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Abstract

polygenic models for each cancer type.

Background: Genome wide-association studies have successfully identified several hundred independent loci
harboring common cancer susceptibility alleles that are distinct from the more than 110 cancer predisposition
genes. The latter are generally characterized by disruptive mutations in coding genes that have been established as
‘drivers' of cancer in large somatic sequencing studies. We set out to determine whether, similarly, common cancer
susceptibility loci map to genes that have altered frequencies of mutation.

Results: In our analysis of the intervals defined by the cancer susceptibility markers, we observed that cancer susceptibility
regions have gene mutation frequencies comparable to background mutation frequencies. Restricting analyses to genes
that have been determined to be pleiotropic across cancer types, genes affected by expression quantitative trait loci, or
functional genes indicates that most cancer susceptibility genes classified into these subgroups do not display mutation
frequencies that deviate from those expected. We observed limited evidence that cancer susceptibility regions that harbor
common alleles with small estimated effect sizes are preferential targets for altered somatic mutation frequencies.

Conclusions: Our findings suggest a complex interplay between germline susceptibility and somatic mutation,
underscoring the cumulative effect of common variants on redundant pathways as opposed to driver genes. Complex
biological pathways and networks likely link these genetic features of carcinogenesis, particularly as they relate to distinct

Background

The genetic basis of cancer susceptibility was first recog-
nized in 1866 by the French neuroscientist Paul Broca,
who noted clustering of breast cancer cases in his own
family [1]. Generations of studies have observed an in-
crease in the frequencies of cancer within families and
between twins. In 1953, Nordling proposed that cancer
is caused not by one but a number of mutations that are
multiplied and accumulated over time [2]. Knudson
further extended Nordling’s theory with his “two hit”
hypothesis in which he proposed that retinoblastoma
could develop due to an inherited germline mutation in
combination with a somatic mutation [3]. While limited
data were available when Nordling and Knudson first
introduced their theories of the genetic basis of select
cancers, recent cancer consortiums and technological
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advances have produced troves of data to explore the
interplay between germline genetics and acquired som-
atic mutations.

Genome-wide association studies (GWAS) have gener-
ated a catalog of common susceptibility variants with
small effect sizes that cumulatively contribute to sporadic
cancer through a polygenic model [4, 5]. The combination
of an agnostic analytical approach for scanning thousands
of markers across the genome together with the scalability
of studies drawn from different designs has accelerated
the pace of discovery of markers, usually single nucleotide
polymorphisms (SNPs) with minor allele frequencies
greater than 5 %. Cancer GWAS have conclusively identi-
fied over 400 distinct susceptibility loci in over two dozen
distinct cancers, including common cancers (e.g., breast,
colon, and prostate) as well as rarer pediatric cancers (e.g.,
Ewing sarcoma and neuroblastoma) [6, 7]. To date, nearly
all discovered susceptibility loci harbor many highly corre-
lated SNPs, almost all mapping to the non-coding regions
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in genes, and roughly one-fifth have no nearby plausible
candidate gene [7].

The Cancer Genome Atlas (TCGA) project along with
other cancer genome sequencing initiatives, such as the
International Cancer Genome Consortium, have emerged as
indispensable resources for investigating the mutational land-
scape of cancer genomes [8, 9]. Utilizing next-generation se-
quencing technologies, these projects have mapped somatic
mutations, localized copy number changes, and demon-
strated that cancer genomes accumulate mutations over
time; many of the mutations map to genes known to alter
mechanisms that keep cellular proliferation in check [10].

An abundance of data exists on either cancer germline
susceptibility alleles or somatic mutations, but little has
been done to explore the interplay between germline gen-
etics and somatic mutations in carcinogenesis. It is possible
there is an overlap between germline cancer predisposing
mutations and somatic cancer driver mutations. A prior in-
vestigation of cancer predisposition genes found that per-
haps more than 40 % were oncogenic when mutated in
tumor DNA [11]. The investigation also surveyed known
cancer GWAS susceptibility loci at the time and found
only 4 % of GWAS loci falling within cancer predisposition
genes. For these cancer predisposition genes, none of the
GWAS associated cancers matched the respective cancer
subtypes that occurred in carriers of rare, high penetrant
mutations, suggesting the mechanisms linking common,
low penetrant alleles and rare, high penetrant alleles with
cancer may be etiologically distinct.

