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Abstract

Allelic expression analysis has become important for integrating genome and transcriptome data to characterize
various biological phenomena such as cis-regulatory variation and nonsense-mediated decay. We analyze the
properties of allelic expression read count data and technical sources of error, such as low-quality or double-counted
RNA-seq reads, genotyping errors, allelic mapping bias, and technical covariates due to sample preparation and
sequencing, and variation in total read depth. We provide guidelines for correcting such errors, show that our quality
control measures improve the detection of relevant allelic expression, and introduce tools for the high-throughput
production of allelic expression data from RNA-sequencing data.

Background
Integrating genome and transcriptome data has become
a widespread approach for understanding genome func-
tion. Allelic expression (AE; also called allele-specific
expression or allelic imbalance) analysis is becoming an
increasingly important tool for this, as it quantifies
expression variation between the two haplotypes of a
diploid individual distinguished by heterozygous sites
(Fig. 1a). This approach can be used to capture many
biological phenomena (Fig. 1b): effects of genetic
regulatory variants in cis [1–8], nonsense-mediated
decay triggered by variants causing a premature stop
codon [9–12], and imprinting [13, 14]. Standard RNA-
sequencing (RNA-seq) data capture AE only when
higher expression of one parental allele is shared
between individual cells (Additional file 1), as opposed
to random monoallelic expression of single cells that
typically cancels out when a pool of polyclonal cells is
analyzed [15, 16].
In this paper, we describe a new tool in the Genome

Analyzer Toolkit (GATK) software package for efficient
retrieval of raw allelic count data from RNA-seq data,
and analyze the properties of AE data and the sources of
errors and technical variation, with suggested guidelines
for accounting for them. While most types of errors may
be rare, they are easily enriched among sites with allelic

imbalance, and can sometimes mimic the biological sig-
nal of interest, thus warranting careful analysis. Our
focus is on methods for obtaining accurate data of AE
rather than building a graphical user interface (GUI)
pipeline [17] or downstream statistical analysis of its bio-
logical sources [9, 13, 18–20]. The example data in most
of our analysis are the open-access RNA-seq data set of
the lymphoblastoid cell lines (LCLs) of 1000 Genomes
individuals from the Geuvadis project [5].

Results and discussion
Unit of AE data
The biological signal of interest in AE analysis is the
relative expression of a given transcript from the two
parental chromosomes. Typical AE data seek to capture
this by counts of RNA-seq reads carrying reference and
alternative alleles over heterozygous sites in an individ-
ual [heterozygous single-nucleotide polymorphisms
(het-SNPs)], and this is the focus of our analysis unless
mentioned otherwise. The Geuvadis samples with a
median depth of 55 million mapped reads have about
5000 het-SNPs covered by ≥30 RNA-seq reads, distrib-
uted across about 3000 genes and 4000 exons (Fig. 2;
Additional file 2). The exact number varies due to dif-
ferences in sequencing depth, its distribution across
genes, and individual DNA heterozygosity. About one
half of these genes contain multiple het-SNPs per
individual, which could be aggregated to better detect
AE across the gene (Fig. 2d). However, alternative spli-
cing can introduce true biological variation in AE in
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different exons, and incorrect phasing needs to be
accounted for in downstream analysis [13]. Additionally,
summing up data from multiple SNPs is not appropriate
if the same RNA-seq reads overlap both sites. In the
Geuvadis data, 9 % of the reads used in AE analysis in
fact overlap more than one het-SNP (Figure S2d in
Additional file 2), but this will become more frequent as
read lengths increase [21]. In the future, better tools are
needed to partition RNA-seq reads to either of the two
haplotypes according to all het-SNPs that they overlap
[22]. In fact, this could help to phase exonic sites
separated by long introns.
AE analysis of small insertions or deletions (indels)

has proven to be technically very challenging and it is
rarely attempted even though frameshift indels are an
important class of protein-truncating variant. Alignment
errors over indel loci are pervasive due to multiple mis-
matches of reads carrying alternative alleles, and lower
genotyping quality adds further error [12]. In Rivas et al.
[12] we describe the first approach for large-scale analysis
of AE over indels, but further methods development is war-
ranted for better sensitivity and computational scalability.

In addition to classical AE analysis to detect differ-
ences in total expression level of two haplotypes, it is
also possible to analyze allelic differences in transcript
structure or splicing [allelic splicing (AS)] [5, 21]. These
methods compare the exon distribution of reads and
their mates carrying different alleles of a heterozygous
site, and work increasingly well for longer total fragment
lengths. In these analyses, the data structure is some-
what more complex than reference/non-reference read
counts in AE, depending on the specific algorithm.
While this paper focuses on classical AE analysis of
SNPs, most of the quality analysis steps apply to indel
AE and AS analyses as well.

