent GGI
datasets, we elaborately explored the integration process
of new genes into GGI networks reconstructed with four
different data sources in both human and mouse. Fol-
lowing, we focused on the functional evolution ana-
lysis of new genes in human genome, and explored
how new genes acquire critical functions, that is,
pleotropic functions, essential functions, and brain de-
velopment relevant functions, in term of GGI network
integration. Finally, we deeply excavated and discussed
the mechanisms driving the evolution of GGI net-
works and deriving the integration patterns of new
originating genes.

Results and discussion
The integration of new genes into GGI networks is a
gradual evolutionary process
A technical challenge to examine the role of new genes
in evolution of gene networks is to detect reliable
GGI networks in their global distribution. Considering
current technical growth and evaluation to methods
and data that reveal GGI, we constructed and ana-
lyzed three different types of data in attempt to iden-
tify robust GGI networks (see Methods): the human
protein-protein interactions (hPPIs), the human gene
co-expression (hGC) networks, and the mouse protein-
protein interactions (mPPIs).
The second line of data we used to investigate the cor-

relation between new gene evolution, as we extensively
investigated previously, and the evolution of GGI net-
works as revealed by above three different databases is
the best-resolved vertebrate divergence times, supported
by paleontology, organismal evolutionary analysis, and
molecular evolution, and most reliably resolved phylo-
genetic tree of vertebrates over decades of extensive
studies on vertebrate species [2, 13]. These data provided
excellent estimates for the ages of new genes, comprising
the ones generated by DNA-based duplication, RNA-
based duplication, and de novo origination during the
vertebrate evolution in the lineage toward humans and
mouse, as we identified previously in comparative gen-
ome comparison.

First of all, we investigated the correlation between the
ages of genes and their topological characteristics in the
GGI networks described in the four databases we con-
structed. Remarkably, all these types of GGI network
data revealed highly similar rates and patterns of new
genes-integrated into the networks. Therefore, we will
focus on human for presentation and discussion of the
results while introducing the relevant findings in the
mouse genome.
We first analyzed the human protein-protein interactions

(hPPIs) network by exploiting and modifying an integrative
experimental protein interactions dataset [14] (with the
threshold of confidence score of 0.68, see Methods). The
reconstructed human PPI network revealed an approxi-
mately scale-free topological structure [15] with a degree
exponent of 1.49 that defines a power-law distribution of
connectivity (or degrees) (Additional file 1: Figure S1 and
Additional file 2: Table S1). We then labeled the gene
(equivalent to its coded protein) age of each node in the
PPI network, determined by an age index for the genes that
originated in every period of evolution along the well-
resolved phylogeny of vertebrates (Fig. 1a and b), that
were retrieved from a widely used database [2, 13]
(See Methods). Analysis on the above PPI network in-
dicated a significant and strong correlation (Polyno-
mial regression test, R2 = 0.8834, Fig. 2a) between the
ages of genes and their connectivity (or degree, that
is, numbers of interacting partners) in the PPI net-
work, revealing a gradual evolutionary process in
which new genes are integrated into the PPI network,
which echoed the evolutionary procedure of new gene
structures [16]. This finding suggests that throughout
vertebrate evolution there was a non-robust and rapid
process, unexpected by conventional thought, in
which new genes were integrated into the GGI net-
works. During this process of 370 million years (MY,
branch 1–12, Fig. 1a) we examined, we observed that
5,710 new genes were integrated into the GGI net-
works. Furthermore, this process showed an evolu-
tionarily significant pattern: the new genes started, at
a young age, to be integrated into networks to form
new and less connected branches; however, with the
elapse of evolutionary time, as genes grow older, they
acquired more interacting links.
To avoid possible bias created by the chosen confi-