Our goal was to investigate whether genes in cancer
susceptibility regions harboring common variants with
small estimated effect sizes have altered somatic mutation
frequencies. Based on a literature search to aggregate pub-
lished cancer susceptibility loci, we investigated somatic
mutation frequencies using the cBioPortal database
[12, 13] and TCGA in genes that fall within the intervals
defined by the correlated variants discovered in cancer
GWAS, and compared these mutation frequencies with
expected cancer-specific background mutation frequen-
cies. We explored further the relationship between germ-
line susceptibility loci and somatic mutation frequency by
examining mutation frequencies in a refined subset of
genes shown to be pleiotropic across cancer types, affected
by expression quantitative trait loci, or functionally im-
portant. Apart from a few notable exceptions, cancer-
specific mutation frequencies for genes in susceptibility
regions were not found to significantly differ from back-
ground mutation frequencies.

Results

Results from the cancer GWAS literature search for each
cancer subtype investigated are presented in Table 1. A
total of 263 distinct germline susceptibility regions were
reported as of 25 August 2014 and serve as the basis for
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Table 1 Number of included cancer susceptibility regions and
nearby genes for each cancer type investigated

Cancer subtype GWAS loci LD genes Nearby genes
Bladder 12 103 264
Breast 80 702 1324
Cervical 7 148 290
Colon 25 215 421
Endometrial 1 1 18
Glioma 9 90 212
Kidney 5 12 48
Liver 7 89 195
Lung 10 257 350
Multiple myeloma 5 129 219
Ovarian 10 19 213
Prostate 71 697 1583
Skin 14 31 493
Stomach 2 12 24
Thyroid 5 15 40
Total 263 2190 4103

All cancer susceptibility regions have a published p value less than 5x 1075,
are independent of each other, are associated with cancer in European
populations, and were discovered prior to 25 August 2014. Linkage
disequilibrium (LD) genes are those within the LD block of the susceptibility
variant. Nearby genes are defined as those within the LD block of the
susceptibility variant or within 500 kb of the LD block. For the genes, the
total is for all unique genes and excludes duplicates across cancer types

this analysis. Breast and prostate cancer had the most
discovered susceptibility regions with 80 and 71, re-
spectively, after which were colon and skin cancer, each
with 14 or more discovered susceptibility regions.
Stomach and endometrial cancer had the fewest num-
ber of discovered susceptibility regions, each having
fewer than five.

Each cancer susceptibility variant was run through our
analysis pipeline to generate a list of potentially affected
genes that are within or near the linkage disequilibrium
(LD) block defined by the combination of correlated
SNPs and recombination hot spots that encompasses the
susceptibility variant. The total number of genes is tabu-
lated in Table 1. A total of 2190 unique genes are located
in LD blocks of GWAS susceptibility loci and an add-
itional 1913 are located +500 kb of the LD blocks. A total
of 24,482 genes are annotated in RefSeq Genes and 8.9 %
of these genes thus fall within LD blocks of currently
discovered variants for the cancer subtypes reported.

To investigate cancer subtype-specific background fre-
quencies of mutation for genes falling within GWAS re-
gions, we estimated cancer-specific frequencies of somatic
mutation for all RefSeq genes. Across all cancers, the ma-
jority of RefSeq genes were not mutated; genes that did
have mutations generally had frequencies lower than 4 %
of individuals sampled. The top mutated gene for each
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cancer subtype is listed in Table 2. Examples of highly mu-
tated genes include APC, ERG, PTEN, TP53, and TTN.
Interestingly, none of these highly mutated genes map
within or around LD blocks of cancer susceptibility re-
gions for the respective cancer subtype.

Distributions of gene mutation frequencies within can-
cer susceptibility regions are compared with expected
background frequencies of mutation for all RefSeq genes
in Fig. 1. Differences in overall distribution of gene mu-
tation frequencies were noted across cancer types and
mirrored previously described cancer-specific mutation
frequencies [14]. Skin, lung, colon, and cervical cancer
subtypes were observed to exhibit higher background
mutation frequencies than kidney, liver, or thyroid cancer.
However, mutation frequencies for genes within or around
LD blocks of cancer-specific susceptibility regions closely
mirrored cancer subtype-specific background mutation
frequencies. Only prostate and liver cancer displayed
significantly different distributions for background and
cancer susceptibility region mutation frequencies (Kolmo-
gorov-Smirnov p < 0.05). Prostate cancer susceptibility
regions were found to have a marginally lower mean gene
mutation frequency than background (0.137 versus 0.154,
p value =0.038). Likewise, liver cancer susceptibility re-
gions had lower mean gene mutation frequency than
background (0.086 versus 0.321, p value < 0.001).

