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CPAG: software for leveraging pleiotropy in
GWAS to reveal similarity between human
traits links plasma fatty acids and intestinal
inflammation
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Abstract

Meta-analyses of genome-wide association studies (GWAS) have demonstrated that the same genetic variants can
be associated with multiple diseases and other complex traits. We present software called CPAG (Cross-Phenotype
Analysis of GWAS) to look for similarities between 700 traits, build trees with informative clusters, and highlight
underlying pathways. Clusters are consistent with pre-defined groups and literature-based validation but also reveal
novel connections. We report similarity between plasma palmitoleic acid and Crohn's disease and find that
specific fatty acids exacerbate enterocolitis in zebrafish. CPAG will become increasingly powerful as more
genetic variants are uncovered, leading to a deeper understanding of complex traits. CPAG is freely available
at www.sourceforge.net/projects/CPAG/.

Background
During the past decade, genome-wide association studies
(GWAS) have identified thousands of genetic variants as-
sociated with human traits and diseases. As of 4 September
2013, the National Human Genome Research Institute
(NHGRI) Catalog of Published GWAS had manually
curated more than 11,000 single nucleotide polymorphisms
(SNPs) associated with over 700 traits from more than
1400 studies [1]. These studies have revealed important
insights regarding how common variants can affect indi-
vidual diseases and traits [2]. However, additional insights
can be gained when the results of multiple GWAS or even
all published GWAS are integrated together.
One striking finding from comparative analyses of

GWAS is that pleiotropic SNPs are quite abundant across
the human genome. Pleiotropy occurs when a genetic
locus affects multiple different phenotypes, for example,
by encoding a protein with multiple activities, having dif-
ferent roles in different cells, or by influencing multiple
pathways. About 5 % of SNPs and 17 % of genes

implicated in GWAS have been associated with multiple
traits [3]. Some of these genes exhibit pleiotropy in the
strict sense of affecting multiple seemingly unrelated phe-
notypes, while other SNPs and genes can perhaps be more
correctly designated as participating in “cross-phenotype”
associations [4]. Cross-phenotype associations may reflect
pleiotropy or varying outcomes of a single biological activ-
ity in the context of different cell/tissue types and environ-
mental triggers. Other cross-phenotype associations may
reflect associations with phenotypes of different scales,
such as the same SNPs affecting plasma metabolite
concentrations and also disease risk. Cross-phenotype as-
sociations have particularly been noted in autoimmunity
[5, 6]. For example, the PTPN22 gene has been associated
with rheumatoid arthritis [7], Crohn’s disease [8], systemic
lupus erythematosus [9] and type 1 diabetes [10]. Cross-
phenotype association analysis leveraging pleiotropy and
similarity of traits can provide opportunities for under-
standing the shared genetic underpinnings among associ-
ated traits and diseases, revealing new insights into the
pathophysiology of disease.
Previous studies have developed approaches to identify

and characterize cross-phenotype associations (reviewed
in [4]). These approaches fall broadly into multivariate
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frameworks that jointly analyze SNPs for multiple phe-
notypes and meta-analyses of traditional univariate SNP
analyses. The prior category includes polygenic scoring
and linear mixed-effect models that can assess the de-
gree of pleiotropy between two phenotypes but do not
hone in on specific variants. The multivariate ap-
proaches also include testing the association of SNPs
with multiple phenotypes using a unified framework.
However, multivariate approaches generally can only be
applied when the same individuals have been scored for
multiple phenotypes. In contrast, univariate approaches
can be applied post hoc to GWAS that have already
been conducted on different populations. Previous stud-
ies using this approach were valuable at pointing out the
high amount of apparent pleiotropy in human SNPs [3],
the enrichment of certain SNP classes in pleiotropic
SNPs [3], and characterizing the degree of similarity
using the Jaccard similarity index [11]. Very recently, Li
et al. [12] calculated cosine similarity indices between
traits and diseases in a private GWAS database, re-
stricted to only genic SNPs, and validated cross-
phenotype SNPs with electronic medical record mining.
While these recent studies underscore the high level of
interest in cross-phenotype associations, much work re-
mains to be done. A systematic comparison of similarity
indices for cross-phenotype analysis has not been carried
out. Furthermore, most approaches to date have relied
on networks for visualization, which can be difficult to
interpret on such large datasets. Importantly, none of
the existing methods allow for new, user-defined groups
of SNPs or genes to be used to easily interrogate the
interaction network. Finally, methods to study cross-
phenotype associations have not been coupled to experi-
mental methods to quickly test hypotheses.
In this study, we have developed and validated an inte-

grated framework for cross-phenotype analysis of GWAS,
CPAG. In addition to confirming overlap between known
related diseases, our method revealed unexpected evidence
of shared genetic architecture among previously seemingly
disparate traits. Specifically, intrigued by the shared associ-
ations between GWAS of plasma levels of a fatty acid and
Crohn’s disease, we tested the hypothesis that fatty acids
could exacerbate intestinal inflammation using a zebrafish
model. We have implemented CPAG in a user-friendly
program that accepts user-defined lists of SNPs, allowing
for easy visualization and interpretation of any genome-
wide result in the context of all published GWAS.

Results
Cross-phenotype and pleiotropic SNPs are enriched in the
NHGRI GWAS Catalog
Before determining the degree of similarity among all
human traits and diseases in the NHGRI GWAS Cata-
log, we assessed whether the degree of cross-phenotype

associations was sufficient to warrant such an approach.
We carried out a systematic analysis of all SNPs in the
NHGRI GWAS Catalog and found that cross-phenotype
SNPs are much greater than expected by chance. A total
of 789 (7.0 %) SNPs are associated with more than one
human trait. All SNPs in the GWAS Catalog can be
depicted using a circle plot with lines connecting SNPs
associated with multiple traits (Fig. 1a). We classified
traits into nine broad categories, and the circle plot
demonstrates that 40 % of cross-phenotype SNPs (2.8 %
of all SNPs) connect traits in different categories. While
most cross-phenotype SNPs are only associated with two
traits (Fig. 1b), the SNP showing the most associations,
rs1260326 (gene GCKR), is associated with 17 human
traits (Additional file 1).
A permutation test demonstrated there was a highly

significant enrichment of cross-phenotype SNPs in the
NHGRI GWAS Catalog. We resampled SNPs from a
pool of unique SNPs (HapMap phase 3 [13]) to ran-
domly assign SNPs to each trait in the NHGRI GWAS
Catalog and determined the fraction of cross-phenotype
SNPs. The null distribution for cross-phenotype SNPs
was constructed by repeating this process 10,000 times.
For most permutations (95 %), the number of cross-
phenotype SNPs fell between 40 and 69, and the greatest
number of pleotropic SNPs reached in a single permuta-
tion was 86. Remarkably, the actual observed number of
cross-phenotype SNPs in the GWAS Catalog is almost
ten times more at 789 (Fig. 1c; p < 0.0001). Some traits
within the NHGRI GWAS Catalog are clearly closely re-
lated (such as total cholesterol levels and low-density
lipoprotein cholesterol levels), so the number of cross-
phenotype SNPs is inflated compared with SNPs display-
ing pleiotropy in the strict sense. To reduce this infla-
tion, closely related phenotypes were merged and
phenotypes in the NHGRI GWAS Catalog that com-
bined multiple diseases were removed, reducing the
number of traits from 786 to 461 (termed “modified
traits”). Even with this merging of related traits, there
was still a substantial enrichment of pleiotropic SNPs
(478 SNPs; Fig. 1c; p < 0.0001). Finally, we also per-
formed a gene-based permutation test (restricted only to
SNPs within genes as classified by the NHGRI GWAS
Catalog) and a similar enrichment for pleiotropy was ob-
served (1214 genes for raw and 1091 for modified traits;
p < 0.0001 for raw or modified traits). These results
demonstrate a clear enrichment of cross-phenotype
SNPs in human traits and diseases.

