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Split-alignment of genomes finds
orthologies more accurately
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Abstract

We present a new pair-wise genome alignment method, based on a simple concept of finding an optimal set of local
alignments. It gains accuracy by not masking repeats, and by using a statistical model to quantify the (un)ambiguity of
each alignment part. Compared to previous animal genome alignments, it aligns thousands of locations differently
and with much higher similarity, strongly suggesting that the previous alignments are non-orthologous. The previous
methods suffer from an overly-strong assumption of long un-rearranged blocks. The new alignments should help find
interesting and unusual features, such as fast-evolving elements and micro-rearrangements, which are confounded
by alignment errors.

Background
Aim of genome alignment
If we compare two genome sequences, such as those of
human and chimp, to see how they differ, then intuitively
we wish to align the “equivalent” regions of the genomes.
More precisely, we wish to align orthologs, which are
descended from the same sequence in the last common
ancestor of the genomes. The white boxes in Fig. 1a
illustrate orthologs.
We can recognize orthologs by sequence similarity, but

we need to distinguish them from two other types of sim-
ilar sequence. The first is paralogs, which are descended
from a common ancestral sequence by intra-genome
duplication before the speciation event. The black and
white boxes in Fig. 1a are paralogous to each other. The
second is independently-evolved simple sequences such
as atatatatatat. Simple sequences are typically sup-
pressed by identifying and masking them, though not
all identification [1] and masking [2] procedures work
equally well.
Genome comparison would be simpler if the equivalen-

cies were always one-to-one, but unfortunately orthology
is not always one-to-one. If orthologs are duplicated after
the speciation event, it can be many-to-many. In Fig. 1a,
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the black box in the left genome is orthologous to both
black boxes in the right genome.
There is a large body of ongoing research on dis-

criminating orthologous from paralogous proteins [3–6].
A simple approach, which ignores many-to-many orthol-
ogy, is to find reciprocal best matches between two
proteomes. A better approach in theory (not necessar-
ily in practice [4]) is to infer phylogenetic trees of the
proteins, and thence infer speciation and duplication
events. These methods are not easily adapted to whole
genomes, because we must consider rearrangements
causing different genomic segments to have different evo-
lutionary relationships, and the segment boundaries are
not known in advance.

Beyond orthology?
There is a widespread desire to refine the concept of
orthology, perhaps in order to avoidmany-to-many equiv-
alencies, and so people speak of “main ortholog”, “posi-
tional ortholog”, “syntenic regions”, etc [7]. These terms
tend to be ill-defined. For example, “positional orthol-
ogy” refers to orthologs that are in equivalent positions in
two genomes: this is problematic, because the only way to
define equivalent positions is by orthology. The intuition
seems to be that more-extensive orthology defines equiva-
lent positions, whereas smaller orthologous fragments do
not. It is unclear how extensive the orthology has to be, or
whether there is really a coherent concept here.
This has been made more precise under the term

“toporthology” [7] (or “topoorthology” [8]), which is based
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Fig. 1 Illustrations of genome evolution. a Sketch of a genomic segment evolving over time, illustrating orthology and paralogy. b An example of
asymmetric duplication (retrotransposition). c An example of symmetric duplication (non-allelic recombination). d A complex rearrangement,
ascribed to three template switches during one DNA replication event [47]. The pink segment is inverted, and the green segment is duplicated

on symmetry of duplications. For example, retrotranspo-
sition is an asymmetric duplication (Fig. 1b), because we
can distinguish the original (white box) from the copy
(black box). The original is the toportholog. It is important
to realize that duplications can also be symmetric (Fig. 1c),
so that neither duplicate is less “original” than the other:
thus toporthology is not always one-to-one.
It was suggested that symmetric duplications are those

where deletion of either duplicate would restore the
genome to its original state [7]. However, there are cases

where deletion of neither duplicate would restore the
original genome (Fig. 1d). In this example, we might be
tempted to say that the duplicate with longer orthologous
flanking sequence is the “main ortholog”, but that simply
highlights the fuzziness of the concept.

Synteny, order and orientation
The original meaning of “syntenic” is “on the same chro-
mosome” [9]. Thus “conserved synteny” means conserva-
tion of being on the same chromosome. Comparison of

Fig. 2 Genome alignments. Left: D. melanogaster (horizontal) versus D. pseudoobscura (vertical). Right: orangutan versus human chromosome 17.
Red indicates same-strand alignments and blue indicates opposite-strand alignments
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Drosophila melanogaster and Drosophila pseudoobscura
genomes shows striking synteny conservation: although
these genomes are highly shuffled relative to each other,
the shuffling is mostly within and not between chromo-
somes (Fig. 2).
Another pattern is conserved order and orientation.

This happens when an ancestral genomic segment has
been partially rearranged by inversions, deletions, inser-
tions, etc, but parts of it remain in their ancestral order
and orientation. This can be seen in human and orangutan
chromosomes 17 (Fig. 2). Most genome alignment meth-
ods use conserved order and orientation to help construct
their alignments [10].