Table 2 Top somatically mutated genes by cancer subtype

Cancer subtype Samples Most mutated GWAS locus
(percentage samples)
Bladder 328 PIK3CA (2043) No
Breast 1257 TP53 (33.73) No
Cervical 39 TTN (51.28) No
Colon 224 APC (75.00) No
Endometrial 248 PTEN (64.92) No
Glioma 289 IDH1 (76.12) No
Kidney (chrom) 66 MUC4 (66.67) No
Kidney (clear) 522 VHL (46.55) No
Kidney (pap) 168 TTN (25.00) No
Liver 258 TP53 (32.17) No
Lung (adeno) 676 TP53 (47.34) No
Lung (small) 71 TP53 (87.32) No
Lung (squamous) 178 TP53 (90.45) No
Multiple Myeloma 205 ADAM6 (30.73) No
Ovarian (serous) 316 TP53 (94.62) No
Ovarian (small) 12 SMARCA4 (91.67) No
Prostate 584 ERG (29.87) No
Skin 490 TTN (67.14) No
Stomach 220 TTN (56.36) No
Thyroid 401 BRAF (61.35) No
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Highly mutated genes within LD regions of each cancer
subtype are presented in Table 3. Overall, skin cancer had
the highest somatic mutation frequencies for genes within
cancer susceptibility regions, with SORCS3, CDKN2A, and
TRIOBP all having mutations in over 10 % of samples.
Bladder cancer, colon cancer, cervical cancer, and glio-
blastoma also had genes located in susceptibility regions
with mutations in more than 10 % of samples. Cancers
with low mutation frequencies in susceptibility regions
include all subtypes of kidney, liver, multiple myeloma,
and serous ovarian cancers; for each of these cancers, the
somatic mutation prevalence was less than 5 %. Thyroid
cancer had a particularly low somatic mutation frequency
in susceptibility regions, with all genes having somatic
mutations below 1 %.

When we merged all genes from cancer susceptibility
loci together and assessed their mutation frequency in
relation to distance from the most associated susceptibil-
ity variant, we observed a pattern in which genes with
higher mutation frequency tend to be closer in proximity
to the most highly associated susceptibility variant
(Fig. 2). This relationship was observed both within sus-
ceptibility regions of each cancer subtype (data shown
for breast and prostate) and overall across cancer type.
However, when comparing the distribution of gene mu-
tation frequency for all cancer susceptibility regions to
ten permutations of randomly selected array genotyped
variants, the same overall pattern of a few genes in close
proximity to the original susceptibility variant with
higher mutation frequencies was observed. This suggests
the observed relationship is not a function of genes near
cancer susceptibility variants harboring higher mutation
frequencies, but rather due to non-random placement of
genes throughout the genome resulting in a higher density
of genes in these susceptibility regions and thus a greater
probability of outliers. To investigate if average frequen-
cies of gene mutation are different based on distance from
the susceptibility variant, 500-kb bins were constructed
around susceptibility variants and mean frequencies of
gene mutation were calculated (Fig. 3). No biologically
relevant relationship was observed in gene mutation fre-
quency in relation to distance from cancer susceptibility
variant.

In an effort to remove the mutational signal of a pos-
sibly affected gene or genes at the cancer susceptibility
loci from the background noise of other nearby but un-
affected genes, the most mutated gene at each cancer
susceptibility locus was selected and combined with all
other top mutated genes in susceptibility regions. The
analysis only included cancers with more than 200 se-
quenced cancer genomes, so stable estimates of muta-
tion frequency were available. The distribution of gene
mutation frequency for top mutated genes in cancer
susceptibility regions was compared with distributions of
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Fig. 1 Mutations frequencies in cancer susceptibility regions compared with subtype-specific background mutation frequencies. Cancer subtypes
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top mutated genes from ten permutations of randomly
selected SNPs. The observed distributions were remark-
ably similar with Kolmogorov-Smirnov tests indicating
no significant differences with respect to GWAS suscep-
tibility loci (Fig. 4).