Tools to retrieve allele counts
Allele counts are the starting point for all AE analyses,
and many previous tools can retrieve these counts.
However, they also perform other analyses that require
additional input data and increase the runtime. Here we
present simple tools that can be used to retrieve only
allele counts, using the minimum required inputs in
standard formats. We present two solutions: 1) a highly

Fig. 1 Allelic expression and its sources. a Schematic illustration of AE. b Biological sources of AE, with the x-axis denoting the approximate
sharing of AE across tissues of an individual, and the y-axis having the estimated sharing of AE signal in one tissue across different individuals
[5, 8, 12, 13, 15]. SNP single-nucleotide polymorphism

Fig. 2 Genomic coverage of AE data in Geuvadis CEU samples. a Cumulative distribution of RNA-seq read coverage per het-SNP (each line represents
one sample). b, c The number of het-SNPs (b) and protein-coding genes (c) per sample as a function of coverage cutoff. d The number of
protein-coding genes with AE data versus the number of het-SNPs they contain. Each line is the median for all samples at a specific coverage level
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efficient Python tool that processes results from SAM-
tools mpileup, the framework used by the majority of
existing AE analysis pipelines; and 2) an easy to use tool
in the widely used GATK v.3.4 [23, 24] called ASERead-
Counter, which does not require any additional setup,
and includes a variety of easily customizable read pro-
cessing options as well as professional maintenance and
documentation, similar to other GATK tools. Both oper-
ate on aligned RNA-seq reads and count the reference
and alternative allele reads that passed filters for map-
ping and base quality at each bi-allelic heterozygous
variant. The GATK tool offers several additional options
for processing RNA-seq reads: by default each read frag-
ment is counted only once if the base calls are consistent
at the site of interest, and duplicate reads are filtered
(see below). Other options allow filtering for coverage
and for sites or reads with deletions. The output of
both is one file per RNA-seq input file, with one line
per site displaying the counts for each allele as well as
counts of filtered reads, and can be used for down-
stream analyses. The tools yield consistent results, with
runtimes comparable to a previously published tool [25]
(Additional file 3).

Quality control of allele counting
Retrieving allele counts from RNA-seq data over a list of
heterozygous sites is conceptually very simple, but
several non-trivial filtering steps need to be undertaken
to ensure that only high-quality reads representing inde-
pendent RNA/cDNA molecules are counted. The first
commonly applied filter is to remove reads with a poten-
tially erroneous base over the heterozygous site based on
low base quality. Furthermore, potential overlap of mates
in paired-end RNA-seq data needs to be accounted for, so
that each fragment, representing one RNA molecule, is
counted only once per het-SNP. In the Geuvadis data, an
average of 4.4 % of reads mapping to het-SNPs per sample
are derived from overlapping mates, but this number will
vary by the insert size (Figure S4a in Additional file 4).
In RNA-seq analysis, duplicate reads with identical

start and end positions are common (15 % of reads in
Geuvadis AE analysis), because highly expressed genes
get saturated with reads (Figure S4b, d in Additional file 4).
Thus, by default, duplicates are usually not removed from
RNA-seq data to avoid underestimating expression levels
in highly expressed genes [5]. However, we observe consist-
ent albeit infrequent signs of PCR artifacts in the Geuvadis
AE data, especially affecting lowly covered sites — where
duplicates are mostly true PCR duplicates, since saturation
is unlikely. Removing duplicate reads reduces technical
sources of AE at these sites, while having a minimal
effect on highly covered, read-saturated SNPs (Figure S4e
in Additional file 4). Thus, we suggest that removing
duplicate reads is a good default approach for AE

analysis, and it is implemented as a default in the GATK
tool. However, it is important that the retained read is
either chosen randomly or by base quality, and not by
mapping score, so as not to bias towards the reference
allele.
The most difficult problem in AE analysis and a po-

tential source of false positive AE is ensuring that 1) all
the reads counted over a site indeed originate from that
genomic locus, and 2) all reads from that locus are
counted. RNA-seq studies with shorter or single-end
RNA-seq reads are more susceptible to these problems.
First, to make sure that no alien reads get erroneously
assigned to a locus, only uniquely mapping reads should
be used. This implies that highly homologous loci — such
as microRNAs — are not amenable to AE analysis.
An even more difficult caveat in AE analysis is allelic

mapping bias: in RNA-seq data aligned to the reference
genome, a read carrying the alternative allele of a variant
has at least one mismatch, and thus has a lower probabil-
ity to align correctly than the reference reads [26–28].
Simulated data in Panousis et al. [27] indicates substantial
variation between sites — in most cases reads mapped
correctly, but 12 % of SNPs and 46 % of indels had allele
ratio bias >5 % with some having a full loss of mapping of
the alternative allele. Loci with homology elsewhere in the
genome are particularly problematic as reads have nearly
equally good alternative loci to align to. Furthermore, even
a site with no bias in itself can become biased due to a
flanking (sometimes unknown) variant that shares over-
lapping reads with the site of interest. In addition, map-
ping bias varies depending on the specific alignment
software used (Additional file 5).
Various strategies can be employed to control for the