dence score threshold for the reconstruction of human
PPI network, we reanalyzed a new human PPI network
using a more stringent cutoff (With minimum confi-
dence score of 0.77, see Methods and Additional file 2:
Table S1) and we found the same evolutionary pattern
(Polynomial regression test, R2 = 0.7909, Fig. 2b). The
connectivity-based conclusion is further supported by
the analysis of another statistic parameter describing
network centralities of genes, that is, Betweenness, which
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measured the importance of one node connecting all the
other nodes (Polynomial regression test, R2 = 0.9021,
Fig. 2c). Based on human PPI network reconstructed from
a different experimental manual curation resource
(See Methods and Additional file 3: Figure S2A), that
is, Human Protein Reference Database (HPRD) [17],
the same conclusion was drawn as described above
(Additional file 3: Figure S2B).
For a more rigorous analysis of independent GGI data

types, we analyzed another human GGI network referred
to as gene co-expression (hGC) network (See Methods

and Additional file 3: Figure S2C and D), reflecting the
correlations of gene expression profiling in a series of
human tissues [18]. Mapping the topological positions of
new genes in humans into the GC network revealed a
similar correlation between the ages and connectivity of
genes (Polynomial regression test, R2 = 0.6527, Fig. 2d),
revealing the same evolutionary trend of new genes
starting with low connectivity and evolving to be highly
connected hubs. Additionally, we also explored the evolu-
tionary patterns of human PPI network based on another
gene age dataset [19] (Additional file 4: Figure S3A), which
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estimated gene ages in human genome based on inde-
pendent and long distant phylogenetic distribution. A
same evolutionary pattern of new genes was shown
(Additional file 4: Figure S3B), and it was further
demonstrated that our conclusion was independent of
gene age dating datasets. Thus, different GGI data,
that is, PPI and GC data, and different gene age
dating data, all supported the same conclusions as
reported above.
Furthermore, we applied a similar protocol to analysis

of the reconstructed mouse GGI networks from mouse
PPI data (mPPIs), by integrating most of the available
online experimental interaction datasets (Additional
file 5: Table S2). The integrative analysis of mouse
gene age information [13] (Additional file 6: Figure S4A)
and PPI topological data (Additional file 6: Figure S4B)
lead to the same conclusion (Polynomial regression test,
R2 = 0.6232, Additional file 6: Figure S4C) determined by
the human GGI network analyses. These data suggest a
gradual integration of new genes in the GGI networks is
an evolutionary process shared in mammalian lineages of
primates and rodents.

Given the observation that the acquisition of gen-
etic interactions is a time-dependent gradual proced-
ure, we further investigated whether this process
occurred at a constant rate. Our result showed that
new genes could establish linking partners at a high
rate (interactions acquired per million years) in the
initial stage of their origination. After that, the rate
dramatically declined, and finally plateaued (Fig. 3a
and b), suggesting that the acquisition of biological
roles of new genes is a rapid process during early
evolution, but as the genes age, the function spectrum
is diversified at a much lower rate. Taking advantage
of the high coverage of the human PPI data (Additional
file 2: Table S1), we subsequently focused on the analysis
of both topological and functional evolution patterns of
new genes based on our first constructed human PPI
network.
To better visualize the integration process, we

mapped the genes in the mammalian GGI networks
based on their connectivity, where highly connected
genes made up the core of the human PPI network
and genes with low connectivity were located on the
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network periphery (Fig. 4), which revealed a clear cor-
relation between gene age and location in the mam-
malian GGI networks. Surprisingly, a small fraction of
young genes were found to have evolved into the network
core, whereas the majority of recently originating genes,

especially primate-specific genes (branch 8–12, Fig. 1a),
are located in the exterior regions of network. As the
ages of genes increase, they tend to appear more
frequently in the more densely connected core of
network.
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New genes gradually acquire pleiotropic and essential
function roles
As most biological characteristics arise from the com-
plex interactions between cell’s numerous components
[4], the integration of new genes into the GGI network
might indicate the emergence of novel functions for
these new genes. Furthermore, the gradual evolution of
more interactions in GGI networks might signal the
process of new genes acquiring pleiotropic functions.
This hypothesis could be indirectly confirmed by the
strong correlation of connectivity of genes and their di-
vergence times (Fig. 2a) and a strong linear correlation
between the connectivity of genes and their expression
breadths at both RNA expression level (Pearson linear
correlation test, R2 = 0.9384, Fig. 5a) and protein expres-
sion level (Pearson linear correlation test, R2 = 0.9457,