In an attempt to filter out potential functional genes in
cancer susceptibility regions we performed a set of re-
stricted analyses based on the level of functional evidence
for each gene. Three classes of genes were of interest: (1)
genes found to be in cancer susceptibility regions across
multiple cancer subtypes, “pleiotropic genes”; (2) genes
whose expression levels are associated with cancer suscep-
tibility loci, “eQTL genes”; and (3) genes with experimen-
tal evidence linking a cancer susceptibility locus to a
“functional gene”, based on laboratory investigation dem-
onstrating an alteration in the regulation of one or more
genes [15-30]. MutSigCV was used to find matching
genes for each gene in these gene sets that have similar
gene expression levels, DNA replication timing, and
chromatin state, all of which are factors know to influence
mutation frequency. For the pleiotropic gene analysis, re-
sults indicated no overall difference in mutation frequency
z score (mean z score =0.299, 95 % confidence interval
(CI) =-0.074-0.672, p value=0.11; Fig. 5a). Elevated

frequencies of mutations were observed for CDKN2A
(skin), PIK3C2B (breast, prostate), PLCE1 (esophageal),
TET2 (breast), and TP63 (bladder, lung). The eQTL
gene analysis results also indicated no overall difference
in mutation frequency z score (mean z score =0.339,
95 % CI=-0.010-0.688, p value =0.06; Fig. 5b). The
highest mutation frequencies for eQTL genes were ob-
served in FGFR2, ITPRI, KIF13P, MAGI3, MGGTI0,
NOTCH2, SYNEI, and TACC2 for breast cancer,
MAP3K4 for colon cancer, MYOIB and PIK3CD for
liver cancer, IRX4 for pancreatic cancer, and LMTK2,
PDLIMS, SP4, and SYNEI for prostate cancer. The ana-
lysis of functional genes found an overall increased muta-
tion frequency (mean z score =0.827, 95 % CI=0.087-
1.568, p value = 0.03; Fig. 5¢). Of the 29 functional genes
investigated, six had elevated mutation frequencies. These
genes include TP63 for bladder cancer, FGFR2 and
MAP3K] for breast cancer, HNFIB for ovarian cancer,
KLKS3 for prostate cancer, and CDKN2A for skin cancer.

Discussion

Our analysis of 263 published cancer susceptibility re-
gions harboring common alleles, the majority of which
were identified by GWAS, suggests that frequencies of
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Table 3 Top somatically mutated genes in cancer susceptibility regions
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Cancer subtype

First

Second

Third

Fourth

Fifth

Bladder
Breast
Cervical
Colon
Endometrial

Glioma (glioblastoma)

(
(

Glioma (low grade)
Kidney (chromophobe)
Kidney (clear cell)
Kidney (papillary)
Liver

Lung (adenoma)
Lung (small cell)
Lung (squamous)
Multiple myeloma
Ovarian (serous)
Ovarian (small)
Prostate

Skin

Stomach

Thyroid

FGFR3 (14.939)
MAP3KT (6.285)
COLT1A2 (10.256)
HYDIN (11.161)
ACACA (7.661)
EGFR (20.235)
EGFR (5.882)
ORAOVT (1.515)
ITPR2 (1.724)
ITPR2 (3.571)
PIK3CD (1.938)
NOTCH4 (6.509)
ZBED9 (7.042)
TNXB (5.618)
LTB (1.951)
CPAMDS (1.899)
JAK3 (8.333)
SPOP (7.877)
SORCS3 (14.082)
ZBTB20 (7.273)
TNST (0.748)

EPG5 (3.049)
SYNET (4.773)
MEDT (10.256)
RYR3 (9.821)
SYNRG (2.823)
PLEKHG4B (1.760)
SLC6A3 (2.076)
PPFIAT (1.515)
PPFIAT (1.149)
PPFIAT (2.381)
KIF1B (1.938)
TNXB (5.178)
SLC17A2 (5.634)
SLC6A3 (5.056)
NEUT (1.951)
UNCI13A (1.266)
NA (-—)
SYNET (3425)
CDKN2A (13.878)
MROH2B (5.455)
TDRD7 (0.499)