effect of mapping bias on AE analysis. The simplest ap-
proach that can be applied to AE data without realign-
ment is to filter sites with likely bias [5, 8, 28]. In
previous work [5, 8, 29–31] and in this paper, unless
mentioned otherwise, we remove about 20 % of het-
SNPs that either fall within regions of low mappability
(ENCODE 50 bp mappability score < 1) or show map-
ping bias in simulations [27]. This reduces the number
of sites with strong bias by about 50 % (Fig. 3b) but the
genome-wide reference ratio remaining slightly above
0.5 indicates residual bias (Figure S6a in Additional file 6).
Using this ratio as a null in statistical tests instead of
0.5 [5, 6] can improve results (Figure S6b–e in Add-
itional file 6). More exhaustive but computationally in-
tensive approaches include alignment to personalized
genomes [18, 32, 33], or use of a variant-aware aligner,
such as GSNAP [34]. These methods yield comparable re-
sults and eliminate average genome-wide bias (Fig. 3a;
Additional file 5), but the fact that applying a mappability
filter still removes monoallelic sites implies that not all bias
is eliminated (Fig. 3b). In particular, in personalized or
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variant-aware approaches sites with homology else-
where in the genome can have very substantial allelic
mapping bias towards either the reference or non-
reference allele, which occurs when reads carrying one
allele map perfectly and reads with the other allele align
to multiple loci. A novel approach is the specific re-
moval of reads that show mapping bias with software
such as WASP [35], which generally performs well, al-
though some signs of residual bias still remain. Additional
file 7 presents a summary of the strengths and weaknesses
of each strategy. Altogether, while many approaches yield
reasonably accurate data, allelic mapping bias remains a
problem that cannot be perfectly eliminated with available
solutions.

Quality control of genotype data
AE analysis relies on data of heterozygous sites to distin-
guish the two parental alleles. These genotype data are
ideally retrieved from DNA-sequencing or genotyping
arrays, but the RNA-seq data themselves can also be
used for calling genetic variants and finding heterozy-
gous sites [36–39]. However, true allelic imbalance can
lead to heterozygous sites being called homozygous in
RNA-based genotype calling and lead to substantial error
in monoallelic genes due to, e.g., imprinting, and more
subtle bias in expression quantitative trait loci (eQTL)
genes (Figure S7a in Additional file 8).
Even when using heterozygous genotypes called from

DNA data, genotyping error can be an important source
of false signals of allelic imbalance, because AE data from
a homozygous site appear as monoallelically expressed. In
genotype data that has passed normal quality control (QC),
including Hardy-Weinberg equilibrium test, genotype error

will lead to rare cases of monoallelic expression per site,
not shared across many individuals (Fig. 1b). False hetero-
zygous genotype calls are rare but not negligible in AE
analysis using SNP genotypes from arrays or from modern
sequencing data, but much more common in imputed
data (Fig. 4a). Calculating the genome-wide proportion of
monoallelic AE sites per individual is a sensitive method
for genotyping quality control (Fig. 4a, arrowheads).
Removing genotyping error is relatively straightfor-

ward for analysis of moderate allelic imbalance (such as
that caused by cis-regulatory variants): removing mono-
allelic variants removes sites with false genotypes and re-
sults in little loss of truly interesting data. However,
highly covered sites are rarely strictly monoallelic even
in a homozygous state due to rare errors in sequencing
and alignment (Figure S7b in Additional file 8). Thus,
we propose a genotype error filter where the average
amount of such sequencing noise per sample is first esti-
mated from alleles other than reference (REF) or alterna-
tive (ALT) (Figure S7c in Additional file 8). Then,
binomial testing is used to estimate if the counts of REF/
ALT alleles are significantly higher than this noise, and
sites where homozygosity cannot be thus rejected are
flagged as possible errors (Fig. 4b). Additionally, it may
be desirable to flag fully monoallelic sites with low total
counts, where homozygosity cannot be significantly
rejected, but heterozygosity is not supported either. This
test can also be applied to study designs with RNA-seq
data from multiple samples (e.g., tissues or treatments) of
a given individual, genotyped only once, since genotyping
error causes consistent monoallelic expression in every tis-
sue. In the Geuvadis data set with 1000 Genomes phase 1
genotypes and sites covered by eight or more reads, an