Fig. 5b). Thus it could hint that new genes gradually
evolve broader expression patterns and therefore acquire
pleiotropic functions, as they gradually evolve more link-
ing partners (Fig. 2a), and genes with more linking part-
ners tend to have broader expression patterns (Fig. 5a
and b).
To verify this hypothesis in a direct manner, we fur-

ther computed and compared the tissue expression pat-
terns for genes along different phylogenetic branches.
Our results showed that genes gradually evolved broader
tissue expression patterns at mRNA expression level
from RNA-seq data [20] (Polynomial regression correl-
ation test, R2 = 0.96538, Fig. 5c), which indicates the ac-
quirement of stronger pleiotropic functions. One might
dissent the role of mRNA as the performer of biological
functions, our analysis on protein expression profiling
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data [20] drew the same conclusion (Polynomial regres-
sion test, R2 = 80038, Fig. 5d). In line with the network
topological integration process of new genes (Figs. 2a
and 4), our results showed a gradual process for new
genes to evolve pleiotropic function roles, reflected by
the tissue expression patterns. These findings also sug-
gest functional constraints on new originating genes
[21], as they are usually shown to be with very narrow
and specified expression patterns [22], such as testis ex-
pression [23].
One critical feature of scale-free networks is the exist-

ence of hub nodes, or highly connected nodes [24]. Hub
nodes are essential components in various networks
[25], and are subjected to concentrated evolutionary
forces that shape the network structures to result in es-
sential functions [3, 26]. To explore the contribution of
new genes in reshaping the GGI network, we investi-
gated the percentage distributions of hub genes (with
interaction degrees no smaller than 6) originating across
different phylogenetic branches in human PPI network.
The data revealed a strong correlation between gene
ages and fractions of hub genes (Polynomial regression
correlation test, R2 = 0.8016, Fig. 6a). In particular, we
found a high proportion of hub genes (16 %) arising in
the most recently originated human-specific branch
(Branch 12, Fig. 1a), and this number gradually increased
with gene ages, peaking at around 53 % for the earliest
originating genes (Branch 0, genes arising before the
split of vertebrates, Fig. 1a). This phenomenon indicates
the gradual process of new genes evolving to be network
hubs, and reshaping the original gene interaction
networks.
It has been reported that there is a relationship be-

tween gene topological features and biological functions
[26, 27]. More specifically, genes with high network con-
nectivity tend to be functionally essential [26] (Fig. 6b).
Given the above observation that new genes gradually
evolve many interactions to become network hubs, it is
reasonable to infer that the acquisition of functional es-
sentiality for new genes in human genomes may follow a
step-wise evolutionary process. Through the meticulous
collection and analysis of sources of human gene essen-
tiality data (Additional file 7: Table S3, see Methods), we
explored the relationship between gene essentiality and
origination time (Fig. 6c). It was unexpected that a pro-
portion of newly originated genes, especially genes that
arose after branch 6 (approximately 80 million years
ago), have evolved essential functions, although more
genes originating from older periods are functionally es-
sential, and the fraction of essential genes increases with
the elapse of evolutionary time. Together with afore-
mentioned observations from the network topology, our
analysis demonstrated a clear trend that human new
genes gradually evolve to be topologically central and

functionally essential, and acquire the capability to re-
shape the GGI networks.