Alignment methods
The classic approach to alignment is to define a scoring
scheme, with substitution and gap scores (e.g. Table 1),
and then seek alignments with maximal total score.
This is equivalent to using a statistical model of related
sequences, with substitution and gap probabilities, and
seeking alignments with maximal likelihood under the
model [11, 12].
It is said that “all models are wrong, but some are useful”,

and this is no exception. This model lacks many features
of related sequences: substitutions are more frequent at
CG dinucleotides, indels are more common in tandem
repeats, some regions (e.g. protein-coding) are more con-
served than others, structural RNA genes conserve com-
plementarity rather than primary sequence, etc. There
have been proposals to model some of these features (e.g.
[13–15]), but they have a cost in run time and nuisance
parameters. In this study we shall just use the classic align-
ment model, though our newmethods could be combined

with more complex models. Classic alignment has been
very widely used, and often works well enough to give
useful results. It can successfully align orthologs whose
primary sequence is not constrained, provided their com-
mon ancestry is recent enough that they have not diverged
too far.
Maximal-score alignment has an under-appreciated

flaw: it can spuriously align dissimilar and unrelated
sequences, if they are flanked by similar sequences [16].
Although the dissimilar sequences will have negative
alignment score, if both flanks have positive scores of
greater magnitude then the score is maximized by align-
ing the whole thing. The underlying problem is that this
approach seeks optimal individual alignments, but we
really want an optimal set of alignments.
Maximal-score alignments can be found by the Smith-

Waterman-Gotoh algorithm [17, 18], but this is slow for
large genomes and so fast heuristics are used instead.
A typical heuristic is seed-and-extend, which often has
three steps: 1) find “seeds”, i.e. short matches that can
be found quickly; 2) for each seed check whether there
is a gapless alignment with score ≥ some threshold d;
3) if so check whether there is a gapped alignment with
score ≥ e.
Step 3 is often done with a “gapped x-drop algorithm”

[19, 20]. This means that we try extending an alignment
in all possible ways, with any pattern of insertions and
deletions, but stop if the score drops more than x below
the maximum seen so far. It can be argued that x should
be just less than e: lower values of x can hide alignment
flanks with positive score, but higher values cause trouble
by merging alignments with score s ≥ e across drops with
score ≤ −s [21].

Table 1 Alignment scoring schemes used in this study, and their underlying probabilities

human-chimp.v2 HoxD70 [48] HoxD55

a c g t a c g t a c g t

a 90 -330 -236 -356 a 91 -114 -31 -123 a 91 -90 -25 -100

c -330 100 -318 -236 c -114 100 -125 -31 c -90 100 -100 -25

g -236 -318 100 -330 g -31 -125 100 -114 g -25 -100 100 -90

t -356 -236 -330 90 t -123 -31 -114 91 t -100 -25 -90 91

gap existence cost: 600 gap existence cost: 400 gap existence cost: 400

gap extension cost: 150 gap extension cost: 30 gap extension cost: 30

a c g t a c g t a c g t

a .27 .00052 .0020 .00041 a .18 .019 .045 .020 a .16 .028 .050 .029

c .00052 .23 .00053 .0020 c .019 .16 .015 .045 c .028 .13 .022 .050

g .0020 .00053 .23 .00052 g .045 .015 .16 .019 g .050 .022 .13 .028

t .00041 .0020 .00052 .27 t .020 .045 .019 .18 t .029 .050 .028 .16

gap existence probability: .000021 gap existence probability: .043 gap existence probability: .091

gap extension probability: .11 gap extension probability: .73 gap extension probability: .76
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Repeat masking
Repeats (interspersed repeats and simple sequences) are
typically masked before alignment. Specifically, they are
marked using lowercase letters, seeds are forbidden from
overlapping them, but the final alignments are allowed to
extend into them. A major reason for masking is to make
the computation tolerable: without it, e.g. each of the 1
million human Alu repeats would hit each of the 1 million
chimp Alus, producing 1012 alignments.

Summary of this study
This study presents a new genome alignment method,
with several interesting features:

• It is based on finding an optimal set of alignments,
instead of optimal individual alignments.

• It aligns without masking, which turns out to be
important for orthology search.

• It uses a statistical model to estimate the reliability
(unambiguity) of each alignment part, enabling the
user to disregard less-reliable parts.

• In a major departure, it does not consider conserved
order and orientation. Although considering this is
sensible, the ways that other aligners do so are
problematic.

Compared to previous aligners, this method aligns thou-
sands of loci differently and with much higher similarity,
strongly suggesting that the previous alignments are not
orthologous.

Results
Idea of the newmethod
The idea is to seek a set of one-to-one alignments between
two genomes that maximizes:∑

alignments
(alignment score − f ) (1)

Here, f is an “alignment existence cost”, which is nec-
essary to avoid trivial solutions with lots of length-1
alignments. It is similar to Mauve’s breakpoint penalty
[22].
The one-to-one requirement means that each basepair

in either genome must match at most one basepair in
the other genome. This is crude but tractable, and the
hope is it will mostly find one-to-one orthologs. It is
akin to the reciprocal best match approach to protein
orthology.
This simple scoring system is a natural way to find a

set of items. One property is that no alignment can con-
tain any segment with score < −f , because in that case
the score could be increased by splitting the alignment
into two parts either side of the segment. So it solves
the aforementioned problem of arbitrarily bad segments

in individual alignments. The constant f reflects uniform
probabilities, in a statistical model, of starting and ending
a new item (see the Appendix).
Note this is not equivalent to finding non-overlapping

alignments with score > f , with a classic aligner like
BLAST or WU-BLAST [23, 24]. Our approach optimizes
the set rather than individual alignments: for instance,
if two alignments overlap, our approach optimizes the
breakpoint for jumping between them.

Algorithm overview
Unfortunately, there does not seem to be an efficient algo-
rithm to find such an optimal set of alignments. The near-
est thing is the “repeated matches” algorithm, which finds
an optimal set of many-to-one alignments [11]. This is
asymmetric: it aligns each basepair in the “query” genome
to at most one basepair in the “reference” genome, but
not necessarily vice-versa. It is about as fast as Smith-
Waterman-Gotoh. In practice, the new method uses these
steps:

1. Find local alignments between the two genomes, by
seed-and-extend (many-to-many).

2. Apply the repeated matches algorithm, constrained
to the candidate alignments found in step 1. We refer
to this constrained version of the repeated matches
algorithm as “split-alignment”.
Split-alignment guarantees to find a set of
many-to-one alignments that maximizes the sum of
(alignment score − f ), where each alignment in the
set is part (or all) of a candidate alignment. In other
words, given a set of alignments that overlap in the
query, it finds an optimal set of nonoverlapping
alignment parts. One aspect of this is finding optimal
breakpoints for jumping between overlapping
alignments. The output may include multiple parts of
one candidate alignment.