Cross-phenotype SNPs allow for identification of clusters
of human traits
By employing the extensive cross-phenotype associations
among SNPs associated with human traits, we developed
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methods to identify traits that are associated with the
same genetic variants and to cluster traits to visualize
this information.
First, we compared three methods for calculating SNP

overlap between pairs of traits: 1) a SNP-based method
that counts only exact SNP matches; 2) a SNP-based
method corrected for linkage disequilibrium (LD) where
SNPs with r2 > 0.6 for two or more traits are considered
overlapping (called the SNP_LD method here); and 3) a
gene-based method. The SNP-based method is the most
conservative, because it requires that the exact same
SNP be reported in the NHGRI GWAS Catalog for two
different traits. The SNP-based method corrected for LD
determines if SNPs that are in high LD (r2 > 0.6) were
identified by different studies and includes these as over-
lapping SNPs in the similarity index. Neither SNP
method makes any assumption about the gene being af-
fected — this is an advantage as 1) any gene-based
method is only as good as the prediction of which gene

is being affected by the causal SNP and 2) about 45 % of
SNPs reported in the NHGRI GWAS Catalog fall into
intergenic regions based on NHGRI annotation [1].
However, assignment to genes does allow for further down-
stream analysis, such as gene-set enrichment analysis
(GSEA; see below). In the gene-based similarity analysis,
we used the mapped gene assignment from the NHGRI
GWAS Catalog — SNPs within genes are assigned to the
genes they are located in while intergenic SNPs are
assigned to the genes on both sides of the intergenic region.
Formally evaluating these three different approaches (SNPs,
SNP_LD, and gene-based methods) revealed that the
SNP_LD method identified the greatest fraction of overlap-
ping trait pairs with significant similarity (p < 0.05 after
Bonferroni correction) (Figure S1a in Additional file 2).
Furthermore, examining the same trait pairs revealed that
the p values from the SNP_LD method were in general
lower than the other two methods (Figure S1b in
Additional file 2). Therefore, the SNP_LD method reveals

Fig. 1 Cross-phenotype and pleiotropic SNPs in the NHGRI GWAS Catalog. a Circle plot of all NHGRI GWAS Catalog SNPs grouped into nine
broad categories of traits. Moving from the outermost circle inward, the circles represent a linear representation of the karyotype of the human
genome with different background colors for each trait category, density of GWAS SNPs per 5 Mb along the genome, scatter plot of “pleiotropic
index” (the number of traits associated with each SNP), and density plot of cross-phenotype SNPs in 5-Mb windows along the genome. In the
scatter plot of “pleiotropic index” larger circles and colors from blue to yellow to orange to red represent a SNP being associated with more traits.
The blue vertical lines represent genomic positions of cross-phenotype SNPs within each pre-defined group and inner rainbow lines represent
cross-phenotype SNPs connecting different groups, with the color indicative of the trait categories being connected. b Histogram of NHGRI GWAS
Catalog SNPs based on “pleiotropic index”. Raw traits are directly from the NHGRI GWAS Catalog while modified traits have been manually
curated to merge closely related phenotypes and to remove phenotype categories that had combined multiple diseases. A total of 789 SNPs
7.0 %) were associated with more than one trait for raw traits and 478 SNPs (4.2 %) were associated with more than one trait for modified traits.
c Enrichment of cross-phenotype SNPs in the NHGRI GWAS Catalog. Distribution of cross-phenotype SNPs expected by chance (histograms) are
plotted along with the observed number of cross-phenotype SNPs in the NHGRI GWAS Catalog (arrows). We used a permutation-based method
to test whether there is significant enrichment of cross-phenotype SNPs/genes in the GWAS Catalog. We randomly resampled SNPs from a pool
of unique SNPs and assigned to each disease and constructed the null distribution by repeating this process 10,000 times. Significant differences
(p < 0.0001) were detected for both SNPs and genes
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the largest fraction of trait pairs with significant similarity
and is the most robust of the three methods. SNP_LD was
used for the remainder of analyses in this manuscript.
Next, a similarity index was required to quantify the

magnitude of overlap for all trait pairs and allow for gen-
eration of similarity matrices, heat maps, and clustering.
As different similarity indices can have profound conse-
quences in assessing and visualizing similarity [14], we
compared several similarity indices (Jaccard, Sorensen,
Chao–Jaccard, Chao–Sorensen, Morisita, Morisita–Horn,
Pearson correlation coefficient, cosine, Simpson, geomet-
ric, and connection specificity index (CSI)). The similarity
index for a pair of traits was used as a distance measure
for constructing a heat map and tree based on hierarchical
clustering. The significance of overlap was assessed using
Fisher’s exact test, as well as with empirical p values based
on permutation, and only traits with statistically signifi-
cant similarity after multiple-test correction were used in
clustering. This analysis was performed on all SNPs with
reported p < 1 × 10−7 in the NHGRI GWAS Catalog
(Fig. 2a; Additional files 3 and 4). This threshold was

chosen as it excluded possible false positive SNPs with
less significant p values in the catalog but did not result
in a reduction of significant trait pairs as observed
when the p value threshold decreased beyond p < 1 × 10−7

(Additional file 5). The result is a searchable table and a
GWAS similarity tree of 341 human traits based solely on
shared genetic architecture.
Clusters identified by CPAG are broadly in agreement

with known biology. Clusters of cholesterol-related traits,
type 2 diabetes, pigmentation, hematological traits,
obesity, kidney function, atherosclerosis, cell adhesion,
and autoimmunity are readily discernable. Within larger
clusters, known relationships are also observed. In an
autoimmune cluster (Fig. 2b), Crohn’s disease and ulcera-
tive colitis, known subtypes of inflammatory bowel dis-
ease, are tightly clustered (18 shared LD-corrected SNPs;
Bonferroni-corrected p < 1.2 × 10−49). An obesity cluster
(Fig. 2c) is notable for not only including several different
measures of adiposity but also “Menarche (age of onset)”.
Obesity is well known to be associated with early menar-
che [15]. An atherosclerosis cluster (Fig. 2d) contains both

Fig. 2 Hierarchical clustering of NHGRI human traits. a Dendrogram and heat map of similarity for pairwise human traits. The hierarchical
dendrogram was constructed based on the Chao–Sorensen similarity index, and significance of similarity was measured using a hypergeometric
test implemented in the CPAG program. A total of 317 traits having at least one significant association (p < 0.05) against other traits were
included. Colors in the heat map are based on the Chao–Sorensen index and scaled according to the color key. Colored blocks along the y-axis
of the heat map are indicative of the nine assigned categories of traits. Enlarged versions of an autoimmune cluster (b), obesity cluster (c) and
atherosclerosis cluster (d) are shown. Additional file 4 contains a higher resolution dendrogram and heat map with all 317 traits labeled
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measures of atherosclerosis severity (coronary artery calci-
fication, coronary heart disease, ankle-brachial index) as
well as acute consequences of atherosclerosis (myocardial
infarction, abdominal aortic aneurysm, and intracranial
aneurysm). Similar clusters were seen when we adjusted
the p value threshold and consequently the number of in-
cluded SNPs was altered (Additional file 5), but not sur-
prisingly, the number of traits in clusters decreased when
the p value threshold was more stringent (Additional file 6).
We conclude that hierarchical clustering based on similar-
ity indices resulted in informative groupings that agreed
with prior knowledge.
However, the clustering results varied substantially

based on which similarity index was used (Additional
files 7, 8, 9, 10, 11, 12, 13, 14, 15, and 16). Therefore, we
conducted statistical comparisons of the similarity indi-
ces and the trees generated using them.

Comparison of CPAG clusters generated by different
similarity indices
We evaluated 11 different similarity indices for their per-
formance in CPAG. The best methods should have 1)
minimum heterogeneity of clusters based on their prede-
fined classification, as we expect diseases from the same
group to cluster together, and 2) maximum size of clus-
ters, as a method that has very small clusters would not
provide as much insight. We defined heterogeneity as
discordance of observed disease groups with predefined
disease groups, and applied entropy methods to com-
pute the heterogeneity of the tree.
We found that the method that produced the tree with

the lowest weighted heterogeneity (heterogeneity/median
cluster size) was Chao–Sorensen (Fig. 3a, b; Additional
file 17). This was especially apparent at a higher number
of clusters (K > 18). With very low cluster number,
Chao–Jaccard had the lowest weighted heterogeneity,
but identifying such few clusters from such a large tree
and heat map has limited utility. The Pearson correl-
ation coefficient gave the most heterogeneous clusters
by objectively using the entropy methods, and separated
traits expected to cluster together (such as Crohn’s disease
and ulcerative colitis). Other similarity indices, including
those implemented in other methods for assessing SNP
and gene similarity such as CSI [16] and cosine [12],
tended to exhibit higher weighted heterogeneity.
The Chao–Sorensen and Chao–Jaccard similarity indi-

ces, which are commonly used in ecology research for
studying community species diversity, use a probabilistic
model to modify the traditional Sorensen and Jaccard
indices [17]. The modified estimators are less biased to
sample size and incorporate the effects of unobserved
shared members and replicated associations, and pub-
lished simulations indicate they outperform other
methods [18, 19]. Our results support this, and therefore

we used Chao–Sorensen for the remainder of our ana-
lysis in quantifying the strength of similarity and per-
forming clustering analysis using the SNP_LD algorithm,
while statistical significance for SNP_LD similarity was
evaluated using Fisher’s exact test and a permutation-
based test. To our knowledge, this is the first application
of the Chao–Sorensen similarity index to studying hu-
man genetics.