Human-specific hub genes are found to be with potential
brain development functions
The remarkable development of the brain in primate-
lineage species, especially in human, is a decisive hall-
mark differentiating them from other organisms [28].
Recent studies have reported important roles of new
genes in evolution of important human brain-related
traits. For example, it was detected that an excess of
young genes (that is, primate-specific) in the human
genome are recruited in early human brain development
[2]; potential strengthening functions of brain neoron-
connection by SRGAP2 [29, 30]; the skin and brain func-
tions by CHRFAM7A [31, 32]. We further investigated
the correlation of the young genes in human that have
evidence for functioning in brain development with their
topological structures in the GGI networks.
Through integrative analysis of the brain expression

pattern data of these young genes [2] and their network
topological features based on human PPI network data,
we found no significant bias on the percentages of hub
genes (with minimum interaction degrees of 6) among
three different brain expression categories of young genes
(Fisher’s exact test, Fetus vs. Adult: P value = 0.435, Adult
vs. Unbiased: P value = 0.3323, Fig. 7). In other words,
young genes with diverse network connectivity contribute
equally during both early and late stages of human brain
development.
More intriguingly, four human-lineage specific (the

genes that originated only in the human lineage since its
divergence and thus exist only in the human genome)
hub genes with clear expression evidence in human
brain were found (Additional file 8: Table S4). As there
was no direct clue in literatures about their functions in
brain development of these four genes, we conducted a
‘guilt by connection’ study to investigate the reported
evidence for the roles in brain function of their direct
linking partners by manual curation of early studies
(Additional file 9: Table S5). For instance, CCT4, a sub-
unit of chaperonin containing TCP1, was reported to be
involved with development of a brain malfunction dis-
order - Alzheimer’s disease [33], and it was also shown
that CCT4 (gene id: 10575) is a direct interacting part-
ner of one of young hub gene - FAM86B2 (gene id:
653333, Fig. 8). Collectively, we found that 62.5 % (10 of
16) and 53.3 % (8 of 15) of the first-layer linking partners
for two out of the four hub genes, which were fetus
brain biased, were confirmed to be involved in brain
development (Fig. 8 and Additional file 9: Table S5).
While for the other two unbiased hub genes, 24.4 %
(10 out of 41) and 50 % (3 out of 6) were proven to
function in brain development in previous literature
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(Fig. 8 and Additional file 9: Table S5). As genes with
similar functions tend to be within the same network
cluster [34], this evidence suggests these four human-
lineage specific hub genes could also be with associ-
ated functions in human brain development.

Multiple mechanisms drive the evolution of human GGI
network
The most significant property of complex networks,
including biological networks, is the power-law degree
distribution [24] (Additional file 1: Figure S1), or so-called
scale-free feature. Following the classic Barabasi-Albert
(BA) model [35], this preferential attachment model was
also applied to account for the scale-free feature of

biological networks [36], which claims that new ori-
ginating genes tend to interact with well-connected
nodes. However, the biggest challenge for this model
is the distinctive characteristics of biological networks -
duplication as the dominant source of network evolution
[37]. Therefore, another biologically motivated model
called duplication-divergence model was proposed [38,
39], which accounts for both the gene duplication and the
subsequent loss of inherited interactions. However, the ac-
quirement of new links, except inherited interactions, was
not considered in this model.
To address this issue from an evolutionary aspect, we