3. Perform split-alignment a second time, after
swapping the roles of query and reference. This
produces one-to-one alignments.

Step 1 uses LAST (though other aligners could be used),
and for brevity let us refer to the whole new method as
LAST [25]. We shall refer to the output of step 2 as “1-
split” alignments, and the output of step 3 as “2-split”
alignments.
Many of the following results use the 1-split alignments,

because they are easier to evaluate: if we findmany-to-one
alignments between genomes Q (query) and R (refer-
ence), we can assess whether each alignment could be
improved by aligning the same segment of Q to a dif-
ferent region of R. They are also more comparable to
the UCSC genome alignments, which are many-to-one
[26, 27].
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Statistical model
By using a probabilistic version of split-alignment (a kind
of Forward-Backward algorithm [11], see the Appendix),
we can estimate the probability that each pair of bases
is wrongly aligned. This is high if that region of genome
Q aligns almost equally well to other regions of genome
R. The following results omit alignments from each set
that lack at least one position with error probability ≤
0.00001.

Results with pre-masking
The new method was used to align the human and
chimp genomes, with standard repeat-masking at first.
To facilitate comparison with the UCSC alignments,
the same scoring scheme was used (human-chimp.v2,
Table 1). This produced 371977 1-split alignments (with
human as query), of which 15084 are “different” from
UCSC, meaning no pair of aligned bases in common.
For 6845 of these different alignments, the alignment’s
human segment is 100% covered by (i.e. contained in)
one UCSC alignment: so we can compare the align-
ment scores for this (exact same) human segment.
LAST’s score is higher in 95% of cases (Fig. 3). For
human versus dog, LAST’s score is higher in 90% of
cases.
It is encouraging that LAST usually gets higher scores,

but the 5–10% of lower scores are clear failures in its
aim of finding an optimal set of alignments. Inspection
of several cases revealed that these failures are caused by
masking. If the true ortholog of a sequence is masked,
but a paralog is not, then LAST may incorrectly align the
paralog. Fundamentally, masking is dangerous for orthol-
ogy search in a way that it is not for homology search. In
homology search it can only cause false-negatives, but in
orthology search it can also cause false-positives.

Alignment without masking
We would thus like to align without masking, but we
still wish to avoid aligning independently-evolved simple
sequences (Fig. 1a). This was achieved by post-masking:
alignments that mostly overlap simple sequence were dis-
carded at the end.
The problem is that alignment without masking takes

much longer and produces overwhelming output (Table 2,
row “mask” versus row “unmask”). It is feasible because
we use LAST, whose seeds adapt (in length and rareness)
to repeats [25]. So the number of seed hits merely doubles
(because about half the query was previously masked).
The main problem is that the number of gapless align-
ments increases 100-fold. This is because a greater pro-
portion of the seed hits lie in high-scoring alignments
(repeats).
To mitigate this problem, a “gapless alignment culling”

step was added. This step discards any gapless alignment
whose query segment lies in those of two or more other
alignments with greater score-per-length.a This aims to
get the strongest matches to each region of the query (like
adaptive seeds), not all matches. Ultimately we just want
one strongest match, but the second-strongest helps us to
calculate model probabilities. A similar culling procedure
is present in BLAST [28].

Results with post-masking
Post-masking (of simple sequences only, not interspersed
repeats) was tested on five pairs of genomes (Fig. 4). In
each case, the majority of aligned bases are identical to
the UCSC alignments (Fig. 4, top row), but a nontriv-
ial proportion are different (Table 3). For example, in the
human-mouse comparison, >12% of aligned bases lie in
alignments that are completely different from UCSC (no
pair of aligned bases in common).

Fig. 3 Comparison of LAST (1-split, pre-masked) and UCSC genome alignments. The panel headings show query-reference. For each “different”
LAST alignment (no pair of aligned bases in common with UCSC) whose human segment is covered by one UCSC alignment, that segment’s
alignment scores are compared
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Table 2 Statistics for aligning human chromosome 22 to the chimp genome (step 1 only: no split-alignment)

Method Seeds Alignments ×103 Time Output

×106 gapless gapped (min) (MB)

mask 856 1641 33 7 110

unmask 1881 161551 118308 583 72945

cull 1881 26740 12243 93 7479

As above, we can compare scores for “different” LAST
alignments whose human segment is covered by one
UCSC alignment (Fig. 4, row 2). For the ape comparisons,
LAST’s score is almost always higher, so post-masking
does indeed improve the results. Moreover, the LAST
scores are higher by a margin of at least 795: this comes
from the error probability threshold of 0.00001, because a
score difference of 795 is equivalent to a 105-fold differ-
ence in model probability.

The human-dog and human-mouse results are not quite
as good: the LAST scores are lower in about 2% of cases.
This is at least partly because these genomes are more
diverged, so LAST’s seeds miss some orthologs.
It may be more intuitive to compare the LAST and

UCSC alignments by %-identity (Fig. 4, row 3). The LAST
alignments almost always have higher %-identity, often by
a considerable margin, e.g. 10% or 20%. %-identity can
be misleading, because it treats e.g. one length-10 gap the

Fig. 4 Comparison of LAST (1-split, post-masked) and UCSC genome alignments. The column headings show query-reference. Top row: number
of aligned bases by LAST, as a function of max error probability, and the number of these aligned identically by UCSC. 2nd row: score difference, for
each “different” LAST alignment (no pair of aligned bases in common with UCSC) whose query-genome segment is covered by one UCSC
alignment. 3rd row: %identity comparison, for the same alignments as in row 2. Red lines indicate equal %identity
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Table 3 Quantities of LAST (1-split, post-masked) alignments, and differences from UCSC alignments