TP63 (2.744)
BRCA2 (2.784)
EHMT2 (7.692)
MAP3K4 (7.143)
TADA2A (2419)
CDKN2A (1.466)
PLEKHGA4B (1.384)
SHANK2 (1.515)
PRKCE (0.766)
PRKCE (1.190)
CASZ1 (1.550)
MDCT (3.402)
BRD9 (4.225)
LRRCT6A (3.933)
DNAHT1T (1.951)
MAST3 (1.266)
NA (-—)

RYRT (2.397)
TRIOBP (11.224)
C6 (4.545)
TBC1D2 (0.499)

GIGYF2 (2:439)
ZFHX4 (2.705)
CDK12 (7.692)
IGF2R (6.696)
DUSP14 (1.613)
HELZ2 (1.466)
SLC6AT19 (1.384)
NA (——)

ZEB2 (0.766)
ZEB2 (1.190)
MYOIB (1.550)
PLEKHG4B (3.254)
SLC6AT19 (4.225)
BTN2A2 (3.933)
TNXB (1.463)
HOXD10 (0.949)
NA (——)

TNXB (2.055)
ANKRD11 (8.571)
DRD3 (2.727)
MBIP (0.499)

MECOM (2.439)
NOTCHZ2 (1.591)
ABCF1 (5.128)
MYO1B (5.804)
C170rf78 (1.210)
SLC6AT9 (1.173)
KMT2A (1.384)
NA (——)

EPAST (0.575)
FGF3 (1.190)
CLDN8 (1.550)
ZBED9 (3.254)
HISTTH2AA (4.225)
ZBED9 (3.933)
CACNATI (1.463)
C10orf113 (0.949)
NA (——)

APOB (1.712)
AOX1 (8.367)
OXCT1 (2.727)
NKX2-1 (0.499)

Top gene name shown with percentage of samples mutated shown in parentheses

NA no additional mutated genes for cancer subtype

somatically acquired mutations do not differ from back-
ground frequencies of gene mutation observed in the
corresponding cancer. In other words, we did not ob-
serve evidence that common risk alleles appear to over-
lap with drivers of cancers. When refining our analysis
to a subset of genes with functional evidence linking
them to a susceptibility signal, our analysis indicates
most of these target genes do not experience mutation
frequencies that deviate from the expected. Except for a
few notable examples, our observations suggest genes
in regions harboring common germline susceptibility
alleles do not exhibit an overall increase in mutation
frequency, which is distinct from the more than 110
cancer predisposition genes [11].

The absence of an overall observed difference in mu-
tation frequency at cancer susceptibility regions could
be attributed to a signal-to-noise detection issue in
which the methods we employed were not sufficiently
sensitive to remove the signal of one to possibly two
affected genes from a pool of potentially dozens of
unaffected genes. To reduce the possibility that changes
in mutation frequency were masked by statistical noise,
we analyzed the data under several different analytical
frameworks. First, frequencies of somatic mutation of
all genes located in susceptibility regions do not deviate

from expected background frequencies based on cancer
subtype. Second, distributions of gene mutation frequency
were similar when comparing susceptibility regions with
ten permutations of random regions. Third, when re-
stricted to the most highly mutated genes in intervals
defined by susceptibility alleles in comparison to the
randomly selected regions, no difference in distribution
of somatic mutation frequency was detected.

The large genomic regions and number of genes cov-
ered by the spread of linkage disequilibrium with can-
cer susceptibility variants highlight the complexity of
functionally mapping variants to their biological under-
pinnings. Regional and ancestry-specific differences in
LD structure coupled with cell line-specific differences
in chromatin patterns and receptor binding sites make
it difficult to design high-throughput methods that are
sensitive and specific enough to filter the large list of
possibly affected genes. Focusing on genes implicated
in multiple cancer subtypes as well as genes whose
expression levels are influenced by cancer susceptibility
loci are ways of enriching for genes that may be func-
tional and thus may experience altered mutation fre-
quencies [31, 32]. In addition, several focused efforts
have been fruitful in identifying a handful of cancer
susceptibility regions where the affected gene has been



Machiela et al. Genome Biology (2015) 16:193

Page 6 of 11

%)