defined primate-specific genes (branch 8–12 as shown in
Fig. 1a) as young genes, and genes that originated before
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(Interaction degree > = 6). Branch assignment is labeled near each data point. The age assignment for each branch follows Fig. 1. The dash line
indicates the polynomial regression correlation between divergence times of genes and the fractions of hub genes. b Fraction of essential genes
in regards to their PPI network connectivity. The solid line indicates the linear regression correlation between PPI network connectivity of genes
and the fractions of essential genes within each gene group. c Fraction of essential genes in PPI network within gene groups from different
divergence times. The dash line indicates the polynomial regression correlation between divergence times of genes and the fractions of
essential genes
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Fig. 8 Human lineage-specific hub genes and their first-level linking partners. This figure illustrates two fetus brain biased human lineage-specific
hub genes (top) and two unbiased human lineage-specific hub genes (bottom) and their direct interacting partners from the human PPI network.
Genes biased in fetus brain (blue), adult brain (red), and unbiased (orange) between fetus and adult brain are marked. Genes (in square circles)
outlined in the green dashed rectangle have been reported to have some brain development-related functions in previous literature
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Fig. 7 Comparison of PPI network topologies for young genes with diverse brain expression patterns. This figure shows the percentage distribution of
young hub genes and young non-hub genes within different categories of brain expression patterns. The statistical significance difference was
calculated using Fisher’s exact test
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this time period as old genes. Among these young genes,
95 % of them were created from duplication-based
(either from DNA-level duplication or RNA-level dupli-
cation) mechanisms (Additional file 10: Figure S5),
which is in line with the classic argument that duplica-
tion is the dominant source of evolution [37]. Conse-
quently, these young genes inherited on average 27 %
linking partners from their parental genes (Fig. 9a),
which is statistically greater (18 times) than that of ran-
dom gene pairs (Fig. 9b). This finding indicated the in-
heritance of interacting partners of new genes from their
parental copies [5]. We further explored the pattern for
young genes to establish new linking partners, by re-
moving those shared interactions with their parental
genes. Different with the pattern in yeasts [10], we
found that the young genes tend to prefer as new
linking patterns the genes with high topological cen-
tralities (Chi-square tests, Degree: P value <2.2e-16;
Betweenness: P value <2.2e-16, Fig. 10a) and elder
age (Fisher’s exact test, P value = 0.001247, Fig. 10b),
illuminating a rich-get-richer process [35] for new
genes to develop new links. Thus, our results indicate
the biological relevance of duplication-divergence
model, and also show the preferential attachment to
acquire novel links for new originating genes. This
finding provided empirical data and new perspective
for the development of new evolutionary models of
biological networks in the future.
In this present study, we reported a gradual integration

process of new genes into ancestral GGI networks
(Fig. 2). An intriguing question to ask is what mecha-
nisms are underlying the evolution of these new gene-
integrated networks, or why new genes are generally less
central in these GGI network. Based on these data, first,
we proposed that the new genes-driven network evolution
in humans is a mutation-limited process due to small

effective population size [40]: as it is a time-dependent
process for new genes to be adapted to the genome and
GGI networks by establishing new linking partners.
In addition, new originating genes were found to be

particularly shorter in protein length (Additional file 11:
Figure S6A) [10], and consequently could only provide a
limited interaction surface for potential interacting part-
ners [41]. In the view of evolution, genes gradually
evolve longer protein length to obtain more interactions,
as they aged, indeed playing a role as one non-dominant
mechanistic factor. However, we found that the shorter
protein length was not a major factor to determine the
links, as we observed the same patterns for the datasets
of controlled protein lengths (Additional file 11: Figure
S6B). Besides, new genes were also found to be
expressed in fewer tissues (Fig. 5c and d) and lower ex-
pression levels (Additional file 11: Figure S6C), while
genes with broader expression patterns (Fig. 5a and b)
and higher expression levels (Additional file 11: Figure
S6D) tend to have more interactions. Mechanically, the
constraints on both the expression breadth (Fig. 5c and
d) and expression levels (Additional file 11: Figure S6C)
of new arising genes could only allow them to connect
with genes expressed in the same tissues with limited
binding space, which further hinder them from becom-
ing highly connected nodes of the network. However,
after being normalized by expression level and breadth,
we found that given same expression levels and breadth
the old genes still significantly evolved more links than
young genes (Additional file 11: Figure S6E and F). Also,
based on preceding analysis (Fig. 10), the highly con-
nected older genes provide the new genes with more
choices to develop new pathway(s) towards advanta-
geous functions. Therefore, we concluded that, besides
the mechanistic elements such as protein lengths and
expression levels that may play a limited mechanistic

(27 (1.5 ))