Computational validation shows CPAG agrees with
previously known disease relationships but also reveals
novel connections
To assess the validity and value of categorizing traits by
CPAG, we used both computational and experimental
validation. We determined how similarity index values
differed within predetermined trait categories versus be-
tween trait categories. The prediction is that if CPAG
categorization is indicative of shared biology, then simi-
larity indices will be greater within groups compared
with between groups. Indeed, the fraction of traits with
similarity > 0 (i.e., those traits that share SNPs with
other traits) was higher for intra-group trait pairs com-
pared with inter-group trait pairs (Fig. 3c). Furthermore,
for trait pairs that do have similarity > 0, the distribu-
tion of similarity values is skewed towards higher values
for intra-group trait pairs compared with inter-group
trait pairs (Fig. 3d; Additional file 18; p < 2.2 × 10−16

and p < 2.05 × 10−9 for raw traits and modified traits,
respectively). Therefore, both the fraction of trait pairs
showing overlap as well as the amount of similarity for
these pairs is greater within predefined disease groups.
Thus, categorization of traits by CPAG is well in agree-
ment with trait categorization based on medical
knowledge.
Trait pairs which have statistically significant simi-

larity (p < 0.05 after Bonferroni correction) are more
often mentioned together in PubMed abstracts than
random trait pairs (Fig. 3e). This was true with both
raw (p = 1.4 × 10−117) and modified trait pairs (p =
9.4 × 10−77). Of the 277 significant modified trait
pairs, 202 (73 %) had >20 co-occurrences in
PubMed, indicating that there is likely well-known
similarity between these pairs of traits (Fig. 3f ).
While being mentioned together in an abstract does
not necessarily mean the two traits are truly related,
the large number of trait pairs that have a high
number of co-occurrences in abstracts certainly sup-
ports the contention that trait pairs detected by
CPAG are biologically relevant. However, many traits
pairs with statistically significant similarity were not
found to co-occur in PubMed. Thirty of the signifi-
cant modified trait pairs (11 %) had no co-
occurrences in PubMed, indicating potentially novel
associations (Fig. 3f; Additional files 19 and 20).
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Fig. 3 (See legend on next page.)
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Thus, while there are significantly more co-occurrences
than would be expected based on chance, there are still
many potentially novel associations that should undergo
further testing to determine their biological and clinical
relevance.

Similarity can occur for multiple reasons and is supported
by published evidence
While the density distributions of intra-group and inter-
group comparisons and the co-occurrence in literature
data suggests that clustering based on shared GWAS
SNPs is recapitulating known disease categorization, the
value of finding connections between traits and diseases
is exemplified by examination of individual overlapping
trait pairs. Cross-phenotype associations can occur for
multiple reasons but we broadly classify them into four
categories.

Category 1
Cross-phenotype associations can be due to SNP similar-
ity between an intermediate trait/risk factor and disease.
An intermediate trait (such as plasma levels of a metab-
olite) can be a risk factor for a disease. For example, the
iron-related traits are clustered with anemia and red
blood cell traits because genetic variants alter iron levels
which then subsequently affect hemoglobin and red
blood cell production (Fig. 4a).

Category 2
Cross-phenotype associations can be due to SNP similar-
ity between a disease and a consequence of disease. This
is the reverse scenario for the first class, where a trait is
actually a result of the disease. For example, increased
glycated hemoglobin (hemoglobin A1C) levels are a con-
sequence of type 2 diabetes and high plasma glucose
concentrations. Because of this, it is a commonly used
clinical marker for monitoring plasma glucose control in
patients [20]. Thus, it is not surprising that glycated

hemoglobin clusters with type 2 diabetes, proinsulin
levels, and fasting plasma glucose (Fig. 4b).

Category 3
Cross-phenotype associations can be due to SNP similar-
ity between two traits affected by the same gene/path-
way. This occurs when a SNP affects a gene (by altering
the protein coding sequence or expression level, for ex-
ample) that acts in a single pathway but that is manifest
in two or more diseases. For example, we observed sig-
nificant overlap between SNPs associated with psoriasis
and AIDS progression (Fig. 4c; p = 6.81 × 10−6 after
Bonferroni correction). This connection is driven by two
different variants in the HLA region (r2 = 0.43 in CEU
HapMap phase 3 population), and others have noted
several additional variants in the same region that pre-
dispose to psoriasis and protect against HIV [21]. One
plausible explanation is that these genetic variants regu-
late antigen presentation which then impacts two dis-
eases in different ways — in one case controlling viral
infection and in the other case regulating autoimmunity.

Category 4
Cross-phenotype associations can be due to SNP similar-
ity between two traits affected by the same gene having
effects in different tissues or on different pathways. For
example, there is a large cluster of traits for hair color,
eye color, skin color, tanning, and skin cancer (Fig. 4d).
This cluster is driven by overlapping SNPs affecting
genes involved in pigmentation, such as the melanocor-
tin 1 receptor, a G-protein coupled receptor that stimu-
lates melanin production in hair, eyes, and skin. While
this example involves the same gene having effects in
different tissues, other cross-phenotype associations may
involve the same gene having effects on different path-
ways. For example, rs4420638 is a SNP in the apolipo-
protein gene cluster on chromosome 19 that is
associated with 13 traits in the NHGRI GWAS Catalog.

(See figure on previous page.)
Fig. 3 Entropy-based comparisons of similarity indices and computational validation of CPAG clusters. a Weighted heterogeneity versus cluster number

using the Gini–Simpson index. We calculated weighted heterogeneity using equation H
0
e ¼ 1

K

X
He
Ni
, which can be interpreted as average heterogeneity

per cluster per disease. The weighted heterogeneity captures variation of both cluster size and heterogeneity. b Weighted heterogeneity versus cluster
number using Shannon–Wiener entropy index. Either entropy index indicates the Chao–Sorenson index results in the largest and least heterogeneous
clusters based on the nine pre-defined trait categories. c The fraction of trait pairs with similarity > 0 for raw traits (blue) and modified traits (pink) is
greater within pre-defined categories (Intra-group) than between categories (Inter-group). The fractions vary across different trait groups, indicating greater
similarity among some groups of traits compared with others. d Distribution of non-zero similarity values for inter-group and intra-group for raw traits
shows greater similarity for comparisons within pre-defined groups. The p value was calculated using Kolmogorov-Smirnov test. e Published literature
supports the association of pairwise traits identified by CPAG. We searched PubMed using each trait pair and recorded the number of co-occurrences in
titles and abstracts. The box plots represent the distribution of co-occurrences for raw or modified significant trait pairs compared with the co-occurrence
distributions of 10,000 random trait pairs. We found significantly lower co-occurrences for both raw and modified traits based on the Mann–Whitney rank
sum test. f CPAG reveals both well-established and novel trait pairs. The pie charts represent the fractions of trait pairs for three different categories: novel
trait pairs with no co-occurrences in PubMed, suggestive trait pairs with co-occurrences between 1 and 20, and well-known trait pairs with >20
co-occurrences. The number of trait pairs within each category is given within each pie segment. Lists of potentially novel trait pairs are provided in
Additional files 19 and 20. PCC Pearson correlation coefficient
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While many of these traits are related lipid traits (includ-
ing total cholesterol, low-density lipoprotein cholesterol,
high-density lipoprotein cholesterol, and triglycerides),
others include longevity, age-related macular degener-
ation, and Alzheimer’s disease. Apolipoproteins are key
components of lipoproteins that mediate lipid trafficking
and uptake. This role can explain their association with
lipid traits, but their association with other traits may in-
volve their roles in other pathways, such as neuronal sur-
vival, inflammatory signaling, and amyloid binding [22].