Fig. 3 Strategies for reducing mapping bias in AE analysis. a Summary of various strategies to correct for mapping bias (Baseline = STAR aligned
only, Filtering = STAR aligned with bias and mappability filters, P. Genome = STAR aligned to a personalized genome generated with Allele-Seq,
WASP = STAR aligned with removal of biased reads using WASP, Variant Aware = GSNAP in variant aware alignment mode). The boxplot (axis on
the left) shows reference ratios for AE sites covered by eight or more reads. The mean reference ratio for each strategy is shown with a white
dash; the solid black line indicates a reference ratio of 0.5, while dotted lines indicate ±0.05. The percentages of sites that are monoallelic reference
(grey circle) or alternative (grey diamond) are plotted against the secondary axis. The number of sites with AE data for each strategy is shown as a
percentage of the baseline strategy underneath their respective labels. Outliers are hidden for ease of viewing. b Percentage of sites that are
removed when bias and mappability filters are applied to resulting data from all strategies, shown for each reference ratio bin
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average of 4.3 % of sites per sample are excluded by these
criteria [1 % false discovery rate (FDR)].
Unfortunately, genotyping error is very difficult to dis-

tinguish from a true biological pattern of strong monoal-
lelic expression, shared across all studied tissues, and
present in a small number of samples, such as analysis
of nonsense-mediated decay triggered by a rare variant,
or a rare severe regulatory mutation (Fig. 1). The only
real solution is rigorous genotype quality control and/or
validation, and taking the possibility of confounding by
genotyping error into account in interpretation of the
results.
Sample mislabeling or mixing of the RNA-seq samples

can lead to a substantial number false positive hits — as
opposed to reduction of power in eQTL studies. Fortu-
nately, simple metrics from AE analysis provide a sensi-
tive way to detect sample contamination and mislabeling
[40]. DNA-RNA heterozygous concordance — i.e., the
proportion of DNA-heterozygous sites that are hetero-
zygous also in RNA data — and a measure of allelic im-
balance detect outliers and indicate the type of error
(Figure S7d in Additional file 8).

Technical covariates
RNA-seq has become a mature and highly reproducible
technique, but it is not immune to technical covariates
such as the laboratory which experiments were per-
formed in, aspects of library construction and complex-
ity, and sequencing metrics [40]. Gene expression
studies are particularly susceptible to these technical fac-
tors, because read counts between samples are compared.
AE analysis has the advantage that only read counts
within samples are compared (allele versus allele), which
makes it less susceptible to technical artifacts. We ana-
lyzed the correlation of the proportion of significant
AE sites (binomial test, nominal p < 0.05) with various

technical covariates in the Geuvadis data (Fig. 5a). In
raw AE count data, we observe a high correlation with
the library depth (unique reads; R2 = 0.24) — expect-
edly, since total read count of AE sites determines the
statistical power to see significant effects (see below).
In AE data corrected for variation in read counts by
scaling the counts to 30, all technical correlations are
very small and mostly non-significant, in stark contrast
to gene expression level data that display strong batch
effects (Fig. 5b). Thus, when appropriate measures are
taken, AE analysis is an extremely robust approach that
suffers less from technical factors than gene expression
studies.

Statistical tests for AE
A binomial test is the classic way to determine whether
the ratio of the two alleles is significantly different from
the expected 0.5, and has been widely used [2, 5, 8, 31].
However, AE data are overdispersed compared with
what is expected under a binomial distribution, likely as
a result of both biological and technical factors [35, 41,
42]. These technical factors arise from systematic arti-
facts such as allelic mapping bias, as well as from imper-
fect reproducibility (measurement error), which we were
able to estimate using eight technical replicates of five
Geuvadis samples [40]. Accounting for duplicates and
overlapping read mates reduced measurement error be-
tween replicates (Additional file 9), with very low level
of residual variation between replicates except for the
highly covered sites (>500), although we note that this
may not apply to all data sets. The other QC measures
described above remove systematic artifacts and reduce
the inflation of binomial p values further (Fig. 6a). None-
theless, the binomial p values remain inflated, and espe-
cially highly covered sites are likely to have remaining
systematic artifacts (Fig. 6b). This suggests that a simple

Fig. 4 Quality control of genotype data for AE analysis. a Median percentage of het-SNPs where RNA-seq reads from both alleles are observed
across all tissues for GTEx samples, genotyped with different platforms: exome-seq (yellow), Illumina OMNI 5 M SNP array (blue), and sites imputed
from OMNI 5 M genotype array (red). Grey arrowheads indicate outlier individuals that are likely to have lower genotype quality. b Total het-SNP
read count versus the read count of the lesser-covered allele for an individual Geuvadis sample. Sites flagged as putative genotyping errors are
marked in red, with RNA-seq data not rendering support for heterozygosity
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binomial test may not be an appropriate statistical test
for allelic imbalance because it could result in a high
number of false positives. However, given that most
genes have eQTLs [4, 5, 8], biological sources of AE are
expected to be extremely widespread, which is further
supported by high heritability of AE [2]. Thus, while
various statistical models have been put forward, many
of which use variations of a beta-binomial model to infer
the level of overdispersion [35, 41, 42], it remains inher-
ently difficult to distinguish biological sources of over-
dispersion from putative technical effects. One approach
is to analyze AE across individuals and tissues to control
for confounders and capture the biological signal of
interest — such as cis-regulatory variation [35, 41], im-
printing [13], or nonsense-mediated decay [20]. How-
ever, many of the statistical approaches to analyze AE
data are just emerging, and their full benchmarking is
beyond the scope of this paper. For reference, a list of
the currently available tools and publications that
analyze AE data, including their specific biological