Duplicate gene pairs in the PPI network Random gene pairs in the PPI network

Parental genes Children genes

16.8 4.7

Parental genes Children genes

19.5 18.6

Fig. 9 Inheritance of linking partners for duplication-based young genes (primate-specific genes). a The inheritance status for ‘real’ duplicate gene
pairs in the context of PPI networks. b The inheritance status for random gene pairs in the context of PPI networks. The numbers inside the circles
show the average PPI network connectivity for parental genes or children genes, and the percentages indicate the fractions of common linking
partners shared by parental genes and children genes
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role, the evolutionary time with the rich-get-richer pref-
erence of new linking partners have contributed signifi-
cantly to the appearance of the observed evolution
patterns of GGI networks that are impacted by evolu-
tionary forces of natural selection and mutation.
Despite the general constraint on new genes to acquire

linking partners (Fig. 2), we still found a fraction of new
genes, especially young genes (primate-specific genes,
branch 8–12, Fig. 1a), can rapidly evolve interactions
and crush into network core (Fig. 4). It is tempting to
ask what ‘fitness effect’ [42] facilitates the rapid acquire-
ment of linking partners for these new genes. To address
this issue, we explored the protein sequence features of
those young hub genes (with minimum interaction degrees
of 6) and young non-hub genes. Despite young hub genes
being slightly shorter in protein length, they were found to
be with larger proportions of low-complexity and intrinsic
disordered regions than young non-hub genes (Additional
file 12: Table S6). Low complexity and structural disorder
regions create more flexibility and adaptability to bind dis-
tinct partners [41, 43]. Therefore, these beneficial intrinsic
features endow these genes high-affinity to quickly acquire
new interactions, therefore becoming network hubs.

Conclusions
Our findings revealed a non-robust but rapid evolution-
ary process in which new genes are gradually integrated

into ancestral GGI networks. We identified a few young
genes that specifically exist in the human genome
evolved into hubs in GGI networks, yielding important
phenotypic effects in brain development.

Methods
Gene-gene interaction data
Human protein-protein interaction data were ex-
tracted and rescored from the 11 October 2013 release of
interactions in the Database of Human Integrated
Protein-Protein Interaction rEference (HIPPIE) [14],
which integrated 18 public protein interaction data
sources. Each interaction was assigned a confidence score
according to the number and the quality of experimental
techniques utilized for the detection of this interaction,
and interlog cases in other model organisms. To avoid
missing species-specific interactions, the filtering param-
eter of interlogs in model organisms was omitted. A
medium confidence level (0.68 - the median of score dis-
tribution) was set as the threshold, and interactions with
confidence scores no smaller than this cutoff were re-
trieved. Self-interactions were excluded in this study. To
eliminate the bias from arbitrary choice of cutoff, another
human PPI network was reconstructed with a stricter
threshold of confidence score (0.77). Hub nodes are de-
fined as genes with minimum interaction degree of 6,
which is the medium level connectivity of global human
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PPI network. To further avoid the potential bias from data
collection, we also utilized another manual curated human
PPI dataset – Human Protein Reference Database (HPRD
release version 9) [17]. Similarly, self-interactions were
eliminated from this dataset, and only non-redundant in-
teractions were retained.
Mouse protein-protein interaction data was integrated

from five well-collected datasets (Additional file 5:
Table S2). The confidence score assignment of each
interaction followed that of HIPPIE [14], except the re-
moval of the filtering parameter of interlogs as aforemen-
tioned. The self-interactions were also excluded from the
dataset. Similarly, a moderate confidence score (0.68 - the
median of score distribution) was set as the threshold to
define reliable interaction pairs. Herein, proteins were
considered to be equivalent to their protein-coding genes,
and assigned with the same gene identifiers through a web
ID conversion tool – bioDBnet [44].
Based on gene expression profiling data of 65 hu-

man tissues collected from a public co-expressed gene
database (COXPRESdb v5.0) [18], we constructed a
human gene co-expression (GC) network by exploring
the expression profile associations between pair-wise
genes, indicated by Pearson correlation coefficients
(PCC) [45]. To get a human GC network with com-
parable number of gene nodes to be human PPI net-
work (Additional file 2: Table S1) and biologically
relevant (Additional file 3: Figure S2), gene pairs were
considered linked if their expression association with
PCC was greater than 0.4.