GSEA of shared SNPs elucidates pathways responsible for
the trait similarity
While the causal relationship among traits with GWAS
overlap may be obvious, for many connections, the reason
for the overlap may be unknown. To provide insight as to
what is driving the similarity, CPAG provides lists of over-
lapping SNPs and genes for each pair of traits. Further-
more, overlapping genes are automatically examined by
GSEA using the Molecular Signatures Database “curated
gene set” (set C2) to reveal possible pathways that may be
shared between the two traits. We relied on Fisher’s exact
test based on SNP_LD to identify trait pairs that were sig-
nificantly similar, but used the mapped genes (based on
NHGRI GWAS Catalog) to provide the overlapping genes
to query the C2 dataset and reveal if particular pathways
were driving the similarity. For example, the traits of “D-

dimer levels” and “venous thromboembolism” have signifi-
cant overlap (p = 4.9 × 10−7 after Bonferroni correction)
and GSEA reveals that this is being driven by coagulation
pathways (Biocarta_extrinsic pathway, p = 7.0 × 10−7). The
SNPs that cause the enrichment in coagulation pathways
implicate the factor V coagulation factor and fibrinogen
alpha and gamma chains. D-dimers are fibrin degradation
products from clots that are used as a marker for active
coagulation. The overlap between these two traits indi-
cates that genetic variants that affect fibrinogen and clot
formation alter risk of venous thromboembolism, which is
reflected in altered D-dimer levels.
A second example involves the overlap between

Crohn’s disease and psoriasis. While both diseases have
been the subject of multiple large GWAS, they only
overlap with two SNPs (p = 0.33 after Bonferroni correc-
tion). However, the genes implicated by the two SNPs
are both in the interleukin (IL)-23 pathway (IL23R and
TYK2; p = 0.0001). The analysis suggests that IL-23 sig-
naling is important for risk of both Crohn’s disease and
psoriasis. In fact, ustekinumab is a monoclonal antibody
against IL-23 that is approved for use against psoriasis
[23, 24] but has also shown promise in treating Crohn’s
disease [25, 26]. Thus, CPAG not only suggests that the
etiology of Crohn’s disease and psoriasis may share some
genetic underpinnings, but highlights that the mechan-
ism likely involves the IL-23 pathway.

Fig. 4 CPAG identifies clusters attributable to four broad models of trait similarity. a Similarity due to an intermediate trait being a risk factor for a
disease or other more complex trait, as exemplified by iron levels affecting hemoglobin and red blood cell (RBC) traits. b Similarity due to a trait
being a consequence of a disease, as exemplified by glycated hemoglobin (hemoglobin A1C) being caused by increased plasma glucose and
type 2 diabetes. c Similarity due to a single pathway being associated with two or more diseases, as exemplified by possibly antigen presentation
affecting both psoriasis and AIDS progression. d Similarity due to the same genes having effects in different tissues or on different signaling
pathways, as exemplified by similarity in pigmentation traits in skin, eyes, and hair
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Testing a CPAG-generated hypothesis in zebrafish reveals
plasma fatty acids worsen intestinal inflammation
Possibly the greatest utility from CPAG comes from
overlap where two traits not known to be closely related
demonstrate similar genetic associations. Such similarity
may be most useful when it occurs between a molecular
trait and a disease trait because modulation of the mo-
lecular trait may affect the risk or severity of the disease.
One of the 43 novel connections revealed by CPAG and
the PubMed co-occurrence analysis (Fig. 3f; Additional
file 19) was GWAS overlap of plasma palmitoleic acid
levels with Crohn’s disease (p = 0.0006 after Bonferroni
correction). Previous GWAS for plasma levels of four
specific fatty acids [palmitic acid (16:0), stearic acid
(18:0), palmitoleic acid (16:1n-7), and oleic acid (18:1n-9)]
identified five SNPs associated with palmitoleic acid levels
[27]. Intriguingly, two of these are also among the 163
SNPs associated with risk of Crohn’s disease (rs102275
near FADS1 and rs780093 near GCKR; overlap of 0.0006
expected by chance for >3000-fold enrichment), and the
directions of effect indicate high palmitoleic acid could be
associated with increased disease risk. The incidence of
Crohn’s disease is higher in countries with a high fat diet,
suggestive that fat intake and lipid metabolism might play
an important role in Crohn’s disease risk [28]. Further-
more, dietary questionnaire studies indicate that high fat
intake, including monounsaturated fatty acids, is associ-
ated with increased Crohn’s disease risk [29, 30]. Metabo-
lomic measurements have also revealed that several
plasma fatty acids trend towards being elevated in Crohn’s
disease patients [31, 32]. Therefore, dietary studies and
correlations from metabolomics are suggestive of a link
between fatty acids and Crohn’s disease risk, but no
human genetic susceptibility loci underlying and con-
necting the two had been previously reported. Elevated
plasma fatty acids might be a factor that increases risk
of Crohn’s disease, or a consequence of altered lipid
absorption/metabolism due to gut inflammation, or a
further downstream consequence of the complex patho-
physiology of Crohn’s disease.
To test whether increased plasma fatty acid was suffi-

cient to exacerbate intestinal inflammation, we utilized a
zebrafish model. Trinitrobenzene sulfonic acid (TNBS)
is a commonly used chemical injury method to induce
colitis in mice [33] and more recently has been used to
establish an enterocolitis model in zebrafish larvae [34].
We injected three different fatty acids (palmitoleic acid,
palmitic acid, and linoleic acid) bound to bovine serum
albumin (BSA) as a carrier into the tail vein of 3-day
post-fertilization zebrafish larvae and measured the
inflammatory response by quantification of neutrophil
recruitment to the intestine following 3 days of TNBS
exposure. In the control animals not exposed to TNBS,
injection of BSA alone or any of the fatty acids bound to

BSA did not result in any increase in neutrophil recruit-
ment over baseline (Fig. 5; p = 0.37 for uninjected versus
BSA; all other pairwise comparisons of uninjected versus
fatty acid or BSA versus fatty acid were also not signifi-
cantly different). In these experiments, low dose TNBS
exposure in BSA-injected larvae resulted in a moderate
increase in inflammation [mean ± standard error of the
mean (SEM) neutrophils/intestine of five experiments
increased from 33.4 ± 1.6 to 40.6 ± 2.2; p = 0.006]. How-
ever, neutrophil recruitment to the intestines of TNBS-
exposed, palmitic acid-injected larvae was even greater
(49.1 ± 2.2; p = 0.046 compared with TNBS-exposed,
BSA-injected). TNBS-exposed, palmitoleic acid-injected
larvae also demonstrated an increase in neutrophil re-
cruitment over TNBS-exposed, BSA-injected, but the in-
crease did not reach statistical significance (45.1 ± 3.0; p
= 0.16). In contrast, linoleic acid actually resulted in
slightly less neutrophil recruitment than BSA with TNBS
exposure (37.8 ± 1.4; p = 0.03), indicating that different
fatty acid species have distinct capacities to modulate in-
testinal inflammation. The decrease in neutrophil
recruitment with linoleic acid is in agreement with
past studies indicating that linoleic acid can have an
anti-inflammatory effect in Crohn’s disease [35]. In
summary, the data fit a model whereby fatty acids are
not sufficient to induce intestinal inflammation but
can modulate inflammation in the context of the
TNBS enterocolitis model. While the specificity of the
fatty acid effect was not exactly as we had predicted
(i.e., the increase was stronger with palmitic than pal-
mitoleic), the results demonstrate that connections be-
tween molecular and disease traits revealed by CPAG
can be quickly validated experimentally in animal
models. The similarity between palmitoleic acid and
Crohn’s disease was the first connection we tested with
this CPAG plus model organism approach, but we
suspect that further mining CPAG results will reveal
additional new connections that warrant further ex-
perimental testing (see Additional files 19 and 20 for
other potentially novel associations).

Querying CPAG clusters with user-generated lists
We packaged all of the functionality described in the
preceding sections into a stand-alone CPAG application
(Fig. 6; software available at [36]). The software gener-
ates similarity matrices, results files of trait similarity,
pathway analysis, tree diagrams, and lists of cross-
phenotype SNPs and genes using the NHGRI GWAS
Catalog. Importantly, we have equipped the software to
also incorporate user-generated lists of SNPs. Thus, re-
searchers who generate new GWAS data or any other
list of related SNPs can determine which human traits
are most related to their list based on the results of all
previously published GWAS. For example, previously we
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Fig. 6 CPAG software. Workflow depicting how CPAG software detects trait similarity and provides a means for visualizing and mining similarity
for hypothesis generation. User-generated lists of SNPs are used as input to make comparisons with the entire NHGRI GWAS Catalog based on
SNPs, LD-corrected SNPs, or genes. In addition to a text read-out of similarity that includes a description of the SNPs, strength and significance of
similarity, and GSEA of pathways underlying the similarity, results can be visualized by hierarchical clustering or by networks. CPAG software can
be downloaded at [36]