application, statistical test used, and required inputs,
can be found in Additional file 10.
Often during AE analysis the intent is to compare

allelic imbalance between different sites, or between
individuals. This is complicated by the highly variable
total read counts at het-SNPs (Fig. 2a), since they lead
to substantial differences in statistical power at differ-
ent sites. These differences are driven by differences in
library depth between samples, as well as biologically
variable expression levels between genes and samples.
Such differences can cause samples to cluster by ex-
perimental batch (Fig. 6c). If the goal of the analysis is
to capture AE, patterns introduced by expression levels
are often not desirable. While this problem ultimately
needs to be addressed with tailored statistical ap-
proaches, it can be alleviated with a straightforward
minimum effect size cutoff that reduces the enrich-
ment of significant sites in highly covered het-SNPs
(Fig. 6b), and accounts for the strongest dependency of
total read counts (Fig. 6d). An experimental approach

Fig. 5 Technical covariates of AE. a Correlation of AE with technical covariates, measured as correlation (R2) between each covariate and the
percentage of significant AE sites in a sample (binomial p < 0.05, het-SNPs with ≥30 reads), both before and after scaling to 30 reads. b Correlation of
gene expression with technical covariates. As the gene expression statistic we use the median correlation of each sample to all other samples
(D-statistic). Correlation to a biological covariate (population) is shown for comparison. Correlations were calculated from all Geuvadis samples
by Spearman correlation for continuous covariates, or linear regression for categorical covariates. **p < 0.01, *p < 0.05, after Bonferroni correction. RIN
RNA integrity number, Stdev standard deviation
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is to use an assay that yields high read counts, such as
mmPCR-seq, instead of or alongside RNA-seq data [9,
12, 13, 43].

QC measures improve the power to detect biologically
relevant AE
Regardless of the specific application, the QC measures
proposed here should increase true signals of AE, result-
ing in improved power to detect biological phenomena
of interest. To demonstrate this, we analyzed AE at 1154
genes with known eQTL (eGenes) in 343 European
individuals using Geuvadis LCL RNA-seq data [5].
Individuals who are heterozygous for an eQTL SNP (eSNP)
are expected to show increased AE within the eGene
compared with those who are homozygous. Applying QC

measures increased the significance of the difference
in AE and reduced the variance of AE at eGenes
(Additional file 11). Altogether this increased the power
to distinguish between AE levels in eSNP heterozygous
versus homozygous eGenes, with a 6.8 % increase in true
positives, and 59.3 % decrease in false positives after
applying QC measures (Fig. 7a, b). The measures also
significantly increased the difference in the proportion
of individuals exhibiting allelic imbalance (AE > 0.25)
between the two classes (Fig. 7c), and resulted in a robust
enrichment of sites within heterozygous eQTL across the
spectrum of allelic imbalance (Fig. 7d). These results
clearly illustrate the immediate benefit of ensuring AE data
used for analysis are of high quality by applying the QC
measures outlined here.

Fig. 6 QC measures reduce false positives, demonstrated with a binomial test for allelic imbalance. a QQ plot of p values generated from binomial
testing after various QC measures. Baseline = STAR aligned testing against a null of 0.5 without any correction for double counting, mapping bias, or
genotyping error; No Double Counting = as Baseline but without duplicates and overlapping mate pairs counted once; Site Filter= as No Double
Counting but without biased and low mappability het-SNPs; Adjusted Null = As Site Filter but using mean per base reference ratio as the binomial null;
WASP Filter= as Site Filter but with WASP filtering of reads; Monoallelic Filter= as Adjusted Null but removing monoallelic sites to account for putative
genotyping error. b Histogram showing distribution of coverage for sites with significant (5 % FDR) allelic imbalance according to a binomial test
(primary axis), and the percentage of all het-SNPs that show significant allelic imbalance in each coverage bin using increasing allelic effect cutoffs
(secondary axis). c, d Multidimensional scaling (MDS) clustering of Geuvadis samples based on proportion of sites with significant AE that
differs between sample pairs. Samples are colored by sequencing laboratory and labeled by population. If significant sites are assigned based
on a simple binomial test (FDR 5 %), the samples cluster first by sequencing laboratory due to lab-specific differences in coverage (c). This effect
is mostly removed in (d) by requiring significant sites to have FDR 5 % and effect size > 0.15
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Conclusion
In this paper, we have introduced tools for retrieving
high-quality AE data from RNA-seq data sets. We
have described how the quality of the input data af-
fects AE analysis, and outlined the QC approaches
that are needed to obtain accurate estimates of AE
from RNA-seq data (Additional files 12 and 13).
Altogether, we show that carefully collected and fil-
tered AE estimates from modern RNA-seq data are re-
markably robust to technical variation in RNA-seq
data, highlighting their utility for detecting diverse
biological phenomena of genetic and epigenetic vari-
ation. Increasingly standardized production of AE data
advances wider data sharing and integration across
studies, although the genotype data included in AE
estimates by default pose limitations on data access.
The increasing amounts of AE data from large-scale