Genomes Alignments Different b Moved c New d

(basesa) (basesa) (basesa) (basesa)

human- 435084 51208 7591 31184

chimp (2.7e9) (6.5e7) (1.4e7) (2.9e7)

human- 911016 112221 19050 63481

orang (2.6e9) (1.1e8) (2.0e7) (5.2e7)

human- 1626114 234267 5203 182648

dog (1.5e9) (1.1e8) (2.2e6) (9.1e7)

human- 1150523 275161 6763 226204

mouse (9.4e8) (1.2e8) (2.5e6) (9.7e7)

anumber of query basepairs that are aligned to a reference basepair
balignments (bases therein) that have no pair of aligned bases in common with UCSC
c“different” alignments (bases therein) whose human segment is covered by one UCSC alignment
dalignments (bases therein) whose human segment is completely unaligned by UCSC

same as 10 substitutions. It is better to weight different
types of change by their evolutionary likelihoods, which is
done in the alignment scores (Fig. 4, row 2).
In summary, there are thousands of loci that LAST

aligns completely differently from UCSC, with signifi-
cantly higher score and %-identity. Some overlap protein-
coding exons (Table 4). It is plausible that in many of
these cases the LAST alignments are orthologous and
the UCSC alignments are not. In some cases, the UCSC
alignments lack similarity and homology. An example
is shown in Fig. 5, where UCSC aligns an inversion in

un-inverted orientation. In other cases, the UCSC align-
ments are homologous, but less similar than the LAST
alignments. However, UCSC favours chains of colinear
alignments, and we may wonder whether we would rather
have (say) a 91%-identity colinear human-chimp align-
ment or a 98%-identity non-colinear alignment (Table 4).
When the difference in similarity is this large, it is more
plausible that the UCSC alignment is paralogous. Since
paralogs often come from tandem duplication, they can
lie in chains. Several factors may cause lower-similarity
chained alignments.

Table 4 Examples of better human-chimp alignments found by LAST than UCSC (mm=mismatches)

Human segment LAST alignment UCSC alignment(s) Gene

%id mm gaps %id mm gaps

chr1:152276674–152277614 97 30 0 92 76 3 FLG

chr1:152280487–152281478 97 30 0 92 77 3 FLG

chr2:108873888–108876032 99 29 1 88 220 35 SULT1C3

chr2:132248761–132251678 98 40 23 94 96 97 MZT2A

chr6:26521953–26522872 99 7 0 91 70 11 HCG11

chr6:161039352–161043226 96 119 21 91 293 50 LPA

chr9:140099185–140099970 100 1 0 97 25 0 TMEM203

chr11:67762787–67763389 99 6 1 95 28 3 UNC93B1

chr15:28386144–28386780 98 8 2 91 50 5 HERC2

chr17:36633111–36634556 99 31 1 97 41 5 ARHGAP23

chr17:36634558–36635933 98 16 11 94 62 16 ARHGAP23

chr19:53078564–53079296 97 14 8 77 68 105 ZNF701

chr19:55262747–55265365 97 71 12 94 148 14 KIR2DL3

chr22:16286739–16288612 96 42 27 90 131 56 POTEH

chrX:3228654–3232013 99 30 2 90 230 106 MXRA5

chrX:3558846–3560429 98 21 8 94 77 19 PRKX

chrX:48112039–48118891 98 100 53 92 461 109 SSX1
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Fig. 5 Example of an inversion wrongly aligned in un-inverted orientation by UCSC. Left: LAST alignments, with the inversion in red. Right: UCSC
alignment, with the incorrect part in red, and bases unaligned by LAST in blue

• Large and complex duplications: these create
ambiguity about how to construct chains.

• Rearrangement (e.g. inversion) of the ortholog but
not the paralog.

• Genome misassembly: most of these assemblies are
unfinished drafts. Misassembly is especially likely in
regions with complex duplications, repeats, and
rearrangements.

• Gene conversion: this can convert an ortholog to a
paralog.

• Contaminating human sequence in e.g. the chimp
assembly.

• Accelerated evolution: this can decrease the similarity
of an ortholog.

Wrong x-drop alignments
LAST’s ape comparisons still have a tiny fraction of align-
ments with lower score than UCSC. These are mostly
caused by a pathology of the gapped x-drop heuristic
(Fig. 6). If an alignment has a region with score < −x (e.g.
a large gap), the left and right flanks of that region will
usually be found as separate alignments. Unfortunately, it
is sometimes possible to find an alternative, wrong align-
ment of the whole region without a score drop > x, but
with lower score overall. If orthologs are wrongly aligned

in this way, the alignment score may be lower than that of
paralogs, causing LAST to prefer a paralogous alignment.
This problem can be fixed by either increasing x so that

the correct alignment is found, or decreasing x so that the
incorrect alignment is not found and the correct align-
ment is found in two parts. Unfortunately, different values
of x fix different cases, and there is no reasonable value
that fixes all cases.

New alignments of repeats
The LAST alignments include many cases where the
human segment is completely unaligned by UCSC
(Table 3). These alignments tend to be covered by repeat
elements, such as LINEs and SINEs (Fig. 7, left panel).
Many repeats can be aligned unambiguously because they
are older than the common ancestor of the genomes, so
they have unique orthologs with higher similarity than
the other copies. In addition, there are many cases where
repeat elements have been inserted within other repeats,
creating unique mosaics. Alignment without masking
reveals many such potentially interesting orthologies.
Nevertheless, orthology search is likely harder for

repeats than non-repeats. The human-chimp 1-split align-
ments mostly have around 98% identity, but many of the
repeat alignments have lower %-identity (Fig. 7, panel