Gene age and origination mechanism data
Both human and mouse gene age data were retrieved
from an early study by Yong et al. [13]. In brief, each
protein-coding gene was dated and given branch assign-
ment by inferring the absence and presence of orthologs
along the vertebrate phylogenetic tree (Fig. 1a and
Additional file 6: Figure S4A), based on UCSC syn-
tenic genomic alignment. This gene dating strategy was
reported to be conservative and sensitive for identification
of fast-evolving genes [2]. The origination mechanism in-
formation of human young genes (primate-specific genes)
was from the same study. Young genes that originated
from DNA-level duplication or RNA-level duplication
were annotated as duplication-originating genes, other-
wise were defined as de novo genes. Additionally, we also
used another human gene origin data based on phy-
lostratigraphic analysis [19], which assigned human
genes with phylogenetic branches from 1 to 19, based
on the absence and presence of orthologs in the ge-
nomes through cellular organisms to primate species
(Additional file 4: Figure S3A). The detailed informa-
tion about all these gene age datasets can be found in
Additional file 13: Table S7.

Human gene expression profiling data
The mRNA and protein expression profiling data for hu-
man tissues were extracted from the Human Protein
Atlas Project (V12) [20], which was launched for system-
atic exploration of the human proteome. RNA-seq tech-
nique was exploited to probe the mRNA expression
patterns of 20,315 human genes in 27 tissues, and genes
with FPKM (fragments per kilobase of exon per million
reads mapped) greater than 1.0 were defined as expressed
within specific tissues. Antibody-based proteomics were
used for profiling the expression of proteins for 16,384 hu-
man coding genes in 58 tissues, and only proteins with
clear bands detected from western blots within corre-
sponding tissues were defined as expression.

Human essential genes information
Essential genes are defined as those genes that are crit-
ical for the survival of an organism. In this study, poten-
tial gene essential information were collected from four
distinct resources – (1) genes associating with the most
life-threatening diseases, which can cause death prior to
puberty, or infertility of individuals [46]; (2) combin-
ational essential genes detected from large-scale human
diseases cell lines via RNA inference (RNAi) experiments
[47] and a recently emerging technology called CRISPR-
Cas9 system [48]; (3) functional essential genes collected
from independent studies via text-mining methods [49];
and (4) orthologous genes of genes that are essential in
mouse, detected by gene knock-out experiments [50].
Finally, 1,342 genes that co-exist within two or more
above datasets were defined as human essential genes
(Additional file 7: Table S3).

Calculation for network topological features
Two topological centrality parameters, that is, Degree
(or connectivity), Betweenness, were used to measure
genes’ centralities in the GGI networks. Degree centrality
is a basic property, which indicates the number of adja-
cent edges a node bears. Betweenness is an index to the
measure the importance of one vertex to the shortest
paths among other nodes in the network [51]:

B vð Þ ¼
X

i≠j≠v∉V

K ivjð Þ
K ijð Þ

K(ij): The number of shortest paths between vertex i
and vertex j.
K(ivj): The number of shortest paths between vertex i

and vertex j, which go through vertex v.
All of these calculations were implemented on R

platform [52], by exploiting a network analysis R
package referred to as igraph [53]. The visualization
of sub-networks in this study was conducted with a
widely exploited software - Cytoscape [54].
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Sequence feature analysis for human proteins
Three intrinsic features of protein sequences were
calculated – protein length, low complexity region,
and structural disorder region. Human protein se-
quences were downloaded from Ensembl database
[55]. If one gene has alternative splicing isoforms,
the protein with longest length was retrieved from
further analysis. The existing program SEG was used
to detect the low-complexity regions in protein se-
quences [56], by default parameter setup. As the ex-
perimentally validated information for disorder
proteins was in deficiency [57], the disorder regions
of protein sequences were predicted via an online
predictor – IUPred [58, 59]. One residue was defined
as intrinsic disorder, if the calculation score was
greater than 0.5 [58]. Two modes (long disorder and
short disorder, respectively) of this program were
separately applied for the prediction of structural
disorder regions.

Data availability
The detailed information and download links for all the
datasets used in this study can be accessed via http://
longlab.uchicago.edu/?q=SD_GB.
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