Fig. 5 Exogenous serum fatty acid exacerbates colitis in zebrafish larvae. a Tg(lyzC:EGFP)nz117 larvae with red outline demarcating the edge of the intestine.
Enhanced green fluorescent protein in these fish, under the control of the lysozyme C promoter, mark mature neutrophils, which are a marker of
inflammation. b Representative images of Tg(lyzC:EGFP)nz117 larvae. Scale bar indicates 1 mm. c Quantification of intestinal neutrophils in 6 days
post-fertilization (dpf ) zebrafish larvae exposed to 25–30 μg/ml TNBS from 3 dpf. Bar graphs are the mean ± standard error of the mean of six
independent experiments (except uninjected and linoleic acid were from four independent experiments) with an average of 14.3 larvae evaluated in
each group in each experiment. P values are from paired t-tests using the means of each group from each experiment. The number of total larvae
evaluated in each group was: Uninjected, 48; Uninjected/TNBS, 45; BSA, 75; BSA/TNBS, 61; Palmitic acid, 91; Palmitic/TNBS, 93; Palmitoleic acid, 83; Palmitoleic
acid/TNBS, 98; Linoleic acid, 50; Linoleic acid/TNBS, 70
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carried out GWAS of Salmonella-induced cell death
(pyroptosis) in 350 human cell lines [37, 38]. Pyroptosis
is a pro-inflammatory process mediated by caspase-1 ac-
tivation by inflammasome complexes [39]. We found
that the most significant similarity to the pyroptosis list
was observed with early onset myocardial infarction (MI; p
= 0.003 after Bonferroni correction). Three (of nine) SNPs
associated with early onset MI at genome-wide significance
were also associated with pyroptosis at the p < 0.01 level,
and the directions of effect are consistent with a greater
pro-inflammatory response being associated with greater
risk of early onset MI (Table 1). This directionality is con-
sistent with several published reports implicating inflamma-
tion and NLRP3 inflammasome activation of caspase-1
with MI and cardiac reperfusion injury [40–43].

Discussion
As the number of human traits that have been studied
with genome-wide association has rapidly increased,
methods are needed to interpret new studies in light of
previous results. Any GWAS meta-analysis approach that
combines different studies is limited by heterogeneity in
regards to quality of genotyping, subject categorization
and phenotypes, population sizes, and definition of traits.
However, examining all published GWAS in light of one
another creates a valuable opportunity to find unexpected
and potentially medically useful connections between an
incredible range of phenotypes. The CPAG approach facil-
itates finding these connections by combining similarity
indices from ecology, hierarchical clustering, and gene set
enrichment in a format that can be easily explored for
biological insight. Combining CPAG with assays in zebra-
fish and other experimental models allows for rapid
hypothesis generation and testing. Validating and charac-
terizing individual instances of overlap will lead to an in-
creased understanding of pleiotropy, shared genetic
pathways, and relationships between traits previously
thought to be unrelated.
In addition to the heterogeneity of the studies included

in CPAG analysis, other limitations for our method are
worth pointing out. GWAS to date have primarily been

conducted on populations of European ancestry, and
therefore are limited to SNP panels and the LD esti-
mates in those populations. Flexibility in setting p value
thresholds within CPAG is limited by the fact that
GWAS often only report the top hits in publications, in-
stead of providing p values for all SNPs in the database.
The current necessity of setting a p value threshold in
CPAG points to the possibility of using multivariate
approaches incorporating all SNPs or gene–gene and
gene–environment interactions into the framework in
the future. For our validation studies, the PubMed co-
occurrence analysis is limited by stringent text queries
that exactly match the categories in the NHGRI GWAS
Catalog (with some words such as “traits” being
removed). The incorporation of natural language pro-
cessing could result in a reduction of false positive
“novel” associations. In regards to our experimental test-
ing of a CPAG-generated hypothesis, the zebrafish-
TNBS exposure model of Crohn's disease recapitulates a
microbiota-dependent and pharmacologically responsive
enterocolitis with key features of innate immune cell
recruitment, cytokine production, and small intestinal
shortening. Notably, there are limitations to this model,
most importantly, the lack of adaptive immunity and
relatively weak changes to epithelial morphology. How-
ever, CPAG still represents a substantive advance in
identifying and understanding cross-phenotype associa-
tions, and improvements will overcome those limitations
in future versions.
Hypotheses generated using CPAG could have pro-

found consequences in medicine. Our finding of over-
lap between plasma palmitoleic acid and Crohn’s
disease led us to test the effects of exogenous fatty
acids in a zebrafish enterocolitis model. Although the
fatty acid specificity we observed was not what we
had initially predicted, our results do indicate that
some fatty acids could contribute directly to intestinal
inflammation. It is important to note that the GWAS
for plasma fatty acid levels showing the similarity
with Crohn’s disease included only four fatty acids
[27]. Similarly, metabolomics of Crohn’s disease have

Table 1 SNPs associated with both early onset MI and Salmonella-induced pyroptosis

Early onset MI Salmonella-induced pyroptosis

SNP Chromosome Gene P value Risk allele P value High pyroptosis allele Concordant risk

rs6725887 2 WDR12 1.00E-08 C 0.0088 C Yes

rs9305545, rs9982601 21 - 6.00E-11 T 0.0036 G (T for rs9305545) Yes

rs12526453, rs2327621 6 PHACTR1 1.00E-09 C 0.005 G (? for rs12526453) ?

Summary Observed Expected Enrichment P value P value (Bonferroni)

3 0.08 37.5 5.9 × 10−5 0.003

P values for early onset MI association are from the NHGRI GWAS Catalog [1], while p values for pyroptosis were from [37]. Two SNPs are given in the same line where
the lowest p value for early-onset MI and Salmonella-induced pyroptosis in the LD region are not the same SNP. The concordance of risk alleles for the two SNPs was
determined by examining the direction of association for the early-onset MI SNP in the pyroptosis dataset. SNP rs12526453 shows no association with pyroptosis
(despite rs2327621 showing an association), so the direction of effect is undetermined. P value for the significance of overlap was calculated with Fisher’s exact test
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demonstrated lipid abnormalities [31, 32], but broader
metabolite panels could potentially reveal more spe-
cific, functionally important alterations. Therefore,
both more detailed lipidomic GWAS and Crohn’s dis-
ease patient profiling, as well as more extensive in
vivo testing of other lipid species in models such as
zebrafish, are now warranted. We speculate that in-
creasing the depth of our understanding of the dysli-
pidemias present in Crohn’s disease and the
functional effects of individual lipid components on
intestinal inflammation could eventually lead to active
modulation of plasma fatty acid levels in management
of Crohn’s disease. This could be accomplished nutri-
tionally or perhaps by modulating expression of the
genes revealed by the shared SNPs between plasma
palmitoleic acid and Crohn’s disease. In fact, it has
been shown that disruption of one of the genes impli-
cated by the overlapping SNPs, FADS2 (a fatty acid
desaturase), results in both altered lipid profiles as
well as the development of intestinal ulcers and in-
flammation in mice [44].
Similarity of GWAS signatures may also be a means of

identifying diseases that could be targeted by the same
drugs. Psoriasis and Crohn’s disease sharing variants in
the IL-23 pathway as described above is a good example
of this. In fact, CPAG also detected that IL-23 pathway
variants were also shared with ankylosing spondylitis.
Thus, all three autoimmune diseases could perhaps be
treated with IL-23 inhibitors.
Possibly the most useful traits identified by CPAG are

molecular and cellular traits that could be targeted in
treating diseases and/or used as biomarkers in diagnosis/
prognosis. We have been using a screening platform called
Hi-HOST (high-throughput human in vitro susceptibility
testing) to carry out GWAS of cellular host–pathogen
phenotypes [37, 38, 45]. In addition to learning about hu-
man variation in infectious disease susceptibility, focusing
on pathogens allows us to probe variation in basic cellular
pathways that have likely been under natural selection in
humans. By applying Hi-HOST to a broad range of patho-
gens and integrating the results with GWAS of disease
with CPAG, our goal is to create an interpretive catalog of
how human genetic variation affects cell biology to impact
disease. While the work presented here demonstrates the
utility of CPAG, its full potential will require further
contributions from the research community to provide add-
itional molecular and cellular traits that can be connected
to disease physiology through cross-phenotype associations.