Fig. 6 Example of wrong alignment by the gapped x-drop heuristic. Left: correct alignment, with a score drop > x. Right: incorrect alignment of the
same sequences
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Fig. 7 Properties of new and repetitive LAST alignments. “New” means LAST alignments whose human segment is completely unaligned in UCSC.
“Repetitive” means LAST alignments whose human segment is 100% covered by repeat element(s)

2). The likely explanation is that many of these repeat
alignments are paralogous.
This problem mostly vanishes in the final 2-split align-

ments (Fig. 7, panel 3). Now the repeat alignments also
have around 98% identity, although they have slightly
higher variance: they more often have both higher and
lower %-identity. This higher variance is not surprising as
repeat alignments tend to be shorter (Fig. 7, panel 4), sim-
ply because longer alignments are less likely to be 100%
repetitive.
Surprisingly, the human-dog 1-split repetitive align-

ments do not have reduced %-identity (Fig. 7, panel 5).
A possible explanation is that the human-chimp paralo-
gous alignments are mostly due to poor genome assembly:
orthologous human-chimp repeats are often very young,
with low divergence, and thus hard to assemble.

Badness of HoxD55
Alignment of the D. melanogaster and D. pseudoobscura
genomes worked less well: the LAST scores were lower
than the UCSC scores in 13% of cases (Fig. 4). This was
the only comparison to use the HoxD55 scheme (Table 1).
Inspection of several cases revealed that the LAST failures
are due to the x-drop problem described above, which
evidently occurs much more often with HoxD55. This
scoring scheme has a high tolerance for aligning unrelated
sequences [29], which presumably exacerbates the x-drop
error.
Accordingly, the alignment worked much better with

HoxD70 (Fig. 8, left column). Now, the %-identity is
almost always higher for LAST than UCSC, apart from
just two clearly-wrong LAST alignments, caused by x-
drop error.

Comparison to other aligners
Many genome alignment methods have been proposed,
though most have in common an approach of looking for
chains of colinear alignments. In addition to UCSC, let
us consider VISTA [30] and Mauve [22] as representative
examples.

In the VISTA human-chimp alignments, the vast major-
ity of aligned bases are identical to LAST (Fig. 8). Nev-
ertheless, there are many LAST alignments that have no
aligned bases in common with VISTA: for some of these,
the human segment is covered by one VISTA alignment,
in which case we can compare the %-identities for that
human segment. The VISTA %-identity is almost always
lower, often much lower (Fig. 8). In fact, VISTA has many
more very low %-identity alignments (e.g. < 60%) than
UCSC (Fig. 4, lower-left panel). Inspection of several cases
revealed errors similar to that in Fig. 5. The likely reason is
that VISTA uses colinearitymore aggressively thanUCSC,
by globally aligning genome regions defined by chains.
As another comparison, the two Drosophila genomes

were aligned using progressiveMauve version 2.3.1 with
default parameters. The result is conservative, with fewer
aligned bases than LAST, and few cases where Mauve
aligns the same region of melanogaster to a different
region of pseudoobscura (Fig. 8). In these few cases,
Mauve’s %-identity is usually much lower, apart from
the same two LAST errors mentioned above. Although
Mauve also uses aggressive global alignment, it subse-
quently detects and removes alignments of unrelated
sequences, to avoid errors like that in Fig. 5 [22, 31].

Score/model parameters
Good alignment depends on using reasonable
score/model parameters (Table 1), and we can check
whether they match the substitution and gap frequencies
in the alignments. This is only a rough check, because the
alignments are not perfect: in particular, the gap existence
counts may be underestimates due to “gap attraction” and
“gap annihilation” [13, 32].
The main observation is that the gap costs for human-

chimp.v2 are unduly large: a better fit would be obtained
with a gap existence cost of 500 and a gap extension cost
of 30. So we re-did the ape alignments with these costs,
then re-counted substitutions and gaps.
The next observation is that gap lengths do not fit any

model with a simple gap extension probability, because the



Frith and Kawaguchi Genome Biology  (2015) 16:106 Page 10 of 17

Fig. 8 Comparison of LAST (1-split, post-masked) and other genome alignments. Top row: number of bases aligned by LAST, as a function of max
error probability, and the number of these aligned identically by the other method. 2nd row: %-identity comparison, for each “different” LAST
alignment (no pair of aligned bases in common with the other method) whose query-genome segment is covered by one other-method alignment

frequencies of longer gaps decrease more slowly (Fig. 9).
A pragmatic solution is to fit the gap extension probability
to short gaps.
The substitution and gap frequencies, and correspond-

ing scores, are shown in Appendix C. They do not differ

greatly from the alignment models. However, these fre-
quencies are not uniform across the genome, and aver-
aged parameters may not be ideal. For example, a (match
score):(mismatch cost) ratio of 1:1 is appropriate for
∼75% identity, 1:2 for ∼95% identity, and 1:3 for ∼99%

Fig. 9 Deviations from the alignment model in LAST (2-split, post-masked) genome alignments. Upper row: gap length distributions. Dotted lines
show the distribution modeled by a gap extension cost of 150, and dashed lines a cost of 30. Lower row: substitution rates in 200bp windows
(excluding gaps). Grey lines show expected results for uniform substitution rate
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identity [33]. To investigate, we deleted gap columns then
measured substitution rates in 200bp windows of the
alignments (Fig. 9, row 2). The substitution rates are not
uniform, but they do not vary arbitrarily: for instance,
human-mouse alignments hardly ever have ≥90% iden-
tity. In summary, the used parameters are not wildly
unreasonable.