RNA-seq studies hold great promise for capturing
regulatory variation even in small numbers of samples,
allowing integrated analysis of the personalized gen-
ome and its function.

Materials and methods
GATK ASEReadCounter tool and benchmarking
The tool and accompanying documentation are avail-
able in GATK v.3.4, which can be downloaded from
[44]. The Python script which processes the output
from SAMtools mpileup can be found at [45]. Bench-
marking was run using GATK v.3.4 and SAMtools 1.2
on STAR aligned reads from the Geuvadis sample
NA06986.2.M_111215_4 using heterozygous bi-allelic sites
from 1000 Genomes phase 1. Reads were coordinate
sorted, indexed, and WASP filtered to produce a BAM file
containing 56,362,192 reads. Runtime benchmarking was

Fig. 7 QC measures improve the power to detect biologically relevant AE at genes that have eQTLs (eGenes), where individuals that are
heterozygous for the top eQTL SNP (eSNP) are expected to have more AE than homozygous individuals. Plot of median AE in heterozygous
versus homozygous individuals for each eGene, before (a) and after (b) QC measures. Red points indicate a significant (1 % FDR) difference in AE level
in the expected direction (AE het > AE homo, true positive), blue points indicate a significant difference in the opposite direction (AE het < AE homo,
false positive), and the number of true and false positives is listed. c Boxplot of the percentage of individuals showing allelic imbalance
(AE > 0.25) who are either heterozygous or homozygous for the top eQTL at each eGene before and after QC measures. Outliers are hidden
for ease of viewing. d Mean percentage of het-SNPs that are found within heterozygous eGenes in bins of AE across individuals before and
after QC measures. Error bars represent the standard error of the mean, and asterisks indicate a significant difference (1 % FDR) after applying
QC measures for that bin
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performed using 100 %, 75 %, and 50 % of the reads
sampled from the file, and is reported as the mean of
10 runs with the 95 % confidence interval shown. For
comparison ASEQ v.1.1.8 was run in pileup mode.
Benchmarking was run on CentOS 6.5 with Java version
1.6 on an Intel Xeon CPU E7- 8830 @ 2.13GHz.

Filtering homozygous sites
In order to identify potentially homozygous sites miscalled
as a heterozygous SNP we model the number of reads that
can be observed due to technical error of the experimental
and upstream computational pipeline. Let us assume there
are a total of n reads originating from a site homozygous
for an allele R. Assuming a noise rate ε, by which a read
can erroneously support another allele A, the distribution
of total number of reads aligned to allele A, nA, is given by
binomial distribution. Hence, the probability of observing
nA or more reads assigned to allele A in a site homozygous
for R is given by:

p x≥nAj RRð Þ ¼ 1−BinCDF nA; n; εð Þ;
where BinCDF(nA, n, ε) is the binomial cumulative dis-
tribution function. Conversely, the probability of observ-
ing nR(n = nR + nA) or more reads assigned to allele R in
a site homozygous for A is given by:

p x≥nRj AAð Þ ¼ 1−BinCDF nR; n; εð Þ;
under the assumption that the noise rate is equal for all

alleles. Therefore, the probability of observing extreme
allelic imbalance due to the null hypothesis, homozygosity
for one of the alleles, can be calculated by summing up the
two above probabilities corresponding to the two tails of
the distribution. In order to derive an empirical estimate of
the noise rate ε we used the ratio between the total sum of
reads assigned to other alleles, those different from the
designated reference or alternative allele at each site, to the
total number of reads in a library divided by two. For this
purpose we exclude the sites with more than 5 % of the
reads aligned to other alleles from the analysis.