Materials and methods
NHGRI GWAS Catalog data
The data used in our analyses, comprising a total of
11,288 SNPs associated with 886 (raw) traits from 1408
publications, were downloaded from the NHGRI GWAS

Catalog [1] on 4 September 2013. To reduce possible
false positive hits while retaining the power to detect the
greatest number of significantly similar trait pairs, the
analyses in this study were done primarily on the subset
of SNPs with pre-computed p < 1 × 10−7 (4737 SNPs).
Altering the number of SNPs included in the analysis by
relaxing the p value threshold (to 10−5, 11,284 SNPs)
barely changed the number of trait pairs that had signifi-
cant similarity (defined as p < 0.01, Fisher’s exact test with
Bonferroni correction) (Additional file 5). We interpret
this to mean that the method is robust against additional
false positive SNPs introduced in relaxing the p value
threshold to well below genome-wide significance. In con-
trast, making the threshold more stringent (to 10−20, 813
SNPs) resulted in a progressive reduction in the number
of significant trait pairs, limiting the chance for discovery
as traits and true-positive SNPs are removed from the
analysis (Additional file 5).
Analysis was done on both “raw” traits and “modified”

traits made by merging together phenotypes that were
subclasses of the same disease (for example, multiple
age-related macular degeneration phenotypes were
merged) and phenotypes that were closely related (such
as systolic blood pressure and diastolic blood pressure).
NHGRI GWAS Catalog traits that combined multiple
diseases or biomarkers into a single group (such as
“Crohn’s disease and celiac disease” or “protein bio-
marker”) were also excluded. Each trait was assigned to
one or two broad categories (autoimmune, infectious
disease, cardiovascular/metabolic, body size, eyes, kid-
neys, nervous system, cancer, or others) based on med-
ical knowledge of the authors prior to running the
CPAG analysis (Additional file 21).

Identification of cross-phenotype SNPs
We used three methods to count the shared SNPs among
different traits: 1) overlap by trait-associated SNPs; 2) over-
lap by SNPs corrected for LD (SNP_LD); and 3) overlap by
genes. The LD correction allows for SNPs in high LD to
still be counted as overlapping in examining trait pairs and
also prevents multiple SNPs in the same LD peak from in-
flating the observed number of cross-phenotype SNPs. We
calculated pairwise LD for all SNPs based on the 1000 Ge-
nomes Project [46] CEU population (using PLINK v.1.9
[47]), and counted SNPs as overlapping when r2 > 0.6 and
also merged overlapping SNPs into a single group when r2

> 0.6 within a single trait. For overlap by genes, SNP-gene
assignments were made based on the “mapped genes” as-
signment from the NHGRI GWAS Catalog.

Permutation analysis for calculating abundance of
cross-phenotype associations
A permutation method was applied to estimate the abun-
dance of cross-phenotype SNPs in the NHGRI GWAS
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Catalog. We determined the observed number of cross-
phenotype SNPs in the NHGRI GWAS Catalog and com-
pared this with a null distribution. The null distribution
was constructed by sampling an equal number of SNPs
from HapMap 3 release 2 panel [13], randomly assigning
them to traits in the NHGRI GWAS Catalog until reach-
ing the same number of unique associations, determining
the number of cross-phenotype associations, and repeat-
ing the process 10,000 times. We also carried out the same
analyses based on genes, with genes randomly sampled
from the human gene pool (22,836 Ensembl coding
genes). This analysis was restricted only to SNPs located
within genes, as the gene being affected by each SNP is
not known with high confidence for most GWAS SNPs
and especially intergenic SNPs.

Diseases similarity indices
To determine the most robust similarity index to use in
CPAG, we calculated the similarity matrix using 11 methods
(Jaccard [48], Sorensen [49], Chao–Jaccard [17], Chao–Sor-
ensen [17], Morisita [50], Morisita–Horn [51], Pearson cor-
relation coefficient, cosine, Simpson, geometric, and CSI
[52]). We primarily used the Chao–Sorensen index
[17] to quantify the similarity between two traits.
Chao–Sorensen applies a probability model and incor-
porates the effects of unseen samples (or SNPs/genes).
Given two traits which have n1 and n2 associated

SNPs, respectively, they have k overlapping SNPs (k > 0).
The probability of k overlapping under the hypergeo-
metric distribution is Pk= P(X = k|Nt, n1, n2), where:

P X ¼ kjNt ; n1; n2ð Þ ¼
n2
k

� � Nt−n2
n1−k

� �
Nt
n1

� �

Here the Nt represents the total number of SNPs in
the NHGRI GWAS Catalog, n1 and n2 are the number
of SNPs (or genes) associated with the two diseases, and
k the number overlapping in the sample. The p value
for ≥ k overlapping is equal to:

P X≥kð Þ ¼ 1−
Xk

i¼0
P X ¼ ijNt ; n1; n2ð Þ

The similarity indices were calculated as described below:

Chao-Sorensen and Chao-Jaccard index
In contrast to traditional methods that depend only on
data indicating presence or absence, Chao et al. [17]
modified the simple similarity indices (U and V) by con-
sidering the abundance of components using a sophis-
tical probabilistic model. Their modified estimates of U
and V, which increase robustness by taking into consid-
eration unseen shared components, are:

where Xi is the number of SNPs for SNP i for trait 1, Yi is
the number of SNPs for SNP i for trait 2, k is the number
of shared SNPs for traits 1 and 2, n1 is the total number
of SNPs associated with traits 1, n2 is the total number
of SNPs associated with traits 2, f+1 is the number of
shared SNPs present once for trait 1, f+2 is the number
of shared SNPs present twice for trait 1, f1+ is the num-
ber of shared SNPs present once for trait 2, and f2+ is
the number of shared SNPs present twice for trait 2.
With modified Û and V̂ , their proposed extended Jac-

card estimator is:

SCJ ¼ Û V̂

Û þ V̂ − Û V̂

and extended Sorensen estimator is:

SCS ¼ 2Û V̂

Û þ V̂

Jaccard index

SJ ¼ k
n1 þ n2−k

Sorensen index

Ss ¼ 2k
n1 þ n2

Cosine index

SC ¼ kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 � n2

p

Simpson index

SSim ¼ k
min n1; n2ð Þ

Geometric index

SG ¼ k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 � n2

p

Pearson correlation coefficient index
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SP ¼ k � ny−n1 � n2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 � n2 � ny−n1

� �� ny−n2
� �q

where ny is the total number of SNPs.

Connection specificity index

SCSI ¼ # traits connected to 1 and 2 with PCC < PCC12 − 0:05ð Þ
NE

where NE represents the number of all traits.

Morisita index

SM ¼
2
XSt

i¼1
XiY i

n2
n1−1

XSt

i¼1
Xi Xi−1ð Þ þ n1

n2−1

XSt

i¼1
Y i Y i−1ð Þ

where St = n1 + n2 − k represents the total number of all
unique SNPs for traits 1 and 2.

Morisita–Horn index

SMH ¼
2
XSt

i¼1
XiY i

n2
n1

XSt

i¼1
X2

i þ n1
n2

XSt

i¼1
Y 2

i

where St = n1 + n2 − k represents the total number of all
unique SNPs for traits 1 and 2.

Clustering of traits and evaluation of heterogeneity
We constructed similarity matrices among all pairwise
traits with the above 11 methods. We then applied hier-
archical clustering to detect relationships among dis-
eases and identified disease clusters. We used entropy
methods to estimate average heterogeneity of hierarch-
ical trees with the Gini–Simpson and Shannon–Wiener
index. With K maximum clusters for the tree from each
index, we calculated the average heterogeneity using the
following equation:

EK ¼ 1
K

XK
i¼1

Ei

where Ei is the heterogeneity for the i-th cluster.
For the Gini–Simpson entropy index, the total hetero-

geneity Ei was computed using:

Ei ¼ 1−
Xn
j¼1

P2
j

where Pj is the fraction of the j-th distinct pre-defined

disease group in cluster i with a total of n distinct dis-
ease groups.
For the Shannon–Wiener index, the Ei was computed

using:

Ei ¼ −
Xn
j¼1

Pj lnPj

To cancel effects of varying cluster size (e.g., larger
cluster size will have a bias for greater heterogeneity),
we also computed the weighted mean EK ':

EK
0 ¼ 1

K

XK
i¼1

1
Ni

Ei

where Ni is number of traits for the i-th cluster given K
maximum clusters on the tree. The Ei ' was calculated
with the same methods as Ei.