Alignathon simulation test
Finally, we tested our method on the “Alignathon” sim-
ulated genomes [34]. Simulation has the advantage that
the true alignments are known, but the disadvantage that
the simulation’s realism is unknown. For instance, the
simulation presumably lacks rearrangements like that in
Fig. 1d.
There are two simulations: one of four ape-like

genomes, and one of five mammal-like genomes. The
“truths” are multiple (not pair-wise) alignments, and, in
our understanding, they align all homologs (including
paralogs, but excluding mobile element insertions) that
have duplicated since the most recent common ances-
tor of the genomes. This unfortunately does not match
our approach of finding one-to-one orthologs. In any
case, for each simulation we made pair-wise alignments
with LAST, then joined them into multiple alignments
withmafTransitiveClosure [34], which joins pair-wise into
multiple alignments in a naïve way.
For the ape simulation, LAST achieved a precision of

0.998 and a recall of 0.978. All other aligners had lower
precision (Table S13 in [34]). For the mammal simula-
tion, LAST achieved precision=0.827 and recall=0.612.
Several aligners have higher precision, however all but
one of those have much lower recall (Tables S15–16 in
[34]). The exception is Cactus, with precision=0.885 and
recall=0.734.
To understand why Cactus has higher precision, let us

focus on pair-wise alignments between simHuman and
simMouse. LAST aligns 124 million pairs of bases, of
which 25 million are wrong, and 464 thousand lie in
completely-wrong alignments (no pair of aligned bases in
common with the truth). Cactus aligns 131 million pairs
of bases, of which 18 million are wrong, and 6 million
lie in completely-wrong alignments. So LAST is much
better at avoiding completely-wrong alignments, whereas
Cactus excels at accuracy of partly-right alignments. The
latter is not surprising, because Cactus is a true multi-
ple aligner: it takes pair-wise alignments from an external
source (potentially LAST), and combines and refines them
by integrating the information from all the sequences [35].

Discussion
The new genome alignment method is conceptually
extremely simple, it just seeks an optimal set of one-to-
one alignments. Despite decades of extensive research

on alignment, alignment sets have been surprisingly
neglected, although they are often what is really wanted,
e.g. for multi-domain proteins.
The new method is obviously crude, because it ignores

phylogeny and many-to-many orthology. It will fail in
cases of reciprocal gene loss, where one copy of a para-
log is absent in one genome and the other copy is missing
from the other genome. Such hidden paralogy is a major
problem in understanding evolution [36].
Nevertheless, the new method seems to fix thousands

of non-orthologous parts in previous genome alignments.
The previous errors were caused by an over-aggressive
assumption of conserved order and orientation. For exam-
ple, in many cases in Table 4, UCSC finds the same
alignment as LAST in its initial (many-to-many) “chains”
but omits it from its final (many-to-one) “net” align-
ments, because it prefers weaker alignments in stronger
chains. There is a widespread paradigm of trying to align
long colinear blocks (often using “chains” or “anchors”),
which risks producing non-orthologous or even non-
homologous alignments. The ideal approach is probably
to use a weaker preference for conserved order and orien-
tation, e.g. via prior probabilities in a statistical model.
The use of a probabilistic model is a key advantage, since

it quantifies the ambiguity of each aligned base. Similar
probabilistic methods have been applied before to indi-
vidual alignments [11, 13, 14, 21], but apparently not to
alignment sets.
We found that pre-masking is dangerous for orthology

search, which is probably not widely recognized since it
is not dangerous for typical BLAST homology searches.
Unfortunately, genome alignment without masking is
much more compute-intensive, even with adaptive seeds
and gapless alignment culling. Probably, better heuristics
could be developed to tackle this.
We also found that the gapped x-drop heuristic can

sometimes produce bad alignments (Fig. 6). This is impor-
tant because x-drop is widely used (e.g. BLAST), the bad
alignments are not immediately obvious (probably they
are usually overlooked), and this problem does not seem
to have been described before. Unfortunately, it is unclear
how to fix it, save by applying the repeated matches algo-
rithm directly to the genomes (which seems feasible on a
large supercomputer).
Split-alignment has applications beyond whole genome

comparison. It can be used to map DNA or RNA reads
to a genome. “Mapping” is orthology search (since par-
alogs are not wanted), and reads are genome fragments
(possibly rearranged), so it is all the same thing. Since dif-
ferent reads may redundantly cover the same query bases,
we would seek many-to-one alignments, i.e. stop at the
1-split stage. Our method incorporates fastq quality data
into the model and scoring [37]. The statistical model,
which quantifies the (un)ambiguity of each alignment
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part, is a major benefit for finding reliable rearrangement
breakpoints.

Conclusions
The new method aligns the majority of genomic bases
identically to previous methods, as expected. Neverthe-
less, around 100 million human bases, which overlap
a number of protein-coding regions, are in completely
different alignments. The new alignments should be
especially beneficial when searching for interesting and
unusual features in genome evolution, because these are
particularly confounded by alignment errors. One exam-
ple is accelerated evolution, which is mimicked by par-
alogy. Another is micro-rearrangements, which are sys-
tematically missed in standard genome alignments based
on colinearity [38, 39]. Indeed the new alignments sug-
gest many interesting rearrangements (e.g. Fig. 5), but
unfortunately it is not straightforward to tell true rear-
rangements from assembly errors. The new alignments
are available at: [40]. The software is available at [41],
and also in the last-align package for Debian and Ubuntu
[42].

Materials andmethods
Split-alignment algorithm
The input is a set of local alignments between one query
sequence and one genome. (If there is more than one
query, the algorithm is applied to each independently.) An
example is shown in Fig. 10. First, the alignments are ori-
ented to use the forward strand of the query. Ai j is defined
to be the score at query letter j in alignment i, for match,
mismatch, or insertion of this letter. Di j is defined to be
the score between query letters j − 1 and j in alignment
i, for deletions. The optimal split-alignment score is cal-
culated by dynamic programming, using these recurrence
relations:

Vi j+1 = max(Vi j + Di j, Wj − f ) + Ai j (2)
Wj+1 = max(Wj, max

i
Vi j+1) (3)

The recurrence is initialized like this:

Vi beg(i) = −∞ (4)
Wbeg = 0 (5)

where beg(i) is the coordinate of the first query letter in
alignment i, and beg = min(beg(i)). The optimal split-
alignment score is Wend, where end = max(end(i)), and
end(i) is one-past the last query letter in alignment i. This
only calculates the score, but an optimal split-alignment
can then be found by a standard traceback procedure [11].