Mapping strategies for AE analysis
For all analyses, unless otherwise noted, reads were
mapped using STAR v.2.4.0f1 and the two-pass mapping
strategy as recommended by the Broad Institute [39].
Briefly, splice junctions are detected during a first pass
mapping, and these are used to inform a second round
of mapping. All reads were mapped to hg19 and Gencode
v19 annotations were used.
For mapping to a personalized genome, the vcf2diploid

tool, part of AlleleSeq, was used to generate both a mater-
nal and paternal genome for NA06986 from the phased
1000 Genomes phase 1 reference using het-SNPs only.
Reads were then mapped to both genomes separately using

STAR two-pass strategy (as above). Reads which aligned
uniquely to only one genome were kept, and in cases where
reads mapped uniquely to both genomes, the alignment
with the higher alignment quality was used.
Mapping using GSNAP was performed with default

settings and splice site annotations from hg19 refGene.
Variant-aware alignment was performed using the “-d”
option for NA06986 from the phased 1000 Genomes
phase 1 reference using het-SNPs only, as described in
the GSNAP documentation.

Multidimensional scaling clustering of samples by AE
data
A pairwise distance matrix was produced for all
Geuvadis samples using AE data and used for classical
multidimensional scaling (cmdscale) in R. The first two
dimensions were then plotted against each other for all
samples. The distance between two samples was calcu-
lated as follows: Pairwise distance = Total number of sites
with significant AE in only one sample/Total number of
shared sites. A binomial test with a 5 % FDR was used for
significance with either no effect size cutoff (Fig. 6c) or a
minimum effect size of 0.15 (Fig. 6d).

Measuring AE at eQTL genes
RNA-seq data from 343 Geuvadis European individuals
was used to generate allele counts at het-SNPs. For each
individual, AE (AE = |0.5 − Reference ratio |) was calcu-
lated for all sites with ≥16 reads, each site was intersected
against all Geuvadis European genes with a significant
eQTL (eGene, 5 % FDR), and the median AE of all sites
covering each eGene was calculated. The genotype of each
individual for the top eQTL for each gene was then deter-
mined to be either heterozygous or homozygous. For each
eGene with at least 30 measurements of AE in both
heterozygous and homozygous individuals the significance
of the difference in AE between the two classes was
calculated using a Wilcoxon rank sum test (1 % FDR). To
determine the enrichment of sites within eSNP heterozy-
gous eGenes across the AE spectrum, the percentage of
these sites was calculated in bins of AE for each individual.

Units of AE
For a single variant:

Reference ratio = Reference reads/Total reads
Allelic expression (effect size) = |0.5 – Reference ratio|

Data availability
RNA-seq data from the Geuvadis Consortium alongside
1000 Genomes phase 1 genotype data were used for all
analyses. RNA-Seq FASTQ files are available from
the European Nucleotide Archive under accession
[ENA:ERP001942].
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Additional files

Additional file 1: Figure S1. Allelic expression signal from a population of
monoclonal versus polyclonal cells. In the latter, standard RNA-sequencing will
show allelic imbalance only when the two alleles are systematically differentially
expressed, e.g., due to a regulatory variant or imprinting. (TIFF 3238 kb)

Additional file 2: Figure S2. Genomic coverage of allelic expression data
in Geuvadis CEU samples (extended). a Total number of unique het-SNPs
covered by increasing read depth as a function of the number of individuals.
b Boxplot of the total number of exons per individual containing at least one
het-SNP for each depth level. c Median number of exons as a function of the
number of het-SNPs per feature at increasing read depths. d Distribution of
percentage of reads mapping to het-SNPs that cover more than one het-SNP
for all Geuvadis samples (median = 8.8 %). (TIFF 1735 kb)

Additional file 3: Figure S3. Performance of GATK ASEReadCounter
(GATK) tool compared with SAMtools mpileup with output processed
by a custom Python script. a Mean runtime in minutes to produce allele
counts from a processed BAM file with 100 %, 75 %, and 50 % of the
reads sampled (see "Materials and methods"). ASEQ running in pileup
mode is included as a comparison. Error bars show a 95 % confidence
interval generated from ten runs. Plot (b) and distribution (c) of reference
ratios for sites covered by ≥30 reads calculated using read counts
generated using either the GATK or SAMtools mpileup. (TIFF 4277 kb)

Additional file 4: Figure S4. Effect of overlapping and duplicate reads
on AE analysis of Geuvadis samples. a Histogram of percent overlapping
mates of paired-end reads at het-SNPs used for AE analysis. b Histogram
of percentage of duplicate reads at het-SNPs used for AE analysis. c Total
coverage versus percentage of duplicate reads at AE sites. d Percentage
of duplicate reads in coverage level bins for Geuvadis samples with the
minimum (77.5 %, red), median (83.9 %, yellow) and maximum (89.6 %,
green) read complexity at het-SNPs. Complexity is defined as Total number
of reads mapping to het-SNPs after removing duplicates/Number of
reads before removing duplicates. e Effect of duplicate removal on allelic
expression effect size [AE = |0.5 – Reference reads/Total reads|,
ΔAE = AE(Duplicates removed) – AE(No duplicates removed)] on het-SNPs
binned by coverage level, sites where ΔAE = 0 are not shown. (TIFF 2407 kb)