Significance of overlap among pairwise diseases
We assessed the significance of overlapping SNPs or
genes among each trait pair using two approaches: 1)
theoretical p values from the hypergeometric distribu-
tion, and 2) empirical p values from permutation tests.
The p values were corrected by Bonferroni correction.
The probability of k overlapping is depicted as Pk =

P( X = k|Nt, n1, n2), where:

P X ¼ kjNt ; n1; n2ð Þ ¼
n2
k

� �
Nt − n2
n1 − k

� �

Nt

n1

� �

where Nt is the total number of SNPs in the NHGRI
GWAS Catalog, n1 and n2 are the number of SNPs (or
genes) associated with the two traits, and k the number
of overlapping SNPs (or genes) in the sample. The p value
for more than k overlapping is equal to:

P X≥kð Þ ¼ 1−
Xk

i¼1
Pi;

which is analogous to the one-tailed Fisher’s exact test.
The expected overlapping E �k

� �
under the hypergeo-

metric distribution is:

E �k
� � ¼ n1

n2
Nt

and the variance is:

V �k
� � ¼ n1

n2
Nt

Nt− n2
Nt

Nt−n1
Nt−1

For the empirical p value, we randomly sampled n1
and n2 SNPs (or genes) from HapMap 3 release 2 panel
for traits 1 and 2 and counted the observed overlapping
SNPs. We replicated this process for 1000 times to
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construct the null distribution (and therefore the lowest
possible value is p < 0.001 in our analysis but the num-
ber of permutations could be increased to obtain greater
precision in the empirical p value). Empirical p values
were obtained by counting the number of times overlap
was more than observed counts.

PubMed co-occurrence analysis
Trait pairs for which the degree of GWAS similarity was
statistically significant based on p < 0.05 (Fisher’s exact
test, Bonferroni corrected) were queried against PubMed
using an in-house python script (available upon request).
Filtering prior to analysis included modifying trait names
by removing any parenthetical text and any general text
indicating measurement, such as the words “level”,
“measurements”, “phenotypes”, “plasma”, “biomarkers”,
“parameters”, “traits”, and “serum”. Also, “Crohns dis-
ease” and “Alzheimers disease” were altered to include
their apostrophes to improve the number of PubMed
hits for these diseases. Any trait names absent from
PubMed were not included in the analysis.
Trait pairs with statistically significant overlap were

compared with 10,000 random trait pairs, resampled
from raw (or modified) traits of the NHGRI GWAS
Catalog. The PubMed co-occurrences for the significant
trait pairs and random trait pairs were evaluated by the
Mann–Whitney rank sum test. Trait pairs were catego-
rized as ‘novel’ for no co-occurrences of trait pairs, ‘sug-
gestive’ for between 1 and 20 co-occurrences, and ‘well-
known’ for trait pairs with more than 20 co-occurrences.
PubMed queries were conducted on 20 March 2015.

Pathway enrichment analyses for trait similarity
Pathway data were downloaded from GSEA/MSigDB
[53]. Interferon-induced pathways [54] were also in-
cluded in the analysis. We used Fisher’s exact test to
identify whether the overlapping genes among pairwise
traits were enriched in particular pathways. The p values
were calculated with the following equation:

p ¼ 1−
Xk

i¼1

na
i

� �
Nt−na
nb−i

� �

Nt

na

� � ;

where k represents the number of shared genes for a
disease pair overlapping with a pathway i, and na de-
notes the number of genes overlapping for each disease
pair, and nb denotes the number of genes in pathway i,
and Nt represents the total number of human genes
(22,836, total number of protein coding genes in
Ensembl genes v.75). All p values were subjected to Bon-
ferroni correction.

Zebrafish enterocolitis model
All experiments using zebrafish were performed using
protocols approved by the Animal Studies Committee of
Duke University Medical Center (protocols A180-11-07
and A165-13-06). This approval process ensures experi-
ments will provide significant new knowledge and are
conducted as responsibly and humanely as possible.
Analytical standard grade linoleic acid, palmitic acid and
palmitoleic acid were purchased from Sigma (62230,
76119, and 76169). BSA Fraction V, 7.5 % solution, was
purchased from Gibco (15260–037) and used as a carrier
protein to stabilize fatty acids in solution. Linoleic acid
was dissolved in 100 % methanol to make a 75 mM
stock solution. Palmitic acid and palmitoleic acid were
dissolved in 100 % ethanol to make a 75 mM stock solu-
tion. Fatty acids were diluted to 7.5 mM in BSA solution,
and mixtures were subsequently vortexed for 5 min, ali-
quoted and stored at −20°C. While zebrafish plasma
fatty acid concentrations have not been reported to our
knowledge, de Almeida et al. [55] place human plasma
fatty acid levels in the millimolar range (with saturated
fatty acids measured at 4.5 mM, monounsaturated fatty
acids at about 2 mM, and polyunsaturated fatty acids at
6.1 mM). This puts our maximum achievable dose of 7.5
mM within expected physiologic ranges. Additionally,
we did not observe neutrophil recruitment in untreated
larvae that had been injected with our experimental dose
of conjugated fatty acids, suggesting a lack of pathological
effect. Transgenic Tg(lyzC:EGFP)nz117 or Tg(lyzC:DsRed)nz50

zebrafish larvae [56] were randomized into treatment
groups and injected with 10 nl of 7.5 mM fatty acid con-
taining solution at 3 days post-fertilization intravenously
into the posterior caudal vein. Low dose TNBS exposure
was carried out to induce weak intestinal inflammation
with 30 μg/ml TNBS in E3 media in groups of 10–30 larvae
[57]. Larvae were maintained at 28.5°C in a dark incubator.
After 3 days of exposure, larvae were anesthetized in tri-
caine, imaged with epifluorescence on a Zeiss Observer Z1
inverted microscope, and intestinal neutrophils were manu-
ally counted.

Additional files

Additional file 1: Table S1. SNPs exhibiting high levels of
cross-phenotype associations. Only SNPs associated with more
than five diseases/traits (51 SNPs) are shown. (DOCX 20 kb)

Additional file 2: Figure S1. Comparison of SNP, SNP_LD, and
gene-based similarity approaches. a The fraction of trait pairs with
significant overlap is greatest using the SNP_LD method. Trait overlap
for the NHGRI GWAS Catalog was evaluated based on exact SNP overlap,
SNP overlap taking LD into consideration (SNPs with r2 > 0.6 are considered
overlapping), and by genes (SNPs assigned to genes by NHGRI GWAS
Catalog). Significance of overlap was measured using Fisher’s exact test and
p values were Bonferroni-corrected for multiple-test comparisons. b
Comparing p values for trait pairs reveals lower p values using the SNP_LD
method. For trait pairs with overlap detected by two of the methods the –
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log(p value) was plotted for each method. While the –log(p values) were
correlated, they deviated towards greater significance for the SNP_LD
method. (PDF 114 kb)

Additional file 3: Table S2. CPAG results based on NHGRI GWAS Catalog
(last visit on 4 September 2013). Listed are associated disease–trait pairs and
counts of overlap based on the SNP, SNP_LD, and gene-based methods.
Based on these counts, a series of statistical tests were done to test the
significance of the similarity, including Fisher’s exact test, an empirical
permutations test (10,000 permutations), hypergeometric test and binomial
test. The last three columns list the overlapping genes, SNPs and SNPs in
LD. (XLSX 1076 kb)

Additional file 4: Figure S2. Hierarchical clustering of NHGRI human
traits based on Chao–Sorensen index. The hierarchical dendrogram and
heat map of similarity for pairwise human traits were constructed based
on the Chao–Sorensen similarity index, and significance of similarity was
measured using a hypergeometric test implemented in the CPAG
program. Only traits having at least one significant association (p < 0.05)
against other traits are shown here. Colors in the heat map are based on
the similarity index and scaled according to the color key. Colored blocks
along the y-axis of the heat map and color of text for trait names are
indicative of the nine assigned categories of traits. (PDF 79 kb)

Additional file 5: Figure S3. Relationship between the p value
threshold for SNP inclusion and the number of significant trait pairs
discovered by CPAG. Increasing the stringency of the p value threshold
from 10−5 to 10−20 decreases the number of SNPs included in the CPAG
analysis from 11,284 to 813. A similar number of statistically significant
trait pairs is detected for a threshold of 10−5 to 10−8, but there was a
decline in the number of significant pairs as the p value threshold was
decreased to result in fewer included SNPs. Therefore, the detection of
statistically significant pairs is robust against increasing false positive SNPs
as the p value threshold is made less stringent, while making the p value
threshold increasingly stringent decreases the discovery of significant trait
pairs. (PDF 354 kb)

Additional file 6: Figure S4. Relationship between the p value
threshold for SNP inclusion and trait clustering. a Similar clusters for
obesity (I), autoimmunity (II), and atherosclerosis (III) are observed with
the different p value thresholds. Therefore, the detection of informative
clusters is robust to varying the number of SNPs in the analysis, although
traits are lost as the p value threshold is made more stringent. In all
cases, the number of clusters (k) in the analysis was set to 20. The
locations of the three clusters were also marked in the entire
dendrogram and heat map of pairwise human traits for the p value
threshold of 10−5 (b), 10−7 (c) and 10−10 (d). (ZIP 3188 kb)