H
SYNE1 B
2
< s <4
H
8
3
£
H
8

BREAZ zFHx4

Samples with Mutations (%)

-4000 -2000 0 2000 4000 -2000

d Distance from GWAS Variant (Kb)

1 2

SYNE

Distance from GWAS Variant (Kb)

Samples with Mutations (%)

-4000 -2000 0 2000 4000

Distance from GWAS Variant (Kb)

Samples with Mutations (%)
8
L
Samples with Mutations (%)
Samples with Mutations (%)

-4000 0

2000 4000 -4000 0 2000 4000 -4000

Distance from GWAS Variant (Kb) Distance from GWAS Variant (Kb)

Distance from GWAS Variant (Kb)

Samples with Mutations (%)
Samples with Mutations (%)

0 2000 4000 -4000 0 2000 4000 -4000 0 2000 4000

Distance from GWAS Variant (Kb) Distance from GWAS Variant (Kb)

0 12 14

TS
6

Samples with Mutations (%)
8
!

Samples with Mutations (%)

Samples with Mutations (%)
8

-4000 0 2000 4000

-4000 0

2000 4000

-4000

Distance from GWAS Variant (Kb) Distance from GWAS Variant (Kb)

Distance from GWAS Variant (Kb)

Samples with Mutations (%)
Samples with Mutations (%)

0 2000 4000

-4000 0

2000 4000

-4000 0

2000 4000

Distance from GWAS Variant (Kb) Distance from GWAS Variant (Kb)

Fig. 2 Frequency of gene mutations around cancer susceptibility variants. Black points are genes in LD blocks and gray points are genes outside
LD blocks. Data for breast (a), prostate (b), all cancers (c), and random permutations (d) are plotted

determined [15-30]. When we compared sets of polygenic
genes, eQTL genes, and functionally mapped genes with
covariate matched genes, a modest overall enrichment for
elevated mutation frequency was observed; however, this
enrichment was only statistically significant for the func-
tionally mapped genes (p =0.03). In each set, a subset of
genes experienced elevated mutation frequencies, whereas
the majority of genes in these regions demonstrate no ele-
vated mutation frequencies. These observations suggest
that if the functional genes of cancer susceptibility alleles
do have elevated mutation frequencies, then the increases
are minimal for most and do not overlap with established
drivers of cancer.

The observation of no notable overall change in somatic
mutation frequency in genes within cancer susceptibility
regions could perhaps be explained as follows. Most
cancer-associated variants are relatively common, have
low estimated effects, and are often located in regulatory
elements that cause minor changes in gene expression
(e.g., the bladder cancer rs2978974 locus and PSCA ex-
pression levels [16]). It is also plausible that genes targeted

by cancer susceptibility regions might affect other host
factors — for example, the cells responsible for the im-
mune response to tumors — and we may, therefore, be
looking at mutation frequencies in the wrong tissue type.
Purifying selection is expected to remove deleterious vari-
ation from the gene pool, but is less effective at removing
cancer susceptibility variants with minor effects, allowing
such variants to reach common frequencies in human
populations, particularly since most cancers occur well
after the age of reproduction. On the contrary, somatic
mutations across cancer genomes often cluster in import-
ant genes regulating cellular growth, cell cycle check-
points, and DNA repair. These mutations act as driver
mutations (e.g., oncogenes or tumor suppressor genes)
with highly deleterious effects, usually leading to a down-
stream cascade of later mutations in other important
genes. Differences in mutational frequency in cancer
susceptibility target genes and cancer predisposition
genes might reflect the level of functional importance
of these genes in maintenance of normal cellular integ-
rity. For example, cancer predisposition genes that are
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often somatically mutated may be located at highly
conserved cores of essential biological pathways,
whereas cancer susceptibility target genes with average
mutation frequencies might be genes with a high degree
of functional redundancy. As a result, a somatic muta-
tion of a cancer susceptibility functional gene (defined
by a common, low-effect variant) may be neither suffi-
cient nor necessary to lead to cancer development, as
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evidenced by the low relative risks observed in
GWAS. Still, the accumulation of many small effects
of common alleles appears to account for a substan-
tial fraction of the genetic risk for sporadic adult can-
cers; the steady cataloging of common susceptibility
alleles supports the contribution of a polygenic risk
model, involving many small perturbations of redun-
dant pathways, as suggested by our data.