Genome data
These assemblies were used: panTro4, ponAbe2, can-
Fam3, mm10, dp4, dm3 (without chrUextra), and hg19
(without alternate haplotypes and with the chrY pseudo-
autosomal regions replaced by ‘n’s).
The UCSC genome alignments were taken from

the axtNet subdirectories of these directories:
hg19/vsPanTro4, hg19/vsPonAbe2, hg19/vsCanFam3,
hg19/vsMm10, dm3/vsDp4.
The VISTA alignment was taken from: [43].

Pre-masking
Lowercase-masked genomes were obtained from the
UCSC database. Tandem repeats found by tantan ver-
sion 13 were additionally masked, in order to prevent
non-homologous alignments more reliably [1].

Post-masking
The genomes were lowercase-masked by tantan only, then
aligned case-insensitively, and at the very end each align-
ment was rescored with gentle masking of lowercase let-
ters [2]: if it lacked any segment with score ≥ e it was
discarded.

Seed patterns
The sensitive transition seed set MAM8 was used by
default [44]. For the closely-related apes, the spaced seed
1111110 was used instead. For human-dog and human-
mouse with post-masking, since the number of indexed

Fig. 10 The split-alignment algorithm. Left: input to the algorithm, two local alignments that overlap in the query (top, human) sequence. Right:
algorithm layout. This example uses match score=1, mismatch cost=1, and gap cost=2+1×gap length. Match, mismatch, and insertion scores (Ai j)
are written beneath each letter, whereas deletion scores (Dij) are written between letters. The red lines show the optimal split-alignment



Frith and Kawaguchi Genome Biology  (2015) 16:106 Page 13 of 17

bases roughly doubles without masking, MAM4 was used
to avoid a too-large index.

Alignment parameters
LAST’s seed rareness limit m was empirically set to 50
for the ape alignments and 100 for the others. The score
threshold ewas set to values with borderline statistical sig-
nificance, using ALP [45]: 5000 for the flies with HoxD55,
4000 for the flies with HoxD70, 4500 for mammals with
HoxD70, and 3000 for the apes. The alignment existence
cost f and the maximum gapped score drop x were both
set to e − 1.

Alignment commands
To illustrate, the Drosophila HoxD70 alignments can be
constructed with LAST v535 as follows. First, run tantan
on both genomes, with default settings. Then, make the
1-split alignments like this:
lastdb -uMAM8 x dp4.fa

lastal -pHOXD70 -e4000 -C2 -m100 x dm3.fa |

last-split -m1 > 1.maf

Next, make the 2-split alignments like this:
maf-swap 1.maf | last-split -m1 > 2.maf

Finally, run last-postmask on 1.maf and 2.maf.

Alignathon ape test
These query-reference pairs were aligned: simChimp-
simHuman, simGorilla-simHuman, simOrang-sim-
Human. The alignment procedure was the same as for
the real ape genomes (lastdb option -m1111110, and
lastal options -phuman-chimp.v2 -a500 -b30 -e3000 -C2
-m50). Alignments with error probability ≤ 0.00001 were
retained, and joined by mafTransitiveClosure.

Alignathonmammal test
These query-reference pairs were aligned: simDog-
simHuman, simMouse-simHuman, simRat-simMouse,
simCow-simDog. Since the simulated genomes are
smaller than the real ones, we used MAM8 instead of
MAM4 (lastdb option -uMAM8, and lastal options -
pHOXD70 -e4500 -C2 -m100). Alignments with error
probability ≤ 0.00001 were retained, and joined by maf-
TransitiveClosure.

Data availability
The data set supporting the results of this article is avail-
able in the Zenodo repository [46].

Endnote
aScore-per-length is computed for whole alignments,

not overlapping parts.

Appendix A: Statistical models
The aim here is to explain and motivate the statistical
model of alignments, and the f parameter (alignment
existence cost). It is instructive to first consider models

of segments, such as hydrophobic segments in protein
sequences. Segments are a simpler (1-dimensional) analog
of alignments.

A.1 Segments
A simple model is for segments to have independent let-
ters with frequenciesπx, while background (non-segment)
regions have letter frequencies θx. Given a sequence, we
can then seek maximal-likelihood segments.
Figure 11a shows a precise model of this kind, with

transition probabilities ω and γ , in a standard circle-
and-arrow notation [11]. Suppose we have a sequence Q
of length n. Let us calculate the likelihood of the path
through the model whereby Qc+1 . . .Qd is a foreground
segment:

prob(path,Q) =
( c∏
k=1

ωθQk

)
(1 − ω)

×
⎛
⎝ d∏

k=c+1
γπQk

⎞
⎠ (1 − γ )

⎛
⎝ n∏

k=d+1
ωθQk

⎞
⎠ (1 − ω)

(6)

This can be simplified by factoring out a constant μ,
defined as:

μ =
( n∏
k=1

ωθQk

)
(1 − ω)2(1 − γ ) (7)

Because μ does not depend on the path, we can find a
most-probable path by maximizing:

prob(path,Q)

μ
=

d∏
k=c+1

γ

ω

πQk

θQk
(8)

Next, because maximizing a value is equivalent to max-
imizing its logarithm, we can maximize:

ln
(
prob(path,Q)

μ

)
=

d∑
k=c+1

ln
(

γ

ω

πQk

θQk

)
(9)

We can now define a scoring scheme, where each letter-
type x receives a score:

S(x) = t ln
(

γ

ω

πx
θx

)
(10)

Here, t is an arbitrary scale factor. Maximal-likelihood
segments are runs of letters with maximal total score.
Scores are related to model probabilities like this:

prob(segment) ∝ exp(score(segment)/t) (11)