Additional file 7: Figure S5. Hierarchical clustering of NHGRI human
traits based on Chao–Jaccard index. The hierarchical dendrogram and
heat map of similarity for pairwise human traits were constructed based
on the Chao–Jaccard similarity index, and significance of similarity was
measured using a hypergeometric test implemented in the CPAG program.
Only traits having at least one significant association (p < 0.05) against other
traits are shown here. Colors in the heat map are based on the similarity
index and scaled according to the color key. Colored blocks along the y-axis
of the heat map and color of text for trait names are indicative of the nine
assigned categories of traits. (PDF 78 kb)

Additional file 8: Figure S6. Hierarchical clustering of NHGRI human
traits based on Sorensen index. The hierarchical dendrogram and
heat map of similarity for pairwise human traits were constructed
based on the Sorensen similarity index, and significance of similarity
was measured using a hypergeometric test implemented in the
CPAG program. Only traits having at least one significant association
(p < 0.05) against other traits are shown here. Colors in the heat
map are based on the similarity index and scaled according to the
color key. Colored blocks along the y-axis of the heat map and color
of text for trait names are indicative of the nine assigned categories
of traits. (PDF 76 kb)

Additional file 9: Figure S7. Hierarchical clustering of NHGRI human
traits based on Simpson index. The hierarchical dendrogram and heat
map of similarity for pairwise human traits were constructed based on
the Simpson similarity index, and significance of similarity was measured

using a hypergeometric test implemented in the CPAG program. Only traits
having at least one significant association (p < 0.05) against other traits are
shown here. Colors in the heat map are based on the similarity index and
scaled according to the color key. Colored blocks along the y-axis of the
heat map and color of text for trait names are indicative of the nine
assigned categories of traits. (PDF 75 kb)

Additional file 10: Figure S8. Hierarchical clustering of NHGRI
human traits based on Pearson correlation coefficient (PCC) index.
The hierarchical dendrogram and heat map of similarity for pairwise
human traits were constructed based on the PCC similarity index,
and significance of similarity was measured using a hypergeometric
test implemented in the CPAG program. Only traits having at least
one significant association (p < 0.05) against other traits are shown
here. Colors in the heat map are based on the similarity index and
scaled according to the color key. Colored blocks along the y-axis of
the heat map and color of text for trait names are indicative of the
nine assigned categories of traits. (PDF 82 kb)

Additional file 11: Figure S9. Hierarchical clustering of NHGRI human
traits based on Morisita-Horn index. The hierarchical dendrogram and heat
map of similarity for pairwise human traits were constructed based on the
Morisita-Horn similarity index, and significance of similarity was measured
using a hypergeometric test implemented in CPAG program. Only traits
having at least one significant association (p < 0.05) against other traits are
shown here. Colors in the heat map are based on the similarity index and
scaled according to the color key. Colored blocks along the y-axis of the
heat map and color of text for trait names are indicative of the nine
assigned categories of traits. (PDF 67 kb)

Additional file 12: Figure S10. Hierarchical clustering of NHGRI human
traits based on Jaccard index. The hierarchical dendrogram and heat map
of similarity for pairwise human traits were constructed based on the
Jaccard similarity index, and significance of similarity was measured using a
hypergeometric test implemented in the CPAG program. Only traits having
at least one significant association (p < 0.05) against other traits are shown
here. Colors in the heat map are based on the similarity index and scaled
according to the color key. Colored blocks along the y-axis of the heat map
and color of text for trait names are indicative of the nine assigned
categories of traits. (PDF 75 kb)

Additional file 13: Figure S11. Hierarchical clustering of NHGRI human
traits based on Morisita index. The hierarchical dendrogram and heat map
of similarity for pairwise human traits were constructed based on the
Morisita similarity index, and significance of similarity was measured using a
hypergeometric test implemented in the CPAG program. Only traits having
at least one significant association (p < 0.05) against other traits are shown
here. Colors in the heat map are based on the similarity index and scaled
according to the color key. Colored blocks along the y-axis of the heat map
and color of text for trait names are indicative of the nine assigned
categories of traits. (PDF 70 kb)

Additional file 14: Figure S12. Hierarchical clustering of NHGRI
human traits based on connection specificity index (CSI). The
hierarchical dendrogram and heat map of similarity for pairwise
human traits were constructed based on the CSI, and significance of
similarity was measured using a hypergeometric test implemented in
the CPAG program. Only traits having at least one significant
association (p < 0.05) against other traits are shown here. Colors in the
heat map are based on the similarity index and scaled according to
the color key. Colored blocks along the y-axis of the heat map and
color of text for trait names are indicative of the nine assigned
categories of traits. (PDF 142 kb)

Additional file 15: Figure S13. Hierarchical clustering of NHGRI human
traits based on Cosine index. The hierarchical dendrogram and heat map
of similarity for pairwise human traits were constructed based on the
Cosine similarity index, and significance of similarity was measured using
a hypergeometric test implemented in CPAG program. Only traits having
at least one significant association (p < 0.05) against other traits are
shown here. Colors in the heat map are based on the similarity index
and scaled according to the color key. Colored blocks along the y-axis of
the heat map and color of text for trait names are indicative of the nine
assigned categories of traits. (PDF 77 kb)
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Additional file 16: Figure S14. Hierarchical clustering of NHGRI human
traits based on geometric index. The hierarchical dendrogram and heat
map of similarity for pairwise human traits were constructed based on
the geometric similarity index, and significance of similarity was
measured using a hypergeometric test implemented in the CPAG
program. Only traits having at least one significant association (p < 0.05)
against other traits are shown here. Colors in the heat map are based on
the similarity index and scaled according to the color key. Colored blocks
along the y-axis of the heat map and color of text for trait names are
indicative of the nine assigned categories of traits. (PDF 73 kb)

Additional file 17: Figure S15. Entropy-based comparisons of 11
similarity indices. a) Average Gini-Simpson entropy index and
Shannon-Wiener entropy index were calculated for each cluster
number K for each similarity index. Both entropy indices are unweighted
without considering effect of cluster size. The Chao-Sorensen similarity index
had the least heterogeneity across different K for both entropy indices. b)
Average and median cluster size were plotted against cluster number K. For
Chao-Sorensen, the cluster sizes have slight variation while K increases from
2 to 30, and also generates medium to large cluster. We removed the
largest cluster of the hierarchical clustering tree from this analysis to reduce
possible bias to the average cluster size. (TIFF 346 kb)

Additional file 18: Figure S16. Density distributions of non-zero similarity
values for inter-group pairwise comparisons and for pairwise comparisons
within predefined groups. Pairwise comparisons within seven pre-defined
groups generally show higher similarity than pairwise comparisons
of traits between the pre-defined groups (inter-group). (PDF 25 kb)

Additional file 19: Table S3. Potentially novel raw trait pairs revealed
by CPAG and a lack of any co-occurrences in PubMed (last visit on 20
March 2015). The two raw traits with significant similarity (p < 0.05, Fisher’s
exact test after Bonferroni correction) are listed as “Trait1” and “Trait2”. The
text was modified to remove general terms such as “levels” to broaden the
PubMed query (see "Materials and methods"). The number of PubMed hits
for each individual trait is given. Out of 741 raw trait pairs with p < 0.05,
these 43 had no PubMed co-occurrences. The trait pair we tested
experimentally in zebrafish (Crohn’s disease and palmitoleic acid
plasma levels) is highlighted in orange. (DOCX 20 kb)

Additional file 20: Table S4. Potentially novel modified trait pairs
revealed by CPAG and a lack of any co-occurrences in PubMed (last visit
on 20 March 2015). The two modified traits with significant similarity
(p < 0.05, Fisher’s exact test after Bonferroni correction) are listed as
“Trait1” and “Trait2”. The text was modified to remove general terms such
as “levels” to broaden the PubMed query (see "Materials and methods").
The number of PubMed hits for each individual trait is given. Out of
277 modified trait pairs with p < 0.05, these 30 had no PubMed
co-occurrences. (DOCX 19 kb)

Additional file 21: Table S5. NHGRI raw trait names, modified names
and their pre-defined groups. NHGRI disease names (“Raw traits”) are from
the NHGRI GWAS Catalog. Closely related phenotypes were merged and
phenotypes in the NHGRI GWAS Catalog that combined multiple diseases
were removed for “modified phenotypes”. Each trait was assigned to one
or two broad categories (autoimmune, infectious disease, cardiovascular/
metabolic, body size, eyes, kidneys, nervous system, cancer, or other)
based on medical knowledge of the authors prior to running the CPAG
analysis. (DOCX 104 kb)
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