Conclusions

There is likely a complex interplay between germline
genetics and somatic mutations. The germline can alter
cancer risk over time due to small perturbations in many
key, redundant pathways, some of which could permit
escape of dangerous somatically altered cells. Somatic
mutations occurring in important oncogenes or tumor
suppressor genes may serve as a necessary hit required
to drive the process of carcinogenesis. Apart from a few
exceptions, our analysis suggests genes nearby common
germline susceptibility variants do not display overall
increased somatic mutation frequencies, unlike the can-
cer predisposition genes. Future work focused on under-
standing the biological basis of cancer susceptibility
alleles will be instrumental in better understanding the
complex interplay between germline genetics and somatic
mutations.

Materials and methods

A literature search of PubMed was performed to identify
all reports of cancer susceptibility studies published before
25 August 2014. These publications were merged with
reports from the National Human Genome Research
Institute’s Catalog of Published Genome-wide Association

GWAS Genes

selected throughout the genome

Number of Mutations (per 100 individuals)
OO0 O0-101-2@3@ 2-3@ 3-4@ 4518 5<

Fig. 4 Top mutated gene for each cancer susceptibility region in cancers with more than 200 samples. GWAS Genes shows the observed
distribution across all cancer types. Permutation Genes are a merged gene set across ten permutations of autosomal regions randomly

Permutation Genes
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Fig. 5 Normalized mutation frequency (z scores) of genes with varying levels of functional evidence. Analyses are shown for three overall gene
classes: (a) pleiotropic genes, (b) eQTL genes, and (c) functional target genes. Grey points are mutation z score values and black diamonds are

Studies [6] to arrive at a comprehensive list of genetic
variants associated with germline susceptibility to can-
cer. Further filtering was performed to remove variants
with association p values greater than 5x 10~%, highly
correlated variants in high LD, and variants discovered
in populations of non-European ancestry.

An analysis pipeline using custom Python scripts
(Python 2.7.5 [33]) was developed to extract potential
genes of interest around cancer susceptibility regions
(available at [34] through the MIT license). First, LD
blocks were defined based on European recombination
frequency data from HapMap Phase 2 [35]. These fre-
quencies were estimated from phased haplotypes in
HapMap release 22 (NCBI 36) for the CEU population
and are publically available for download [36]. We
defined LD blocks as all genomic positions neighbor-
ing the tagging susceptibility variant that are within re-
combination frequency peaks of 20 cM/Mb or higher.
Second, a window of interest around the tagging sus-
ceptibility variant was extended by 500 kb in both
directions beyond the LD block boundaries to ensure
the inclusion of additional genes potentially regulated
by the susceptibility region since cancer susceptibility
variants may have functional effects on genes that are
outside the LD block. Third, genes were extracted that
overlap the window of interest around each significant
cancer susceptibility locus. We utilized the RefSeq
Gene [37] database publically available on the UCSC
FTP site [38]. For genes with multiple transcripts, in-
clusion in the susceptibility window of interest was
based on the start coordinate of the transcript with the
earliest start position and the end coordinate of the
transcript with the latest stop position.

The analytical pipeline generated lists of putative genes
altered or regulated by one or more variants residing in
the LD block of a GWAS associated tagging SNP. Each

gene was investigated for mutations using available tumor
genomes from databases. The frequency of mutations per
gene of several cancer types was extracted from the cBio-
Portal database [12, 13, 39]. Tumor genomes were avail-
able from Asan Medical Center (AMC) [40], Beijing
Genomics Institute (BGI) [41, 42], British Columbia
Cancer Research Centre [43], BROAD Institute [44—49],
Cornell University [47, 48], Clinical Lung Cancer Genome
Project (CLCGP) [50], Genentech [51], Johns Hopkins
University [52], Memorial Sloan-Kettering Cancer Center
(MSKCC) [53-55], International Cancer Genome Consor-
tium (ICGC), RIKEN [56], Sanger Institute [57], TCGA
[58-68], Tumor Sequencing Project (TSP) [69], University
of Michigan [70], and Yale University [71]. We queried
tumor sequencing data through the CGDS-R package
using R version 3.0.1 “Good Sport” [72].