Additional file 5: Figure S5. Comparison of AE data generated with
different alignment strategies. a–d For each comparison the observed reference
ratios for het-SNPs that have AE data in both strategies are plotted against each
other (Shared het-SNPs), histograms show the reference ratios of sites that are
unique to only one analysis (Unique het-SNPs), and a density plot shows the
genome wide reference ratio distribution for each analysis. AS=personalized
genome generated with Allele-Seq and phased genotype data, GSNAP
vAWARE=GSNAP using variant aware alignment. No filtering of sites has been
done. All data come from Geuvadis LCL RNA-seq libraries from NA06986.
Only het-SNPs with eight or more reads are included. (TIFF 15560 kb)

Additional file 6: Figure S6. Low-level reference bias at het-SNPs
remains after filtering biased sites. a Boxplot of reference ratio (Reference/
Total) for each reference-alternative base combination for each Geuvadis
sample, mapped with STAR two-pass and filtered for sites with low
mappability or mapping bias in simulations as well as sites with potential
genotyping error as described before. Ratio is calculated by summing up
all REF and ALT read counts for that combination in a sample at sites that
have eight or more reads, and for sites with coverage > 75th percentile total
counts were scaled down to the 75th percentile to avoid sites with very high
coverage having a disproportionate effect on the overall ratio. b, c Binomial
test of AE on an example Geuvadis sample using an expected reference
ratio of 0.5 (b) or against the calculated mean scaled reference ratio (c)
(as described above), with sites of significant AE shown in red (5 % FDR).
d Histogram of reference ratios at significant sites from (b). e Histogram of
reference ratios at significant sites from (c). (TIFF 7345 kb)

Additional file 7: Table S1. Summary of methods for correcting
mapping bias in AE analysis. (XLSX 34 kb)

Additional file 8: Figure S7. Quality control of genotype data for allelic
expression analysis (extended). a Boxplot of per individual percentage
of false homozygous RNA-seq genotype calls at het-SNPs in genes with
cis-eQTLs in LCLs (FDR ≤ 0.05, Geuvadis), imprinted genes (based on [13]
excluding genes detected exclusively in Geuvadis data), and all other

genes. False homozygosity is defined as sites where variant calling using
LCL RNA-seq data indicate the individual is homozygous for a non-
reference allele, while DNA genotyping (1000 Genomes) indicates they
are heterozygous. Genotype calls were made using GATK and best practices
for RNA-seq genotype calling. b Percentage of het-SNPs where reads
from foreign alleles (≥1 blue, ≥2 green, ≥3 yellow, ≥4 red) are observed
as a function of coverage level using all Geuvadis RNA-seq data. Binned
by hundreds of reads/het-SNP. c Frequency of the proportion of reads
from foreign alleles (non-reference or alternative) observed (ε) in all
Geuvadis samples (median = 4.128 × 10-4). d Scatterplot of percentage of
significant AE sites (binomial test, p < 0.05) and percentage of biallelic
het-SNPs (one or more read for each allele), for five Geuvadis libraries
that have been contaminated with another sample in silico (0–75 %
contamination). (TIFF 2131 kb)

Additional file 9: Figure S8. QC measures reduce overdispersion in
technical replicates when testing for allelic imbalance using a binomial
test. Variance of allelic ratios as a function of total read counts, calculated
as the mean at a given SNP from a Geuvadis individual with eight
technical replicates (grey) with (b) or without (a) accounting for duplicate
reads and overlapping read mates. The lines denote locally weighted
smoothing of observed data (black) and theoretical variance for
binomially distributed data (red). (TIFF 3209 kb)

Additional file 10: Table S2. Summary of publications and tools that
analyze AE data, listing their specific application, the type of statistical
test performed, and the required input data. (XLSX 27 kb)

Additional file 11: Figure S9. QC measures improve the power to
detect biologically relevant allelic expression at genes that have eQTLs
(eGenes), where individuals that are heterozygous for the top eQTL SNP
(eSNP) are expected to have more allelic expression than homozygous
individuals (extended). a QC measures increase the significance of the
difference between heterozygous and homozygous individuals within
eGenes. b QC measures reduce the variance of allelic expression
between individuals within eGenes. (TIFF 2856 kb)

Additional file 12: Figure S10. Complete workflow for AE analysis
illustrating appropriate quality control measures and filters. (TIFF 782 kb)

Additional file 13: Table S3. Summary of QC problems for AE data,
proposed solutions, and potential drawbacks. (XLSX 31 kb)
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