A.2 Segment sets
Figure 11a clearly models one segment, and we can instead
model multiple segments using Fig. 11b, with transition
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Fig. 11 Probabilistic models for segments and local alignments. a Segment model. b Segment set model. c Alignment model. States labeled B
(background) emit letter x with probability θx . States labeled F (foreground) emit letter x with probability πx . The state labeled M (match) emits
aligned letters x : y with probability πxy . States labeled D (delete) emit reference letters x with probability φx . States labeled I (insert) emit query
letters y with probability ψy . Small circles are just connectors and do not emit

probabilities ω, γ , and α. It can be shown that a maximal-
likelihood segment set is one that maximizes:∑

segments
(segment score − f ) (12)

Here, the segment score is the sum of the letter scores
S(x), and f is:

f = −t ln(α(1 − γ )/γ ) (13)

Thus, a segment existence cost f arises naturally from
model probabilities of starting and ending a segment.

A.3 Alignments
Figure 11c shows one possible model of local alignments.
It can be shown that a maximal-likelihood alignment is
one with maximal score according to this scheme:

S(x, y) = t ln
(

πxy
φxψy

· γ

ω2

)
(14)

gap existence cost = −t ln(α(1 − β)/β) (15)
gap extension cost = −t ln(β/ω) (16)

In this study, it was assumed that γ ≈ ω2, and t was cal-
culated from each scorematrix (Table 5) using themethod
of Yu et al. [12].

A.4 Alignment sets
Unfortunately, it is unclear how to make a simple model
like those in Fig. 11 for a set of local alignments. So let
us proceed by brute force. In all three previous models, it

was the case that prob ∝ exp(score/t). We can define the
probability of any alignment set A as follows:

prob(A) ∝ exp(score(A)/t) (17)

where

score(A) =
∑

alignments
(alignment score − f ) (18)

The score parameters and t are the same as in the single-
alignment model, so the only new parameter is f .

Appendix B: Probability calculation
The probabilistic version of the split-alignment algorithm
is described here. These exponentiated scores are used:

A′
i j = eAi j/t (19)

D′
i j = eDi j/t (20)

f ′ = ef /t (21)

Table 5 Score matrix scale factor t

Score matrix t

human-chimp.v2 69.0042

hoxd70 96.1735

hoxd55 111.906
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The Forward algorithm is:

Fi beg(i) = 0 (22)
Gbeg = 1 (23)
Fi j+1 = (Fi jD′

i j + Gj/f ′)A′
i j (24)

Gj+1 = Gj +
∑
i
Fi j+1 (25)

The Backward algorithm is:

Bi end(i) = 0 (26)
Cend = 1 (27)
Bi j−1 = (Bi jD′

i j + Cj)A′
i j−1 (28)

Cj−1 = Cj +
∑
i
Bi j−1/f ′ (29)

Table 6 Substitution and gap probabilities and scores inferred from genome alignments

Genomes Probabilities t Scores

a c g t a c g t

a .29 .00053 .0022 .00044 a 77 -300 -212 -337

human-chimp c .00053 .2 .00054 .0022 63.495 c -300 100 -275 -212

g .0022 .00054 .2 .00053 g -212 -275 100 -300

t .00044 .0022 .00053 .29 t -337 -212 -300 77

gap existence probability: 0.00077 gap existence cost: 495

gap extension probability: 0.65 gap extension cost: 27

a c g t a c g t

a .29 .0013 .0055 .001 a 77 -248 -154 -287

human-orangutan c .0013 .2 .0013 .0055 64.4704 c -248 100 -222 -154

g .0055 .0013 .2 .0013 g -154 -222 100 -248

t .001 .0055 .0013 .29 t -287 -154 -248 77

gap existence probability: 0.0018 gap existence cost: 448

gap extension probability: 0.65 gap extension cost: 28

a c g t a c g t

a .24 .012 .037 .013 a 77 -126 -38 -154

human-dog c .012 .14 .0087 .037 79.0646 c -126 100 -121 -38

g .037 .0087 .14 .012 g -38 -121 100 -126

t .013 .037 .012 .24 t -154 -38 -126 77

gap existence probability: 0.012 gap existence cost: 429

gap extension probability: 0.73 gap extension cost: 25

a c g t a c g t

a .22 .016 .044 .018 a 79 -114 -27 -136

human-mouse c .016 .13 .011 .044 86.9541 c -114 100 -115 -27

g .044 .011 .13 .016 g -27 -115 100 -114

t .018 .044 .016 .22 t -136 -27 -114 79

gap existence probability: 0.015 gap existence cost: 451

gap extension probability: 0.73 gap extension cost: 27

a c g t a c g t

a .21 .015 . 031 .014 a 92 -123 -59 -139

Dro.mel-Dro.pse c .015 .17 .014 .031 86.2603 c -123 100 -117 -59

g .031 .014 .17 .015 g -59 -117 100 -123

t .014 .031 .015 .21 t -139 -59 -123 92

gap existence probability: 0.016 gap existence cost: 445

gap extension probability: 0.73 gap extension cost: 27
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These algorithms enable us to calculate the model prob-
ability of each column in each alignment. The probability
for a column in alignment i with query letter j is:

Pi j = (Fi j+1Bi j/A′
i j)/z (30)

where z = Gend = Cbeg. The probability for a column in
alignment i between query letters j − 1 and j is:

Pdeli j = Fi jBi jD′
i j/z (31)

Each column’s error probability is one minus its model
probability.
The practical implementation of this Forward-

Backward algorithm uses scaling to avoid numerical
instability [11].

Appendix C: Substitution/gap counts
The substitution and gap frequencies in each genome
alignment are shown in Table 6. The gap extension prob-
abilities were manually set to the stated values, based on
Fig. 9.
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