To estimate cancer-specific background frequencies of
mutation, mutation frequencies for all RefSeq genes were
queried for each cancer subtype. Background mutation
frequencies were compared with frequencies of mutation
for genes within cancer susceptibility regions to investigate
differences in mutation frequency. Statistical significance
was assessed by two-sample Kolmogorov-Smirnov tests.
Furthermore, to estimate the expected distribution of gene
mutational burden across cancer genomes, we performed
random sampling throughout the genome. For each
cancer type, a random autosomal SNP present on the
commercially available Illumina 660 W-Quad genotyping
platform was chosen to represent each significant cancer
susceptibility allele marked by one or more SNP variants.
Randomly chosen SNPs were analyzed using the same
pipeline, the genes in the LD region were extracted, and
mutational frequencies for the genes were queried in cBio-
Portal. To provide statistical robustness, ten permutations
of this procedure were performed for each cancer type.
Distributions from each of the ten permutations were
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compared with that of the observed mutational distribu-
tion of the cancer type to assess for significant differences
in mutational frequency.

Several cancer susceptibility regions have at least some
level of evidence linking a gene to a cancer susceptibility
signal. The first set of genes with a higher probability of
being functional is a set of “pleiotropic genes” which we
define as any gene that was associated at genome-wide
significance levels (p <5 x 10~®) with more than one can-
cer subtype. A second set of interest is “eQTL genes”,
which are genes whose expression levels are affected by
a cancer susceptibility variant. These eQTL genes are
filtered out by performing eQTL analyses for all genes in
the LD window plus 500 kb around cancer susceptibil-
ity variants. Publically available TCGA expression and
genotyping data were used in combination with linear
regression models to determine if there was significant
evidence for an eQTL. If the cancer susceptibility vari-
ant of interest was not directly genotyped, a genotyped
variant in high LD (R®>0.6) was used as a surrogate.
Finally, a set of “functional genes” was extracted from a
literature search. Functional genes were defined as any
gene with at least one publication linking a cancer sus-
ceptibility locus to a gene with experimental evidence
[15-30]. To explore whether these sets of functionally
enriched genes had altered frequencies of somatic mu-
tation, lists of genes with similar expected background
mutation frequencies were generated using MutSigCV
[14]. Genes were matched based on transcriptional ac-
tivity, DNA replication timing, and chromatin state.
Lists of up to 50 matching genes were generated for
each functional gene. Cancer-specific frequencies of
mutation were extracted from cBioPortal, and mutation
z scores were calculated based on means and standard
deviations of matching gene sets.

All plotting and statistical analyses were performed in
R version 3.0.1 “Good Sport” [72] on a 64-bit Windows
platform. Statistical tests and reported p values are
two-sided.

Data availability

All datasets used to assess tumor mutation frequency are
publically available at cBioPortal. Cancer subtype-specific
accession codes are as follows: bladder (blca_mskcc_so-
lit 2012, blca_bgi, blca_tcga_pub, blca_tcga); breast
(brca_bccre, brca_broad, brca_sanger, brca_tcga_pub,
brca_tcga); cervical (cesc_tcga); colon (coadread_gen-
etech, coadread_tcga_pub, coadread_tcga); endometrial
(ucec_tcga, ucec_tcga_pub); esophageal (esca_broad);
glioma (glioblastoma: gbm_tcga_pub2013, gbm_tcga_pub,
gbm_tcga; glioma: lgg tcga); kidney (chromophobe:
kich_tcga; clear: kirc_bgi, kirc_tcga_pub, kirc_tcga; papil-
lary: kirp_tcga); liver (lihc_amc_prv, lihc_riken); lung
(adeno: luad_broad, luad_tcga_pub, luad_tcga, luad_tsp;
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small: sclc_clegp, sclc_jhu; squamous: lusc_tcga_pub,
lusc_tcga); multiple myeloma (mm_broad); ovarian
(serous: ov_tcga_pub, ov_tcga; small: scco_mskcc); pan-
creatic (paad_icgc, paad_tcga); prostate (prad_broad_2013,
prad_broad, prad_mskcc, prad_tcga, prad_mich); skin
(skem_broad, skem_tega, skem_yale); stomach (stad_tcga);
and thyroid (thca_tcga).
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